1
|
Yao X, Zhu Y, Chen H, Xiao H, Wang Y, Zhen H, Tan C. Shellac-based delivery systems for food bioactive compounds. Int J Biol Macromol 2024; 271:132623. [PMID: 38845255 DOI: 10.1016/j.ijbiomac.2024.132623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 05/18/2024] [Accepted: 05/22/2024] [Indexed: 06/20/2024]
Abstract
Shellac is a natural resin featuring some attractive properties such as amphiphilicity, pH responsiveness, biocompatibility, and biodegradability. There has been increasing interest in employing shellac for controlled delivery of food bioactive compounds. This review outlines the recent advances in different types of shellac-based delivery systems, including nanoparticles, zein-shellac particles, hydrogels, nanofibers, and nanomicelles. The preparation method, formation mechanism, structure, and delivery performance are investigated. These systems could improve the stability and shelf-life of bioactive compounds, allow for targeted release at the small intestine or colon site, and increase bioavailability. The deficiencies and challenges of each of the systems are also discussed. The promising results in this review could guide future trends in more efficient shellac-based delivery platforms for functional food applications.
Collapse
Affiliation(s)
- Xueqing Yao
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, China-Canada Joint Lab of Food Nutrition and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Yubo Zhu
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, China-Canada Joint Lab of Food Nutrition and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Huiyun Chen
- Institute of Agricultural Processing Research, Ningbo Academy of Agricultural Sciences, Ningbo 315040, China
| | - Hang Xiao
- Department of Food Science, University of Massachusetts Amherst, Amherst, MA 01003, United States
| | - Yanbo Wang
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, China-Canada Joint Lab of Food Nutrition and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Hongmin Zhen
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, China-Canada Joint Lab of Food Nutrition and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China.
| | - Chen Tan
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, China-Canada Joint Lab of Food Nutrition and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China.
| |
Collapse
|
2
|
Sweed NM, Dawoud MHS, Aborehab NM, Ezzat SM. An approach for an enhanced anticancer activity of ferulic acid-loaded polymeric micelles via MicroRNA-221 mediated activation of TP53INP1 in caco-2 cell line. Sci Rep 2024; 14:2073. [PMID: 38267567 PMCID: PMC10808409 DOI: 10.1038/s41598-024-52143-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 01/14/2024] [Indexed: 01/26/2024] Open
Abstract
Ferulic acid (FA) has powerful antioxidant and antitumor activities, but it has low bioavailability owing to its poor water solubility. Our aim is to formulate polymeric mixed micelles loaded with FA to overcome its poor solubility and investigate its potential anticancer activity via miRNA-221/TP53INP1 axis-mediated autophagy in colon cancer. A D-optimal design with three factors was used for the optimization of polymeric mixed micelles by studying the effects of each of total Pluronics mixture (mg), Pluronic P123 percentage (%w/w), and drug amount (mg) on both entrapment efficiency (EE%) and particle size. The anticancer activity of FA and Tocopheryl polyethylene glycol 1000 succinate (TPGS) mixed micelles formula (O2) was assessed by MTT and flow cytometry. O2 showed an EE% of 99.89%, a particle size of 13.86 nm, and a zeta potential of - 6.02 mv. In-vitro drug release studies showed a notable increase in the release rate of FA from O2, as compared to the free FA. The (IC50) values for FA from O2 and free FA were calculated against different cell lines showing a prominent IC50 against Caco-2 (17.1 µg/ml, 191 µg/ml respectively). Flow cytometry showed that FA caused cell cycle arrest at the G2/M phase in Caco-2. RT-PCR showed that O2 significantly increased the mRNA expression level of Bax and CASP-3 (4.72 ± 0.17, 3.67 ± 0.14), respectively when compared to free FA (2.59 ± 0.13, 2.14 ± 0.15), while miRNA 221 levels were decreased by the treatment with O2 (0.58 ± 0.02) when compared to free FA treatment (0.79 ± 0.03). The gene expression of TP53INP1 was increased by the treatment with O2 compared to FA at P < 0.0001. FA-loaded TPGS mixed micelles showed promising results for enhancing the anticancer effect of FA against colorectal cancer, probably due to its enhanced solubility. Thus, FA-loaded TPGS mixed micelles could be a potential therapeutic agent for colorectal cancer by targeting miRNA-221/TP53INP1 axis-mediated autophagy.
