1
|
Heaugwane D, Cerlati O, Belkhir K, Tarek Benkhaled B, Catrouillet S, Fabing I, Claparols C, Vedrenne M, Goudounèche D, Payré B, Lucia Bona B, Tosi A, Baldelli Bombelli F, Vicendo P, Lapinte V, Lonetti B, Mingotaud AF, Gibot L. Coumarin-poly(2-oxazoline)s as synergetic and protein-undetected nanovectors for photodynamic therapy. Int J Pharm 2024; 658:124186. [PMID: 38701908 DOI: 10.1016/j.ijpharm.2024.124186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/29/2024] [Accepted: 04/29/2024] [Indexed: 05/05/2024]
Abstract
Because of the difficult challenges of nanopharmaceutics, the development of a variety of nanovectors is still highly desired. Photodynamic therapy, which uses a photosensitizer to locally produce reactive oxygen species to kill the undesired cells, is a typical example for which encapsulation has been shown to be beneficial. The present work describes the use of coumarin-functionalized polymeric nanovectors based on the self-assembly of amphiphilic poly(2-oxazoline)s. Encapsulation of pheophorbide a, a known PDT photosensitizer, is shown to lead to an increased efficiency compared to the un-encapsulated version. Interestingly, the presence of coumarin both enhances the desired photocytotoxicity and enables the crosslinking of the vectors. Various nanovectors are examined, differing by their size, shape and hydrophilicity. Their behaviour in PDT protocols on HCT-116 cells monolayers is described, the influence of their crosslinking commented. Furthermore, the formation of a protein corona is assessed.
Collapse
Affiliation(s)
- Diana Heaugwane
- Laboratoire Softmat, Université de Toulouse, CNRS UMR 5623, Université Toulouse III - Paul Sabatier, 31062 Toulouse, France
| | - Orélia Cerlati
- Laboratoire Softmat, Université de Toulouse, CNRS UMR 5623, Université Toulouse III - Paul Sabatier, 31062 Toulouse, France
| | - Kedafi Belkhir
- ICGM, Université de Montpellier, CNRS, ENSCM, Montpellier, France
| | | | | | - Isabelle Fabing
- Laboratoire SPCMIB, CNRS UMR5068, Université Toulouse III - Paul Sabatier, 118 Rte de Narbonne, 31062 Toulouse cedex 9, France
| | - Catherine Claparols
- Institut de Chimie de Toulouse, Université Toulouse 3 Paul Sabatier, ICT-FR CNRS 2599, 31062 Toulouse France
| | - Marc Vedrenne
- Institut de Chimie de Toulouse, Université Toulouse 3 Paul Sabatier, ICT-FR CNRS 2599, 31062 Toulouse France
| | - Dominique Goudounèche
- CMEAB Université Toulouse III - Paul Sabatier, 133 Route de Narbonne, 31062 Toulouse cedex, France
| | - Bruno Payré
- CMEAB Université Toulouse III - Paul Sabatier, 133 Route de Narbonne, 31062 Toulouse cedex, France
| | - Beatrice Lucia Bona
- Laboratory of Supramolecular and Bio-Nanomaterials (SupraBioNanoLab), Department of Chemistry, Materials, and Chemical Engineering "Giulio Natta", Politecnico di Milano, Via Luigi Mancinelli 7, 20131 Milan, Italy
| | - Alice Tosi
- Laboratory of Supramolecular and Bio-Nanomaterials (SupraBioNanoLab), Department of Chemistry, Materials, and Chemical Engineering "Giulio Natta", Politecnico di Milano, Via Luigi Mancinelli 7, 20131 Milan, Italy
| | - Francesca Baldelli Bombelli
- Laboratory of Supramolecular and Bio-Nanomaterials (SupraBioNanoLab), Department of Chemistry, Materials, and Chemical Engineering "Giulio Natta", Politecnico di Milano, Via Luigi Mancinelli 7, 20131 Milan, Italy
| | - Patricia Vicendo
- Laboratoire Softmat, Université de Toulouse, CNRS UMR 5623, Université Toulouse III - Paul Sabatier, 31062 Toulouse, France
| | - Vincent Lapinte
- ICGM, Université de Montpellier, CNRS, ENSCM, Montpellier, France
| | - Barbara Lonetti
- Laboratoire Softmat, Université de Toulouse, CNRS UMR 5623, Université Toulouse III - Paul Sabatier, 31062 Toulouse, France
| | - Anne-Françoise Mingotaud
- Laboratoire Softmat, Université de Toulouse, CNRS UMR 5623, Université Toulouse III - Paul Sabatier, 31062 Toulouse, France.
