1
|
Ahamad Said M, Hasbullah NA, Rosdi MR, Musa MS, Rusli A, Ariffin A, Shafiq MD. Polymerization and Applications of Poly(methyl methacrylate)-Graphene Oxide Nanocomposites: A Review. ACS OMEGA 2022; 7:47490-47503. [PMID: 36591191 PMCID: PMC9798503 DOI: 10.1021/acsomega.2c04483] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 12/02/2022] [Indexed: 06/17/2023]
Abstract
Graphene oxide (GO)-incorporated poly(methyl methacrylate) (PMMA) nanocomposites (PMMA-GO) have demonstrated a wide range of outstanding mechanical, electrical, and physical characteristics. It is of interest to review the synthesis of PMMA-GO nanocomposites and their applications as multifunctional structural materials. The attention of this review is to focus on the radical polymerization techniques, mainly bulk and emulsion polymerization, to prepare PMMA-GO polymeric nanocomposite materials. This review also discusses the effect of solvent polarity on the polymerization process and the types of surfactants (anionic, cationic, nonionic) and initiator used in the polymerization. PMMA-GO nanocomposite synthesis using radical polymerization-based techniques is an active topic of study with several prospects for considerable future improvement and a variety of possible emerging applications. The concentration and dispersity of GO used in the polymerization play critical roles to ensure the functionality and performance of the PMMA-GO nanocomposites.
Collapse
|
2
|
Dai T, Chang J, Zhang X, Deng Z, Su Y, Liu X, Hao L, Ni H, Sun J. Dynamic control of the mode-locked fiber laser using a GO/PS modulator. OPTICS LETTERS 2022; 47:6153-6156. [PMID: 37219195 DOI: 10.1364/ol.476990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 11/01/2022] [Indexed: 05/24/2023]
Abstract
This Letter proposes a novel, to the best of our knowledge, transistor-like optical fiber modulator composed of graphene oxide (GO) and polystyrene (PS) microspheres. Unlike previously proposed schemes based on waveguides or cavity enhancement, the proposed method can directly enhance the photoelectric interaction with the PS microspheres to form a light local field. The designed modulator exhibits a distinct optical transmission change (62.8%), with a power consumption of <10 nW. Such low power consumption enables electrically controllable fiber lasers to be switched in various operational regimes, including continuous wave (CW), Q switched mode-locked (QML), and mode-locked (ML). With this all-fiber modulator, the pulse width of the mode-locked signal can be compressed to 12.9 ps, and the corresponding repetition rate is 21.4 MHz.
Collapse
|
3
|
Wang L, Li H, Xiao S, Zhu M, Yang J. Preparation of p-Phenylenediamine Modified Graphene Foam/Polyaniline@Epoxy Composite with Superior Thermal and EMI Shielding Performance. Polymers (Basel) 2021; 13:2324. [PMID: 34301081 PMCID: PMC8309473 DOI: 10.3390/polym13142324] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/28/2021] [Accepted: 04/28/2021] [Indexed: 12/25/2022] Open
Abstract
With the development of integrated devices, the local hot spot has become a critical problem to guarantee the working efficiency and the stability. In this work, we proposed an innovative approach to deliver graphene foam/polyaniline@epoxy composites (GF/PANI@EP) with improvement in the thermal and mechanical property performance. The graphene foam was firstly modified by the grafting strategy of p-phenylenediamine to anchor reactive sites for further in-situ polymerization of PANI resulting in a conductive network. The thermal conductivity (κ) and electromagnetic interference shielding (EMI) performance of the optimized GF/PANI4:1@EP is significantly enhanced by 238% and 1184%, respectively, compared to that of pristine EP with superior reduced modulus and hardness. Such a method to deliver GF composites can not only solve the agglomeration problem in traditional high content filler casting process, but also provides an effective way to build up conductive network with low density for thermal management of electronic devices.
Collapse
Affiliation(s)
- Liusi Wang
- School of Materials Science and Engineering, University of Shanghai for Science and Technology, No. 516 Jungong Road, Shanghai 200093, China; (L.W.); (S.X.); (M.Z.)
| | - Haoliang Li
- School of Materials Science and Engineering, University of Shanghai for Science and Technology, No. 516 Jungong Road, Shanghai 200093, China; (L.W.); (S.X.); (M.Z.)