Collapse
Affiliation(s)
- Nabila M Sweed
- Department of Pharmaceutics, Faculty of Pharmacy, October University for Modern Sciences and Arts, Giza, Egypt
| | - Marwa H S Dawoud
- Department of Pharmaceutics, Faculty of Pharmacy, October University for Modern Sciences and Arts, Giza, Egypt
| | - Nora M Aborehab
- Department of Biochemistry, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), Giza, 12451, Egypt
| | - Shahira M Ezzat
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo, 11562, Egypt.
- Department of Pharmacognosy, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), Giza, 12451, Egypt.
| |
Collapse
|
3
|
Zhou J, Wang P, Yu DG, Zhu Y. Biphasic drug release from electrospun structures. Expert Opin Drug Deliv 2023; 20:621-640. [PMID: 37140041 DOI: 10.1080/17425247.2023.2210834] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 05/02/2023] [Indexed: 05/05/2023]
Abstract
INTRODUCTION Biphasic release, as a special drug-modified release profile that combines immediate and sustained release, allows fast therapeutic action and retains blood drug concentration for long periods. Electrospun nanofibers, particularly those with complex nanostructures produced by multi-fluid electrospinning processes, are potential novel biphasic drug delivery systems (DDSs). AREAS COVERED This review summarizes the most recent developments in electrospinning and related structures. In this review, the role of electrospun nanostructures in biphasic drug release was comprehensively explored. These electrospun nanostructures include monolithic nanofibers obtained through single-fluid blending electrospinning, core-shell and Janus nanostructures prepared via bifluid electrospinning, three-compartment nanostructures obtained via trifluid electrospinning, nanofibrous assemblies obtained through the layer-by-layer deposition of nanofibers, and the combined structure of electrospun nanofiber mats with casting films. The strategies and mechanisms through which complex structures facilitate biphasic release were analyzed. EXPERT OPINION Electrospun structures can provide many strategies for the development of biphasic drug release DDSs. However, many issues such as the scale-up productions of complex nanostructures, the in vivo verification of the biphasic release effects, keeping pace with the developments of multi-fluid electrospinning, drawing support from the state-of-the-art pharmaceutical excipients, and the combination with traditional pharmaceutical methods need to be addressed for real applications.
Collapse
Affiliation(s)
- Jianfeng Zhou
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, China
| | - Pu Wang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, China
| | - Deng-Guang Yu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, China
| | - Yuanjie Zhu
- Department of Dermatology, Naval Medical Center, Naval Medical University, Shanghai, China
| |
Collapse
|
4
|
Shukla D, Nandi NK, Singh B, Singh A, Kumar B, Narang RK, Singh C. Ferulic acid-loaded drug delivery systems for biomedical applications. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103621] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
5
|
Yuan Y, He N, Dong L, Guo Q, Zhang X, Li B, Li L. Multiscale Shellac-Based Delivery Systems: From Macro- to Nanoscale. ACS NANO 2021; 15:18794-18821. [PMID: 34806863 DOI: 10.1021/acsnano.1c07121] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Delivery systems play a crucial role in enhancing the activity of active substances; however, they require complex processing techniques and raw material design to achieve the desired properties. In this regard, raw materials that can be easily processed for different delivery systems are garnering attention. Among these raw materials, shellac, which is the only pharmaceutically used resin of animal origin, has been widely used in the development of various delivery systems owing to its pH responsiveness, biocompatibility, and degradability. Notably, shellac performs better on encapsulating hydrophobic active substances than other natural polymers, such as polysaccharides and proteins. In addition, specially designed shellac-based delivery systems can also be used for the codelivery of hydrophilic and hydrophobic active substances. Shellac is most widely used for oral administration, as shellac-based delivery systems can form a compact structure through hydrophobic interaction, protecting transported active substances from the harsh environment of the stomach to achieve targeted delivery in the small intestine or colon. In this review, the advantages of shellac in delivery systems are discussed in detail. Multiscale shellac-based delivery systems from the macroscale to nanoscale are comprehensively introduced, including matrix tablets, films, enteric coatings, hydrogels, microcapsules, microparticles (beads/spheres), nanoparticles, and nanofibers. Furthermore, the hotspots, deficiencies, and future perspectives of shellac-based delivery system development are also analyzed. We hoped this review will increase the understanding of shellac-based delivery systems and inspire their further development.
