1
|
Mixich L, Boonstra E, Masuda K, Li SW, Nakashima Y, Meng F, Sakata M, Goda T, Uchida S, Cabral H. Ionizable Polymeric Micelles with Phenylalanine Moieties Enhance Intracellular Delivery of Self-Replicating RNA for Long-Lasting Protein Expression In Vivo. Biomacromolecules 2024; 25:1058-1067. [PMID: 38181450 DOI: 10.1021/acs.biomac.3c01102] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2024]
Abstract
mRNA-based therapeutics are revolutionizing the landscape of medical interventions. However, the short half-life of mRNA and transient protein expression often limits its therapeutic potential, demanding high treatment doses or repeated administrations. Self-replicating RNA (RepRNA)-based treatments could offer enhanced protein production and reduce the required dosage. Here, we developed polymeric micelles based on flexible poly(ethylene glycol)-poly(glycerol) (PEG-PG) block copolymers modified with phenylalanine (Phe) moieties via biodegradable ester bonds for the efficient delivery of RepRNA. These polymers successfully encapsulated RepRNA into sub-100 nm micelles assisted by the hydrophobicity of the Phe moieties and their ability to π-π stack with the bases in RepRNA. The micelles made from Phe-modified PEG-PG (PEG-PG(Phe)) effectively maintained the integrity of the loaded RepRNA in RNase-rich serum conditions. Once taken up by cells, the micelles triggered a pH-responsive membrane disruption, promoted by the strong protonation of the amino groups at endosomal pH, thereby delivering the RepRNA to the cytosol. The system induced strong protein expression in vitro and outperformed commercial transfecting reagents in vivo, where it resulted in enhanced and long-lasting protein expression.
Collapse
Affiliation(s)
- Lucas Mixich
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, Tokyo 113-8658, Japan
| | - Eger Boonstra
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, Tokyo 113-8658, Japan
| | - Keita Masuda
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, Tokyo 113-8658, Japan
| | - Shang-Wei Li
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, Tokyo 113-8658, Japan
| | - Yuki Nakashima
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, Tokyo 113-8658, Japan
| | - Fanlu Meng
- Department of Biomedical Engineering, Faculty of Science and Engineering, Toyo University, 2100 Kujirai, Kawagoe, Saitama 350-8585, Japan
| | - Momoko Sakata
- Department of Biomedical Engineering, Faculty of Science and Engineering, Toyo University, 2100 Kujirai, Kawagoe, Saitama 350-8585, Japan
| | - Tatsuro Goda
- Department of Biomedical Engineering, Faculty of Science and Engineering, Toyo University, 2100 Kujirai, Kawagoe, Saitama 350-8585, Japan
| | - Satoshi Uchida
- Department of Advanced Nanomedical Engineering, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo 113-8510, Japan
- Innovation Center of NanoMedicine (iCONM), Kawasaki Institute of Industrial Promotion, Kawasaki-ku, Kawasaki 210-0821, Japan
| | - Horacio Cabral
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, Tokyo 113-8658, Japan
| |
Collapse
|
2
|
Li P, Yu M, Ke X, Gong X, Li Z, Xing X. Cytocompatible Amphipathic Carbon Quantum Dots as Potent Membrane-Active Antibacterial Agents with Low Drug Resistance and Effective Inhibition of Biofilm Formation. ACS APPLIED BIO MATERIALS 2022; 5:3290-3299. [PMID: 35700313 DOI: 10.1021/acsabm.2c00292] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
It is very challenging to design nanomaterials with both excellent antibacterial activity and cytocompatibility when facing bacterial infection. Here, inspired by antimicrobial peptides (AMPs), we fabricate carbon quantum dots (CQDs) derived from hydrophobic tryptophan and hydrophilic lysine or arginine (Lys/Trp-CQDs and Arg/Trp-CQDs), which possess amphipathic properties. These CQDs could effectively destroy bacterial membranes without developing resistance, inhibit biofilms formed by Staphylococcus aureus, and exhibit good in vitro biocompatibility. The antibacterial activities are caused by not only surface cationic structures and excess intracellular reactive oxygen species (ROS) generated by the CQDs but also the effects of the surface hydrophobic groups. These combined mechanisms of actions lead to bacterial membrane disruption, which raises the hope for combating bacterial infection without concern about drug resistance. What's more, the effect of amphiphilicity on balancing sterilization with biocompatibility expands the research ideas for developing available antibacterial nanomaterials.