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, No. 516 Jungong Road, Shanghai 200093, China
| | - Shuxing Xiao
- School of Materials Science and Engineering, University of Shanghai for Science and Technology, No. 516 Jungong Road, Shanghai 200093, China; (L.W.); (S.X.); (M.Z.)
| | - Mohan Zhu
- School of Materials Science and Engineering, University of Shanghai for Science and Technology, No. 516 Jungong Road, Shanghai 200093, China; (L.W.); (S.X.); (M.Z.)
| | - Junhe Yang
- School of Materials Science and Engineering, University of Shanghai for Science and Technology, No. 516 Jungong Road, Shanghai 200093, China; (L.W.); (S.X.); (M.Z.)
| |
Collapse
|
4
|
Lu Q, Jang HS, Han WJ, Lee JH, Choi HJ. Stimuli-Responsive Graphene Oxide-Polymer Nanocomposites. Macromol Res 2019. [DOI: 10.1007/s13233-019-7176-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
5
|
Wang H, Zhang Y, Wang C. Surface modification and selective flotation of waste plastics for effective recycling——a review. Sep Purif Technol 2019. [DOI: 10.1016/j.seppur.2019.05.052] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
6
|
Dong YZ, Kim JN, Choi HJ. Graphene Oxide and Its Inorganic Composites: Fabrication and Electrorheological Response. MATERIALS (BASEL, SWITZERLAND) 2019; 12:E2185. [PMID: 31284695 PMCID: PMC6651409 DOI: 10.3390/ma12132185] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 07/04/2019] [Accepted: 07/05/2019] [Indexed: 11/21/2022]
Abstract
Composite particles associated with graphene oxide (GO) and inorganic materials provide the synergistic properties of an appropriate electrical conductivity of GO with the good dielectric characteristics of inorganic materials, making them attractive candidates for electrorheological (ER) materials. This review paper focuses on the fabrication mechanisms of GO/inorganic composites and their ER response when suspended in a non-conducting medium, including steady shear flow curves, dynamic yield stress, On-Off tests, and dynamic oscillation analysis. Furthermore, the morphologies of these composites, dielectric properties, and sedimentation of the ER fluids are covered.
Collapse
Affiliation(s)
- Yu Zhen Dong
- Department of Polymer Science and Engineering, Inha University, Incheon 22212, Korea
| | - Joo Nyeon Kim
- Department of Polymer Science and Engineering, Inha University, Incheon 22212, Korea
| | - Hyoung Jin Choi
- Department of Polymer Science and Engineering, Inha University, Incheon 22212, Korea.
| |
Collapse
|
7
|
Dong YZ, Seo Y, Choi HJ. Recent development of electro-responsive smart electrorheological fluids. SOFT MATTER 2019; 15:3473-3486. [PMID: 30968927 DOI: 10.1039/c9sm00210c] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The characteristics of an electrorheological (ER) fluid, as a class of smart soft matter, can be actively and accurately tuned between a liquid- and a solid-like phase by the application of an electric field. ER materials used in ER fluids are electrically polarizable particles, which are attracting considerable attention in addition to further research. This perspective reports the latest ER materials along with their rheological understanding and provides a forward-looking summary of the potential future applications of ER technology.
Collapse
Affiliation(s)
- Yu Zhen Dong
- Department of Polymer Science and Engineering, Inha University, Incheon 22212, Korea.
| | | | | |
Collapse
|
8
|
Jellyfish-shaped p-phenylenediamine functionalized graphene oxide-g-polyaniline fibers and their electrorheology. POLYMER 2019. [DOI: 10.1016/j.polymer.2019.02.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
9
|
Synthesis of poly(methyl methacrylate)/graphene oxide nanocomposite particles via Pickering emulsion polymerization and their viscous response under an electric field. Macromol Res 2017. [DOI: 10.1007/s13233-017-5109-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
10
|
Ran F, Shen K, Tan Y, Peng B, Chen S, Zhang W, Niu X, Kong L, Kang L. Activated hierarchical porous carbon as electrode membrane accommodated with triblock copolymer for supercapacitors. J Memb Sci 2016. [DOI: 10.1016/j.memsci.2016.05.011] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
11
|
Abstract
Graphene-based nanofillers and their applications. Fabrication methods of graphene-based nanocomposites. Interaction and dispersion of graphene-based fillers in polymer matrices. Current trends and prospects of graphene-based nanocomposites.