Collapse
Affiliation(s)
- Yi Yuan
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China
- Engineering Research Center of Starch and Plant Protein Deep Processing, Ministry of Education, South China University of Technology, Guangzhou 510640, China
| | - Ni He
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China
- Engineering Research Center of Starch and Plant Protein Deep Processing, Ministry of Education, South China University of Technology, Guangzhou 510640, China
| | - Liya Dong
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China
- Engineering Research Center of Starch and Plant Protein Deep Processing, Ministry of Education, South China University of Technology, Guangzhou 510640, China
| | - Qiyong Guo
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China
- Engineering Research Center of Starch and Plant Protein Deep Processing, Ministry of Education, South China University of Technology, Guangzhou 510640, China
| | - Xia Zhang
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China
- Engineering Research Center of Starch and Plant Protein Deep Processing, Ministry of Education, South China University of Technology, Guangzhou 510640, China
| | - Bing Li
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China
- Engineering Research Center of Starch and Plant Protein Deep Processing, Ministry of Education, South China University of Technology, Guangzhou 510640, China
| | - Lin Li
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China
- Engineering Research Center of Starch and Plant Protein Deep Processing, Ministry of Education, South China University of Technology, Guangzhou 510640, China
- School of Chemical Engineering and Energy Technology, Dongguan University of Technology, Dongguan 523808, China
| |
Collapse
|
6
|
Liu X, Wu Y, Zhao X, Wang Z. Fabrication and applications of bioactive chitosan-based organic-inorganic hybrid materials: A review. Carbohydr Polym 2021; 267:118179. [PMID: 34119147 DOI: 10.1016/j.carbpol.2021.118179] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 03/03/2021] [Accepted: 04/30/2021] [Indexed: 01/16/2023]
Abstract
Organic-inorganic hybrid materials like bone, shells, and teeth can be found in nature, which are usually composed of biomacromolecules and nanoscale inorganic ingredients. Synergy of organic-inorganic components in hybrid materials render them outstanding and versatile performance. Chitosan is commonly used organic materials in bionic hybrid materials since its bioactive properties and could be controllable tailored by various means to meet complex conditions in different applications. Among these fabrication means, hybridization was favored for its convenience and efficiency. This review discusses three kinds of chitosan-based hybrid materials: hybridized with hydroxyapatite, calcium carbonate, and clay respectively, which are the representative of phosphate, carbonate, and hydrous aluminosilicates. Here, we reported the latest developments of the preparation methods, composition, structure and applications of these bioactive hybrid materials, especially in the biomedical field. Despite the great progress was made in bioactive organic-inorganic hybrid materials based on chitosan, some challenges and specific directions are still proposed for future development in this review.
Collapse
Affiliation(s)
- Xiaoyang Liu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Yuxuan Wu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Xinchen Zhao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Zhengke Wang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China.
| |
Collapse
|
7
|
Verma V, Ryan KM, Padrela L. Production and isolation of pharmaceutical drug nanoparticles. Int J Pharm 2021; 603:120708. [PMID: 33992712 DOI: 10.1016/j.ijpharm.2021.120708] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 05/08/2021] [Accepted: 05/11/2021] [Indexed: 12/23/2022]
Abstract
Nanosizing of pharmaceutical drug particles is one of the most important drug delivery platforms approaches for the commercial development of poorly water-soluble drug molecules. Though nanosizing of drug particles has been proven to greatly enhance drugs dissolution rate and apparent solubility, nanosized materials have presented significant challenges for their formulation as solid dosage forms (e.g. tablets, capsules). This is due to the strong Van der Waals attraction forces between dry nanoparticles leading to aggregation, cohesion, and consequently poor flowability. In this review, the broad area of nanomedicines is overviewed with the primary focus on drug nanocrystals and the top-down and bottom-up methods used in their fabrication. The review also looks at how nanosuspensions of pharmaceutical drugs are generated and stabilised, followed by subsequent strategies for isolation of the nanoparticles. A perspective on the future outlook for drug nanocrystals is also presented.
Collapse
Affiliation(s)
- Vivek Verma
- SSPC Research Centre, Department of Chemical Sciences, Bernal Institute, University of Limerick, Limerick, Ireland
| | - Kevin M Ryan
- SSPC Research Centre, Department of Chemical Sciences, Bernal Institute, University of Limerick, Limerick, Ireland
| | - Luis Padrela
- SSPC Research Centre, Department of Chemical Sciences, Bernal Institute, University of Limerick, Limerick, Ireland.