| | - Laure Gibot
- Laboratoire Softmat, Université de Toulouse, CNRS UMR 5623, Université Toulouse III - Paul Sabatier, 31062 Toulouse, France.
| |
Collapse
|
2
|
Sun T, Kang L, Zhao H, Zhao Y, Gu Y. Photoacid Generators for Biomedical Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2302875. [PMID: 38039443 PMCID: PMC10837391 DOI: 10.1002/advs.202302875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 10/26/2023] [Indexed: 12/03/2023]
Abstract
Photoacid generators (PAGs) are compounds capable of producing hydrogen protons (H+ ) upon irradiation, including irreversible and reversible PAGs, which have been widely studied in photoinduced polymerization and degradation for a long time. In recent years, the applications of PAGs in the biomedical field have attracted more attention due to their promising clinical value. So, an increasing number of novel PAGs have been reported. In this review, the recent progresses of PAGs for biomedical applications is systematically summarized, including tumor treatment, antibacterial treatment, regulation of protein folding and unfolding, control of drug release and so on. Furthermore, a concept of water-dependent reversible photoacid (W-RPA) and its antitumor effect are highlighted. Eventually, the challenges of PAGs for clinical applications are discussed.
Collapse
Affiliation(s)
- Tianzhen Sun
- School of Medical TechnologyBeijing Institute of TechnologyNo. 5 South Street, ZhongguancunHaidian DistrictBeijing100081China
| | - Lin Kang
- Key Laboratory of Photochemical Conversion and Optoelectronic MaterialsTechnical Institute of Physics and ChemistryChinese Academy of SciencesNo. 29 Zhongguancun East Road, Haidian DistrictBeijing100190China
- University of Chinese Academy of SciencesNo. 19A Yuquan RoadBeijing100049China
| | - Hongyou Zhao
- School of Medical TechnologyBeijing Institute of TechnologyNo. 5 South Street, ZhongguancunHaidian DistrictBeijing100081China
| | - Yuxia Zhao
- Key Laboratory of Photochemical Conversion and Optoelectronic MaterialsTechnical Institute of Physics and ChemistryChinese Academy of SciencesNo. 29 Zhongguancun East Road, Haidian DistrictBeijing100190China
- University of Chinese Academy of SciencesNo. 19A Yuquan RoadBeijing100049China
| | - Ying Gu
- Department of Laser MedicineThe First Medical CentreChinese PLA General HospitalNo. 28 Fuxing Road, Haidian DistrictBeijing100853China
| |
Collapse
|
3
|
Engel S, Jeschenko PM, van Dongen M, Rose JC, Schäfer D, Bruns M, Herres-Pawlis S, Keul H, Möller M. Photo-cross-linked and pH-Switchable Soft Polymer Nanocapsules from Polyglycidyl Ethers. Macromolecules 2024; 57:707-718. [PMID: 38283123 PMCID: PMC10810002 DOI: 10.1021/acs.macromol.3c01698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 11/29/2023] [Accepted: 12/12/2023] [Indexed: 01/30/2024]
Abstract
Soft polymer nanocapsules and microgels, which can adapt their shape and, at the same time, sequester and release molecular payloads in response to an external trigger, are a challenging complement to vesicular structures like polymersomes. In this work, we report the synthesis of such capsules by photo-cross-linking of coumarin-substituted polyglycidyl ethers, which we prepared by Williamson etherification of epichlorohydrin (ECH) repeating units with 7-hydroxycoumarin in copolymers with tert-butyl glycidyl ether (tBGE). To control capsule size, we employed the prepolymers in an o/w miniemulsion, where they formed a gel layer at the interface upon irradiation at 365 nm by [2π + 2π] photodimerization of the coumarin groups. Upon irradiation at 254 nm, the reaction could be reversed and the gel wall could be repeatedly disintegrated and rebuilt. We further demonstrated (i) reversible hydrophilization of the gels by hydrolysis of the lactone rings in coumarin dimers as a mechanism to manipulate the permeability of the capsules and (ii) binding functional molecules as amides. Thus, the presented nanogels are remarkably versatile and can be further used as a carrier system.