Collapse
Affiliation(s)
- W. K. Chee
- Department of Chemistry
- Faculty of Science
- Universiti Putra Malaysia
- Malaysia
| | - H. N. Lim
- Department of Chemistry
- Faculty of Science
- Universiti Putra Malaysia
- Malaysia
- Functional Device Laboratory
| | - N. M. Huang
- Low Dimension Materials Research Centre
- Department of Physics
- Faculty of Science
- University of Malaya
- Kuala Lumpur 50603
| | - I. Harrison
- Faculty of Engineering
- The University of Nottingham Malaysia Campus
- Malaysia
| |
Collapse
|
12
|
Byun A, Shim J, Han SW, Kim B, Chae PS, Shin HS, Kim JW. One-pot microfluidic fabrication of graphene oxide-patched hollow hydrogel microcapsules with remarkable shell impermeability. Chem Commun (Camb) 2015; 51:12756-9. [DOI: 10.1039/c5cc04547a] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Uniform hollow hydrogel microcapsules, composed of a graphene oxide platelet-patched hydrogel shell, are fabricated in one step in a capillary-based microfluidic device.
Collapse
Affiliation(s)
- Aram Byun
- Department of Bionano Technology
- Hanyang University
- Republic of Korea
| | - Jongwon Shim
- AMOREPACIFIC Co. R&D Center
- Yongin
- Republic of Korea
| | - Sang Woo Han
- Department of Bionano Technology
- Hanyang University
- Republic of Korea
| | - Bohyun Kim
- Department of Applied Chemistry
- Hanyang University
- Ansan
- Republic of Korea
| | - Pil Seok Chae
- Department of Bionano Technology
- Hanyang University
- Republic of Korea
| | | | - Jin Woong Kim
- Department of Bionano Technology
- Hanyang University
- Republic of Korea
- Department of Applied Chemistry
- Hanyang University
| |
Collapse
|
13
|
A kinetics-controlled coating method to construct 1D attapulgite @ amorphous titanium oxide nanocomposite with high electrorheological activity. Colloid Polym Sci 2014. [DOI: 10.1007/s00396-014-3384-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
14
|
Yin J, Shui Y, Dong Y, Zhao X. Enhanced dielectric polarization and electro-responsive characteristic of graphene oxide-wrapped titania microspheres. NANOTECHNOLOGY 2014; 25:045702. [PMID: 24394540 DOI: 10.1088/0957-4484/25/4/045702] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Electric field-induced particle polarization is essential to the electro-responsive electrorheological (ER) effect of particle suspensions. In this work, we use graphene oxide (GO) as a soft and polar coating shell to prepare GO-wrapped titania dielectric microspheres for use as the dispersal phase of an ER suspension. Under a DC electric field, the ER characteristic of GO-wrapped titania microspheres dispersed in silicone oil is investigated by rheological tests, and then compared with that of a suspension of bare titania microspheres. The results show that the suspension of GO-wrapped titania microspheres possesses an enhanced ER characteristic. Its field-induced shear yield stress and storage modulus are much higher than those of the suspension of bare titania microspheres. The soft and polar GO shell is regarded as the origin of the ER enhancement. Dielectric analysis indicates that wrapping GO can enhance the interfacial polarization and thus improve the ER characteristics of titania microspheres. Wrapping GO onto the surface of titania microspheres can also reduce the particle sedimentation velocity of the suspension.
Collapse
Affiliation(s)
- Jianbo Yin
- Smart Materials Laboratory, Department of Applied Physics, Northwestern Polytechnical University, Xi'an 710129, People's Republic of China
| | | | | | | |
Collapse
|
15
|
Surface properties and aggregation behaviors of amphiphilic highly-branched block polyethers in aqueous solution. JOURNAL OF POLYMER RESEARCH 2013. [DOI: 10.1007/s10965-013-0205-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
16
|
Zhang WL, Choi HJ, Seo Y. Facile Fabrication of Chemically Grafted Graphene Oxide-Poly(glycidyl methacrylate) Composite Microspheres and Their Electrorheology. MACROMOL CHEM PHYS 2013. [DOI: 10.1002/macp.201300054] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
17
|
Zhang WL, Liu YD, Choi HJ, Seo Y. Core–shell structured graphene oxide-adsorbed anisotropic poly(methyl methacrylate) microparticles and their electrorheology. RSC Adv 2013. [DOI: 10.1039/c3ra22411b] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|