| |
Collapse
|
8
|
Influence of a Coaxial Electrospraying System on the n-Hexadecane/Polycaprolactone Phase Change Microcapsules Properties. MATERIALS 2020; 13:ma13092205. [PMID: 32403411 PMCID: PMC7254340 DOI: 10.3390/ma13092205] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 05/04/2020] [Accepted: 05/06/2020] [Indexed: 11/21/2022]
Abstract
Electrospraying is considered to be a green, high-efficiency method for synthesizing phase change microcapsules (mPCMs) for possible applications in the fields of energy storage and thermal regulation. In this study, a coaxial nozzle was used to prepare n-hexadecane/polycaprolactone (PCL) microparticles. The objectives of this study were to investigate the influence of working parameters and solutions on morphology, particle size, thermal properties and encapsulation efficiency. Thus, three theoretical loading contents in n-hexadecane (30%, 50% and 70% w/w) and two concentrations of PCL (5 and 10% w/v) were used. The structures, morphologies and thermal properties of mPCMs were characterized by optical microscopy (OM), scanning electron microscopy (SEM), differential scanning calorimeter (DSC), and thermogravimetric analysis (TGA). Spherical microcapsules with a mean diameter of 10–20 µm were prepared. The increased concentration of n-hexadecane and PCL resulted in a change in the particle size distribution from a poly-disperse to monodisperse size distribution and in a change in the surface state from porous to non-porous. In addition, higher encapsulation efficiency (96%) and loading content (67%) were achieved by the coaxial nozzle using the high core-shell ratio (70/30) and 10% w/v of PCL. The latent heat of the mPCMs reached about 134 J.g−1. In addition, it was also observed that the thermal stability was improved by using a coaxial system rather than a single nozzle.
Collapse
|
9
|
Prasad SR, Jayakrishnan A, Kumar TSS. Combinational delivery of anticancer drugs for osteosarcoma treatment using electrosprayed core shell nanocarriers. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2020; 31:44. [PMID: 32367204 DOI: 10.1007/s10856-020-06379-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Accepted: 04/05/2020] [Indexed: 06/11/2023]
Abstract
In bone cancer treatment, local delivery of chemotherapeutic agents is preferred compared to other routes of administration. Delivery of multiple drugs using biodegradable carriers improves the treatment efficiency and overcomes drug resistance and toxicity. With this approach, we have developed multilayer biodegradable core shell nanoparticles (NPs) using the electro-spraying technique to deliver methotrexate (MTX) and doxorubicin (DOX) for the treatment of osteosarcoma. These core-shell NPs with a mean particle size of 212 ± 41 nm consist of hydroxyapatite (HA) and DOX as core with the outer shell made of chitosan (CH) followed by polycaprolactone (PCL) with MTX. The encapsulation efficiency of MTX was around 85% and DOX was 38%. In vitro drug release studies were performed in phosphate buffered saline (PBS) at pH 5 and pH 7.4 for 8 days. Different release profiles were observed in both acidic and alkaline pH. The sequential release of MTX followed by DOX was observed in both pH in sustained manner. Human osteosarcoma MG 63 (OMG-63) cells lines were used to test the cytotoxicity of drug loaded NPs. Multi-drug encapsulated bioresorbable and biodegradable electro-sprayed core shell NPs will be promising as a bone substitute for the treatment of osteosarcoma.
Collapse
Affiliation(s)
- S Ram Prasad
- Biomaterials Laboratory, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, India
- Medical Materials Laboratory, Department of Metallurgical and Materials Engineering, Indian Institute of Technology Madras, Chennai, 600 036, Tamil Nadu, India
| | - A Jayakrishnan
- Biomaterials Laboratory, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, India.
- Raja Ramanna Fellow, Rajiv Gandhi Centre for Biotechnology, Jagathy, Trivandrum, 695 014, Kerala, India.
| | - T S Sampath Kumar
- Medical Materials Laboratory, Department of Metallurgical and Materials Engineering, Indian Institute of Technology Madras, Chennai, 600 036, Tamil Nadu, India.