Collapse
Affiliation(s)
- Peili Li
- College of Chemistry and Materials Engineering, Anhui Science and Technology University, Bengbu 233000, China
| | - Meizhe Yu
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Xiang Ke
- College of Chemistry and Materials Engineering, Anhui Science and Technology University, Bengbu 233000, China
| | - Xuedong Gong
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Zirong Li
- College of Chemistry and Materials Engineering, Anhui Science and Technology University, Bengbu 233000, China
| | - Xiaodong Xing
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| |
Collapse
|
3
|
Wang S. pH-Responsive Amphiphilic Carboxylate Polymers: Design and Potential for Endosomal Escape. Front Chem 2021; 9:645297. [PMID: 33834015 PMCID: PMC8021698 DOI: 10.3389/fchem.2021.645297] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 02/22/2021] [Indexed: 12/19/2022] Open
Abstract
The intracellular delivery of emerging biomacromolecular therapeutics, such as genes, peptides, and proteins, remains a great challenge. Unlike small hydrophobic drugs, these biotherapeutics are impermeable to the cell membrane, thus relying on the endocytic pathways for cell entry. After endocytosis, they are entrapped in the endosomes and finally degraded in lysosomes. To overcome these barriers, many carriers have been developed to facilitate the endosomal escape of these biomacromolecules. This mini-review focuses on the development of anionic pH-responsive amphiphilic carboxylate polymers for endosomal escape applications, including the design and synthesis of these polymers, the mechanistic insights of their endosomal escape capability, the challenges in the field, and future opportunities.
Collapse
Affiliation(s)
- Shiqi Wang
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| |
Collapse
|
4
|
Zhang M, Kang W, Yang H, Li Z, Zhang H, Wang F, Li M, Kang X, Jiang H, Xie A. Emulsion stabilization of cyclodextrin polymer inclusion amphiphilic polymers with different hydrophobic chain. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2020.115259] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
5
|
Liu B, Zhang Q, Zhou F, Ren L, Zhao Y, Yuan X. Enhancing Membrane-Disruptive Activity via Hydrophobic Phenylalanine and Lysine Tethered to Poly(aspartic acid). ACS APPLIED MATERIALS & INTERFACES 2019; 11:14538-14547. [PMID: 30933470 DOI: 10.1021/acsami.8b22721] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Amphiphilic polymers with pH-responsive abilities have been widely used as carriers for intracellular delivery of bioactive substances, while their membrane-disruptive activity exerted on cells is a critical characteristic that determines delivery efficiency. Herein, we present a novel method to prepare amphiphilic and pH-responsive polymers by chemically tethering l-phenylalanine methyl ester and followed by Nε-carbobenzyloxy-l-lysine benzyl ester to the side carboxylic acid groups of poly(aspartic acid). The obtained phenylalanine- and lysine-grafted polymer (PAsp- g-Phe)- g-Lys demonstrated enhanced membrane-disruptive activity at pH 7.4 in comparison with that of PAsp- g-Phe. Moreover, the pH-responsive behavior of the grafted polymers caused by the significantly intensified hydrophobicity could be modulated by the tethered amount of hydrophobic amino acids with phenyl groups. The prepared amphiphilic (PAsp- g-Phe)- g-Lys could facilitate entry of calcein into NIH/3T3 and HeLa cells at physiological pH values, possibly due to local chemical destabilization of cell membranes by the interaction between the polymer and membrane bilayers. Therefore, we have provided a feasible approach to prepare pH-responsive polymers with enhanced membrane-disruptive activity, and the phenylalanine- and lysine-grafted polymers could be a potential candidate for intracellular delivery of bioactive molecules in biomedical applications.