Collapse
Affiliation(s)
- Stefan Engel
- Institute
of Technical and Macromolecular Chemistry (ITMC), RWTH Aachen University, Worringerweg 2, D-52074 Aachen, Germany
- DWI—Leibniz-Institute
for Interactive Materials, Forckenbeckstraße 50, D-52074 Aachen, Germany
| | - Pascal M. Jeschenko
- DWI—Leibniz-Institute
for Interactive Materials, Forckenbeckstraße 50, D-52074 Aachen, Germany
- Max
Planck School Matter to Life, Jahnstraße 29, D-69120 Heidelberg, Germany
| | - Marcel van Dongen
- DWI—Leibniz-Institute
for Interactive Materials, Forckenbeckstraße 50, D-52074 Aachen, Germany
| | - Jonas C. Rose
- DWI—Leibniz-Institute
for Interactive Materials, Forckenbeckstraße 50, D-52074 Aachen, Germany
| | - Dominic Schäfer
- Institute
of Inorganic Chemistry (IAC), RWTH Aachen
University, Landoltweg
1, D-52074 Aachen, Germany
| | - Michael Bruns
- Institute
for Applied Materials and Karlsruhe Nano Micro Facility, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen, Germany
| | - Sonja Herres-Pawlis
- Institute
of Inorganic Chemistry (IAC), RWTH Aachen
University, Landoltweg
1, D-52074 Aachen, Germany
| | - Helmut Keul
- DWI—Leibniz-Institute
for Interactive Materials, Forckenbeckstraße 50, D-52074 Aachen, Germany
| | - Martin Möller
- Institute
of Technical and Macromolecular Chemistry (ITMC), RWTH Aachen University, Worringerweg 2, D-52074 Aachen, Germany
- DWI—Leibniz-Institute
for Interactive Materials, Forckenbeckstraße 50, D-52074 Aachen, Germany
- Max
Planck School Matter to Life, Jahnstraße 29, D-69120 Heidelberg, Germany
| |
Collapse
|
4
|
Dennis JM, Savage AM, Mrozek RA, Lenhart JL. Stimuli‐responsive mechanical properties in polymer glasses: challenges and opportunities for defense applications. POLYM INT 2020. [DOI: 10.1002/pi.6154] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Joseph M Dennis
- United States Army Research Laboratory Aberdeen Proving Ground Adelphi MD USA
| | - Alice M Savage
- United States Army Research Laboratory Aberdeen Proving Ground Adelphi MD USA
| | - Randy A Mrozek
- United States Army Research Laboratory Aberdeen Proving Ground Adelphi MD USA
| | - Joseph L Lenhart
- United States Army Research Laboratory Aberdeen Proving Ground Adelphi MD USA
| |
Collapse
|
5
|
Abstract
Polymeric micelles have gained interest as novel drug delivery systems for the treatment and diagnosis of cancer, as they offer several advantages over conventional drug therapies. This includes drug targeting to tumor tissue, in vivo biocompatibility and biodegradability, prolonged circulation time, enhanced accumulation, retention of the drug loaded micelle in the tumor and decreased side effects. This article provides an overview on the current state of micellar formulations as nanocarriers for anticancer drugs and their effectiveness in cancer therapeutics, including their clinical status. The type of copolymers used, their physicochemical properties and characterization as well as recent developments in the design of functional polymeric micelles are highlighted. The article also presents the design and outcomes of various types of stimuli-responsive polymeric micelles.