| |
Collapse
|
10
|
PEGylation of shellac-based nanocarriers for enhanced colloidal stability. Colloids Surf B Biointerfaces 2019; 183:110434. [DOI: 10.1016/j.colsurfb.2019.110434] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 07/02/2019] [Accepted: 08/07/2019] [Indexed: 11/22/2022]
|
11
|
Zhou J, Cheng W, Liu T, Li J, Li X. Preparation, characterization, and in vitro antioxidant activity of pH-sensitive resveratrol microcapsule in simulated intestinal fluids. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2019. [DOI: 10.1080/10942912.2019.1610432] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Jun Zhou
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha, P.R. China
| | - Wenhao Cheng
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha, P.R. China
| | - Tiantian Liu
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha, P.R. China
| | - Jiexin Li
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha, P.R. China
| | - Xiangzhou Li
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha, P.R. China
- National Engineering Laboratory for Applied Technology of Forestry & Ecology in South China, Changsha, P.R. China
| |
Collapse
|
12
|
de Dicastillo CL, Patiño C, Galotto MJ, Vásquez-Martínez Y, Torrent C, Alburquenque D, Pereira A, Escrig J. Novel hollow titanium dioxide nanospheres with antimicrobial activity against resistant bacteria. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2019; 10:1716-1725. [PMID: 31501743 PMCID: PMC6720579 DOI: 10.3762/bjnano.10.167] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 07/30/2019] [Indexed: 05/19/2023]
Abstract
The search for and synthesis of new antimicrobial nanostructures is important to reduce microbial incidence that induces infectious diseases and to aid in the antibiotic resistance crisis, which are two of the most pressing issues in global public health. In this work, novel, hollow, calcined titanium dioxide nanospheres (CSTiO2) were successfully synthesized for the first time through the combination of electrospinning and atomic layer deposition techniques. Poly(vinylpyrrolidone) (PVP) electrosprayed spherical particles were double-coated with alumina and titanium dioxide, and after a calcination process, hollow nanospheres were obtained with a radius of approximately 345 nm and shell thickness of 17 nm. The structural characterization was performed using electron microscopy, and X-ray diffraction and small-angle X-ray diffraction evidenced an anatase titanium dioxide crystalline structure. Thermogravimetric analysis and Fourier-transform infrared spectroscopy studies demonstrated the absence of polymer residue after the calcination process. The antimicrobial properties of the developed CSTiO2 hollow nanospheres were evaluated against different bacteria, including resistant E. coli and S. aureus strains, and when compared to commercial TiO2 nanoparticles, CSTiO2 nanospheres exhibited superior performance. In addition, the positive effect of UV irradiation on the antimicrobial activity was demonstrated.
Collapse
Affiliation(s)
- Carol López de Dicastillo
- Food Packaging Laboratory (Laben-Chile), Department of Science and Food Technology, Faculty of Technology, Universidad de Santiago de Chile (USACH), Obispo Umaña 050, 9170201 Santiago, Chile
- Center for the Development of Nanoscience and Nanotechnology (CEDENNA), 9170124 Santiago, Chile
| | - Cristian Patiño
- Food Packaging Laboratory (Laben-Chile), Department of Science and Food Technology, Faculty of Technology, Universidad de Santiago de Chile (USACH), Obispo Umaña 050, 9170201 Santiago, Chile
- Center for the Development of Nanoscience and Nanotechnology (CEDENNA), 9170124 Santiago, Chile
| | - María José Galotto
- Food Packaging Laboratory (Laben-Chile), Department of Science and Food Technology, Faculty of Technology, Universidad de Santiago de Chile (USACH), Obispo Umaña 050, 9170201 Santiago, Chile
- Center for the Development of Nanoscience and Nanotechnology (CEDENNA), 9170124 Santiago, Chile
| | - Yesseny Vásquez-Martínez
- Program Center for Applied Biomedical Research, School of Medicine, Faculty of Medical Sciences, University of Santiago de Chile, 9170022 Santiago, Chile
- Department of Biology, Faculty of Chemistry and Biology, University of Santiago de Chile, Santiago 9170022, Chile
| | - Claudia Torrent
- Department of Biology, Faculty of Chemistry and Biology, University of Santiago de Chile, Santiago 9170022, Chile
| | - Daniela Alburquenque
- Department of Physics, Universidad de Santiago de Chile (USACH), Av. Ecuador 3493, 9170124 Santiago, Chile
| | - Alejandro Pereira
- Center for the Development of Nanoscience and Nanotechnology (CEDENNA), 9170124 Santiago, Chile
- Department of Sciences, Faculty of Liberal Arts, University Adolfo Ibáñez, 7941169 Santiago, Chile
| | - Juan Escrig
- Center for the Development of Nanoscience and Nanotechnology (CEDENNA), 9170124 Santiago, Chile
- Department of Physics, Universidad de Santiago de Chile (USACH), Av. Ecuador 3493, 9170124 Santiago, Chile
| |
Collapse
|
13
|
Sedaghat Doost A, Muhammad DRA, Stevens CV, Dewettinck K, Van der Meeren P. Fabrication and characterization of quercetin loaded almond gum-shellac nanoparticles prepared by antisolvent precipitation. Food Hydrocoll 2018. [DOI: 10.1016/j.foodhyd.2018.04.050] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