Collapse
Affiliation(s)
- Bo Liu
- School of Materials Science and Engineering, and Tianjin Key Laboratory of Composite and Functional Materials , Tianjin University , Tianjin 300350 , China
| | - Qifa Zhang
- School of Materials Science and Engineering, and Tianjin Key Laboratory of Composite and Functional Materials , Tianjin University , Tianjin 300350 , China
| | - Fang Zhou
- School of Materials Science and Engineering, and Tianjin Key Laboratory of Composite and Functional Materials , Tianjin University , Tianjin 300350 , China
| | - Lixia Ren
- School of Materials Science and Engineering, and Tianjin Key Laboratory of Composite and Functional Materials , Tianjin University , Tianjin 300350 , China
| | - Yunhui Zhao
- School of Materials Science and Engineering, and Tianjin Key Laboratory of Composite and Functional Materials , Tianjin University , Tianjin 300350 , China
| | - Xiaoyan Yuan
- School of Materials Science and Engineering, and Tianjin Key Laboratory of Composite and Functional Materials , Tianjin University , Tianjin 300350 , China
| |
Collapse
|
6
|
Lu H, Martí J. Effects of cholesterol on the binding of the precursor neurotransmitter tryptophan to zwitterionic membranes. J Chem Phys 2018; 149:164906. [PMID: 30384712 DOI: 10.1063/1.5029430] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The characterization of the microscopical forces between the essential α-amino-acid tryptophan, precursor of the neurotransmitter serotonin and of the hormone melatonin, and the basic components of cell membranes and their environments (phospholipids, cholesterol, ionic species, and water) is of central importance to elucidate their local structure and dynamics as well as the mechanisms responsible for the access of tryptophan to the interior of the cell. We have performed nanosecond molecular dynamics simulations of tryptophan embedded in model zwitterionic bilayer membranes made by di-palmitoyl-phosphatidyl-choline and cholesterol inside aqueous sodium-chloride solution in order to systematically examine tryptophan-lipid, tryptophan-cholesterol, and tryptophan-water interactions under liquid-crystalline phase conditions. Microscopic properties such as the area per lipid, lipid thickness, radial distribution functions, hydrogen-bonding lengths, atomic spectral densities, and self-diffusion coefficients have been evaluated. Our results show that the presence of tryptophan significantly affects the structure and dynamics of the membrane. Tryptophan spends long periods of time at the water-membrane interface, and it plays a central role by bridging a few lipids and cholesterol chains by means of hydrogen-bonds. The computed spectral densities, in excellent agreement with experimental infrared and Raman data, revealed the participation of each atomic site of tryptophan to the complete spectrum of the molecule. Tryptophan self-diffusion coefficients have been found to be in between 10-7 and 10-6 cm2/s and strongly depending of the concentration of cholesterol in the system.
Collapse
Affiliation(s)
- Huixia Lu
- Department of Physics, Technical University of Catalonia-Barcelona Tech, B4-210 Northern Campus UPC, 08034 Barcelona, Catalonia, Spain
| | - Jordi Martí
- Department of Physics, Technical University of Catalonia-Barcelona Tech, B5-209 Northern Campus UPC, 08034 Barcelona, Catalonia, Spain
| |
Collapse
|
7
|
Kumar V, Mishra NK, Gupta S, Joshi KB. Short Peptide Amphiphile Cage Facilitate Engineering of Gold Nanoparticles Under the Laser Field. ChemistrySelect 2017. [DOI: 10.1002/slct.201601548] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Vikas Kumar
- School of Chemical Science and Technology, Department of Chemistry; Dr Harisingh Gour Central University Sagar, MP; 470003 India
| | - Narendra K. Mishra
- Department of Chemistry Indian Institute of Technology Kanpur; 208016 India
| | - Shradhey Gupta
- School of Chemical Science and Technology, Department of Chemistry; Dr Harisingh Gour Central University Sagar, MP; 470003 India
| | - Khashti B. Joshi
- School of Chemical Science and Technology, Department of Chemistry; Dr Harisingh Gour Central University Sagar, MP; 470003 India
| |
Collapse
|
8
|
Cohen-Erez I, Rapaport H. Coassemblies of the Anionic Polypeptide γ-PGA and Cationic β-Sheet Peptides for Drug Delivery to Mitochondria. Biomacromolecules 2015; 16:3827-35. [DOI: 10.1021/acs.biomac.5b01140] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ifat Cohen-Erez