14
|
Pawar A, Thakkar S, Misra M. A bird's eye view of nanoparticles prepared by electrospraying: advancements in drug delivery field. J Control Release 2018; 286:179-200. [DOI: 10.1016/j.jconrel.2018.07.036] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 07/22/2018] [Accepted: 07/23/2018] [Indexed: 01/19/2023]
|
15
|
Yu DG, Li JJ, Williams GR, Zhao M. Electrospun amorphous solid dispersions of poorly water-soluble drugs: A review. J Control Release 2018; 292:91-110. [PMID: 30118788 DOI: 10.1016/j.jconrel.2018.08.016] [Citation(s) in RCA: 170] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 08/07/2018] [Accepted: 08/09/2018] [Indexed: 12/20/2022]
Abstract
The development of oral dosage forms for poorly water-soluble active pharmaceutical ingredients (APIs) is a persistent challenge. A range of methods has been explored to address this issue, and amorphous solid dispersions (ASDs) have received increasing attention. ASDs are typically prepared by starting with a liquid precursor (a solution or melt) and applying energy for solidification. Many techniques can be used, with the emergence of electrospinning as a potent option in recent years. This method uses electrical energy to induce changes from liquid to solid. Through the direct applications of electrical energy, electrospinning can generate nanofiber-based ASDs from drug-loaded solutions, melts and melt-solutions. The technique can also be combined with other approaches using the application of mechanical, thermal or other energy sources. Electrospinning has numerous advantages over other approaches to produce ASDs. These advantages include extremely rapid drying speeds, ease of implentation, compatibility with a wide range of active ingredients (including those which are thermally labile), and the generation of products with large surface areas and high porosity. Furthermore, this technique exhibits the potential to create so-called 'fifth-generation' ASDs with nanostructured architectures, such as core/shell or Janus systems and their combinations. These advanced systems can improve dissolution behaviour and provide programmable drug release profiles. Additionally, the fiber components and their spatial distributions can be precisely controlled. Electrospun fiber-based ASDs can maintain an incorporated active ingredient in the amorphous physical form for prolonged periods of time because of their homogeneous drug distribution within the polymer matrix (typically they comprise solid solutions), and ability to inhibit molecular motion. These ASDs can be utilised to generate oral dosage forms for poorly water-soluble drugs, resulting in linear or multiple-phase release of one or more APIs. Electrospun ASDs can also be exploited as templates for manipulating molecular self-assembly, offering a bridge between ASDs and other types of dosage forms. This review addresses the development, advantages and pharmaceutical applications of electrospinning for producing polymeric ASDs. Material preparation and analysis procedures are considered. The mechanisms through which performance has been improved are also discussed.
Collapse
Affiliation(s)
- Deng-Guang Yu
- School of Materials Science & Engineering, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China
| | - Jiao-Jiao Li
- School of Materials Science & Engineering, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China
| | - Gareth R Williams
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Min Zhao
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK.
| |
Collapse
|
16
|
Bulemo PM, Cho HJ, Kim DH, Kim ID. Facile Synthesis of Pt-Functionalized Meso/Macroporous SnO 2 Hollow Spheres through in Situ Templating with SiO 2 for H 2S Sensors. ACS APPLIED MATERIALS & INTERFACES 2018; 10:18183-18191. [PMID: 29608265 DOI: 10.1021/acsami.8b00901] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Although single-nozzle electrospraying seems a versatile technique in the synthesis of spherical semiconducting metal oxide structures, the synthesized structures find limited use in gas-sensing applications because of their thick and dense morphology, which minimizes the accessibility of their inner surfaces. Herein, unprecedented spherical SiO2@SnO2 core-shell structures are synthesized upon calcination of single-nozzle as-electrosprayed spheres (SPs) containing tin (Sn) and silicon (Si) precursors. Subsequent etching of SiO2 in NaOH (pH 12) affords meso/macroporous SnO2 hollow spheres (HSPs) with short diffusion length (31.4 ± 3.1 nm), small crystallites (15.5 nm), and large Brunauer-Emmett-Teller surface area (124.8 m2 g-1). Apart from surface meso/macropores, diffusion of gases into porous SnO2 sensing layers is realized through inner interconnection of voids of the SnO2 HSPs into a three-dimensional network. Functionalization of the postetched SnO2 HSPs with platinum (Pt) nanoparticles at 0.08 wt % yields gas-sensing materials with outstanding response ( Ra/ Rg = 1.6, 10.8, and 105.1-0.1, 1, and 5 ppm of H2S, respectively) and selectivity toward H2S against interfering gas molecules at 250 °C. The SiO2 phase in the postcalcined SiO2@SnO2 SPs acts as a sacrificial template for pore creation and crystal growth inhibition, whereas the small amount of SiO2 residues in HSPs enhances the selectivity.
Collapse
Affiliation(s)
- Peresi Majura Bulemo
- Department of Materials Science and Engineering , Korea Advanced Institute of Science and Technology (KAIST) , 291 Daehak-ro , Yuseong-gu, Daejeon 34141 , Republic of Korea
| | - Hee-Jin Cho
- Department of Materials Science and Engineering , Korea Advanced Institute of Science and Technology (KAIST) , 291 Daehak-ro , Yuseong-gu, Daejeon 34141 , Republic of Korea
| | - Dong-Ha Kim
- Department of Materials Science and Engineering , Korea Advanced Institute of Science and Technology (KAIST) , 291 Daehak-ro , Yuseong-gu, Daejeon 34141 , Republic of Korea
| | - Il-Doo Kim
- Department of Materials Science and Engineering , Korea Advanced Institute of Science and Technology (KAIST) , 291 Daehak-ro , Yuseong-gu, Daejeon 34141 , Republic of Korea
| |
Collapse
|
17
|
Chen J, Zhu C, Yang Z, Wang P, Yue Y, Kitaoka T. Thermally Tunable Pickering Emulsions Stabilized by Carbon-Dot-Incorporated Core-Shell Nanospheres with Fluorescence "On-Off" Behavior. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:273-283. [PMID: 29227679 DOI: 10.1021/acs.langmuir.7b03490] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Lack of deep understanding of nanoparticle (NP) actions at oil/water interface set an obstacle to practical applications of Pickering emulsions. Fluorescence labels fabricated by incorporation of carbon dots (CDs) into poly(N-isopropylacrylamide) (PNIPAM) matrix can not only mark the action of PNIPAM-based NPs in the interface but also reflect the colloidal morphologies of PNIPAM. In this work, we employed coaxial electrospraying for fabricating core-shell nanospheres of cellulose acetate encapsulated by PNIPAM, and facile incorporation of CDs in PNIPAM shells was achieved simultaneously. The coaxial electrosprayed NPs (CENPs) with temperature-dependent wettability can stabilize heptane and toluene in water at 25 °C, respectively, and reversible emulsion break can be triggered by temperature adjustment around the low critical solution temperature (LCST). Remarkably, CENP/CD composites exhibited a fluorescence "on-off" behavior because of the volume phase transition of the PNIPAM shell. CENP/CD composites in Pickering emulsions clearly elucidated the motions of CENPs in response to temperature changes. At temperatures below the LCST, the CENP concentration played an important role in surface coverage of oil droplets. Specifically, the CENP concentration above the minimum concentration for complete emulsification of oil phase led to high surface coverage and two-domain adsorption of CENPs at the interface including primary monolayer anchoring of CENPs on droplets surrounded by interconnected CENP networks, which contributed to the superior stability of the emulsions. Moreover, CENP/CD composites can be recycled with well-preserved core-shell structure and stable fluorescent properties, which offers their great potential applications in sensors and imaging.
Collapse
Affiliation(s)
- Jianqiang Chen
- Laboratory of Advanced Environmental & Energy Storage Materials, Department of Environment Engineering, Nanjing Forestry University , 159 Longpan Road, Nanjing 210037, P. R. China
| | - Chenyang Zhu
- Laboratory of Advanced Environmental & Energy Storage Materials, Department of Environment Engineering, Nanjing Forestry University , 159 Longpan Road, Nanjing 210037, P. R. China
| | - Zhen Yang
- School of Chemistry and Materials Science, Jiangsu Provincial Key Laboratory of Material Cycling and Pollution Control, Nanjing Normal University , 1 Wenyuan Road, Nanjing 210023, P. R. China
| | - Ping Wang
- Laboratory of Advanced Environmental & Energy Storage Materials, Department of Environment Engineering, Nanjing Forestry University , 159 Longpan Road, Nanjing 210037, P. R. China
| | - Yiying Yue
- Laboratory of Advanced Environmental & Energy Storage Materials, Department of Environment Engineering, Nanjing Forestry University , 159 Longpan Road, Nanjing 210037, P. R. China
| | - Takuya Kitaoka
- Department of Agro-Environmental Sciences, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University , 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan
| |
Collapse
|
18
|
Ghoshal UK, Bhattacharyya S, Gopmandal PP, De S. Nonlinear Effects on Electrophoresis of a Soft Particle and Sustained Solute Release. Transp Porous Media 2017. [DOI: 10.1007/s11242-017-0952-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
19
|
Petlin DG, Amarah AA, Tverdokhlebov SI, Anissimov YG. A fiber distribution model for predicting drug release rates. J Control Release 2017; 258:218-225. [PMID: 28526437 DOI: 10.1016/j.jconrel.2017.05.021] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 05/11/2017] [Accepted: 05/16/2017] [Indexed: 11/28/2022]
Abstract
Sustained drug release can be achieved by loading a drug into polymer material. The drug release can then be controlled for potential use in various biomedical applications. A model for drug release from a polymeric fibrous scaffold, which takes into account the distribution of fiber diameters within its structure, is developed here. It is demonstrated that the fiber diameter distribution significantly affects the drug release profile from electrospun scaffolds. The developed model indicates that altering the fiber distribution can be used as an additional tool to achieve an appropriate drug release profile. Using published data, it was demonstrated that an application of the model allows a more precise calculation of the drug diffusion coefficient within the polymer, which is important for predicting drug release rates from fabricated materials.