- Avram and Stella
Goldstein-Goren Department of Biotechnology Engineering and Ilse Katz Institute for Nanoscale Science
and Technology (IKI), Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Hanna Rapaport
- Avram and Stella
Goldstein-Goren Department of Biotechnology Engineering and Ilse Katz Institute for Nanoscale Science
and Technology (IKI), Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| |
Collapse
|
9
|
Small Wonders-The Use of Nanoparticles for Delivering Antigen. Vaccines (Basel) 2015; 3:638-61. [PMID: 26350599 PMCID: PMC4586471 DOI: 10.3390/vaccines3030638] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 07/15/2015] [Accepted: 07/31/2015] [Indexed: 12/19/2022] Open
Abstract
Despite the discovery of many potential antigens for subunit vaccines, universal protection is often lacking due to the limitations of conventional delivery methods. Subunit vaccines primarily induce antibody-mediated humoral responses, whereas potent antigen-specific cellular responses are required for prevention against some pathogenic infections. Nanoparticles have been utilised in nanomedicine and are promising candidates for vaccine or drug delivery. Nanoparticle vehicles have been demonstrated to be efficiently taken up by dendritic cells and induce humoral and cellular responses. This review provides an overview of nanoparticle vaccine development; in particular, the preparation of nanoparticles using a templating technique is highlighted, which would alleviate some of the disadvantages of existing nanoparticles. We will also explore the cellular fate of nanoparticle vaccines. Nanoparticle-based antigen delivery systems have the potential to develop new generation vaccines against currently unpreventable infectious diseases.
Collapse
|
10
|
Shima F, Akagi T, Akashi M. Effect of Hydrophobic Side Chains in the Induction of Immune Responses by Nanoparticle Adjuvants Consisting of Amphiphilic Poly(γ-glutamic acid). Bioconjug Chem 2015; 26:890-8. [PMID: 25865284 DOI: 10.1021/acs.bioconjchem.5b00106] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The new generation vaccines are safe but poorly immunogenic, and thus they require the use of adjuvants. Adjuvants that can control the balance and induction level of cellular and humoral immunities are urgently required for the treatment of and/or protection from infectious diseases and cancers. However, there are no adjuvants which can achieve these requirements. In this study, amphiphilic poly(γ-glutamic acid) (γ-PGA) with various kinds of hydrophobic amino acid ethyl esters (AAE) was synthesized (γ-PGA-AAE) and used to prepare antigen-encapsulated nanoparticles (NPs). γ-PGA-graft-Leu (γ-PGA-Leu, where Leu = leucine ethyl ester), γ-PGA-graft-Phe (γ-PGA-Phe, where Phe = phenylalanine ethyl ester), and γ-PGA-graft-Trp (γ-PGA-Trp, where Trp = tryptophan ethyl ester) formed monodispersed NPs that encapsulated ovalbumin (OVA). The type and the induction level of the antigen-specific cellular and humoral immunities could be controlled by the kinds of hydrophobic segments and vaccine formulation (encapsulation or mixture) used. When OVA was encapsulated into NPs, the cellular immunity was dominantly induced, while humoral immunity was dominant when OVA was mixed with NPs. These results are a first report to demonstrate that the balance and induction level of cellular and humoral immunities could be controlled by modifying compositions of NPs and vaccine formulation. Our results suggest that γ-PGA-AAE NPs can provide safe and efficient nanoparticle-based vaccine adjuvants, and the results also provide guidelines in the rational design of amphiphilic polymers as vaccine adjuvants which can control the balance of immune responses.
Collapse
Affiliation(s)
- Fumiaki Shima
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Takami Akagi
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Mitsuru Akashi
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
11
|
Mundra V, Mahato RI. Design of nanocarriers for efficient cellular uptake and endosomal release of small molecule and nucleic acid drugs: learning from virus. Front Chem Sci Eng 2014. [DOI: 10.1007/s11705-014-1457-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|