Collapse
Affiliation(s)
- D G Petlin
- Griffith University, School of Natural Sciences, Engineering Dr., Southport, QLD 4222, Australia; Tomsk Polytechnic University, 30 Lenin Avenue, Tomsk 634050, Russian Federation
| | - A A Amarah
- Griffith University, School of Natural Sciences, Engineering Dr., Southport, QLD 4222, Australia; University of Basrah, College of Science, Physics Department, Basrah, Iraq
| | - S I Tverdokhlebov
- Tomsk Polytechnic University, 30 Lenin Avenue, Tomsk 634050, Russian Federation
| | - Y G Anissimov
- Griffith University, School of Natural Sciences, Engineering Dr., Southport, QLD 4222, Australia.
| |
Collapse
|
20
|
Ma K, Qiu Y, Fu Y, Ni QQ. Improved shellac mediated nanoscale application drug release effect in a gastric-site drug delivery system. RSC Adv 2017. [DOI: 10.1039/c7ra10757a] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Six kinds of nanoscale application are designed in this study. A significant increase of drug release rate can be observed at the gastric site.
Collapse
Affiliation(s)
- Ke Ma
- Interdisciplinary Graduate School of Science and Technology
- Shinshu University
- Ueda 386-8567
- Japan
| | - Yiping Qiu
- Department of Technical Textiles
- College of Textiles
- Donghua University
- China
| | - Yaqin Fu
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology
- Ministry of Education
- Zhejiang Sci-Tech University
- Hangzhou 310018
- China
| | - Qing-Qing Ni
- Department of Mechanical Engineering & Robotics
- Shinshu University
- Ueda 386-8567
- Japan
- College of Textile and Garments
| |
Collapse
|
21
|
Chen J, Dai H, Lin H, Tu K, Wang H, Wang LQ. A new strategy based on electrospray technique to prepare dual-responsive poly(ether urethane) nanogels. Colloids Surf B Biointerfaces 2016; 141:278-283. [PMID: 26859119 DOI: 10.1016/j.colsurfb.2016.01.051] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2015] [Revised: 01/05/2016] [Accepted: 01/27/2016] [Indexed: 12/27/2022]
|
22
|
Wang X, Yu DG, Li XY, Bligh SA, Williams GR. Electrospun medicated shellac nanofibers for colon-targeted drug delivery. Int J Pharm 2015; 490:384-90. [DOI: 10.1016/j.ijpharm.2015.05.077] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Revised: 05/29/2015] [Accepted: 05/30/2015] [Indexed: 12/24/2022]
|
23
|
Yan J, Wu YH, Yu DG, Williams GR, Huang SM, Tao W, Sun JY. Electrospun acid–base pair solid dispersions of quercetin. RSC Adv 2014. [DOI: 10.1039/c4ra10221e] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
An electrospun acid–base pair solid dispersion in the form of core–shell nanofibers was developed for improving the dissolution of quercetin.
Collapse
Affiliation(s)
- Jie Yan
- Research Center for Analysis and Measurement
- Donghua University
- Shanghai 201620, China
| | - Yong-Hui Wu
- The Department of Mechanical Engineering
- Guangxi Technological College of Machinery and Electricity
- Nanning 530007, China
| | - Deng-Guang Yu
- School of Materials Science & Engineering
- University of Shanghai for Science and Technology
- Shanghai 200093, China
| | | | - Shang-Meng Huang
- The Department of Mechanical Engineering
- Guangxi Technological College of Machinery and Electricity
- Nanning 530007, China
| | - Wen Tao
- School of Materials Science & Engineering
- University of Shanghai for Science and Technology
- Shanghai 200093, China
| | - Jun-Yi Sun
- School of Materials Science & Engineering
- University of Shanghai for Science and Technology
- Shanghai 200093, China
| |
Collapse
|