Collapse
|
6
|
Shen W, Zheng J, Zhou Z, Zhang D. Approaches for the synthesis of o-nitrobenzyl and coumarin linkers for use in photocleavable biomaterials and bioconjugates and their biomedical applications. Acta Biomater 2020; 115:75-91. [PMID: 32853806 DOI: 10.1016/j.actbio.2020.08.024] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 08/18/2020] [Accepted: 08/18/2020] [Indexed: 12/20/2022]
Abstract
Photocleavable biomaterials and bioconjugates are particularly interesting because light sources are easy to obtain and the responsiveness of materials is convenient to control. In recent years, various photocleavable biomaterials and bioconjugates have been synthesized for the control of payload release, regulation of biomolecule activity, 3D cell culture, and investigation of molecular mechanisms. Photocleavable linkers are crucial components of photocleavable biomaterials, which significantly influence the photoresponsive capabilities of materials. Photosensitive molecules, such as o-nitrobenzyls and coumarins, have been extensively developed as photocleavable linkers. In the present review, we provide comprehensive knowledge regarding the synthetic strategies of o-nitrobenzyl and coumarin derived linkers with various functional groups and their applications for the construction of photocleavable biomaterials and bioconjugates. Finally, the biomedical applications of o-nitrobenzyl and coumarin-based photocleavable biomaterials and bioconjugates will be summarized and discussed.
Collapse
|
7
|
Abstract
Polymeric micelles have gained interest as novel drug delivery systems for the treatment and diagnosis of cancer, as they offer several advantages over conventional drug therapies. This includes drug targeting to tumor tissue, in vivo biocompatibility and biodegradability, prolonged circulation time, enhanced accumulation, retention of the drug loaded micelle in the tumor and decreased side effects. This article provides an overview on the current state of micellar formulations as nanocarriers for anticancer drugs and their effectiveness in cancer therapeutics, including their clinical status. The type of copolymers used, their physicochemical properties and characterization as well as recent developments in the design of functional polymeric micelles are highlighted. The article also presents the design and outcomes of various types of stimuli-responsive polymeric micelles.
Collapse
|
8
|
Wang M, He K, Li J, Shen T, Li Y, Xu Y, Yuan C, Dai L. Dual pH-responsive charge-reversal and photo-crosslinkable polymer nanoparticles for controlled drug release. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2020; 31:849-868. [DOI: 10.1080/09205063.2020.1725279] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Meijie Wang
- Department of Materials Science and Engineering, College of Materials, Xiamen University, Xiamen, China
| | - Kaiwei He
- Department of Materials Science and Engineering, College of Materials, Xiamen University, Xiamen, China
- Fujian Provincial Key Laboratory of Fire Retardant Materials, Xiamen University, Xiamen, China
| | - Jilu Li
- Department of Materials Science and Engineering, College of Materials, Xiamen University, Xiamen, China
| | - Tong Shen
- Department of Materials Science and Engineering, College of Materials, Xiamen University, Xiamen, China
| | - Yang Li
- Department of Materials Science and Engineering, College of Materials, Xiamen University, Xiamen, China
| | - Yiting Xu
- Department of Materials Science and Engineering, College of Materials, Xiamen University, Xiamen, China
- Fujian Provincial Key Laboratory of Fire Retardant Materials, Xiamen University, Xiamen, China
| | - Conghui Yuan
- Department of Materials Science and Engineering, College of Materials, Xiamen University, Xiamen, China
- Fujian Provincial Key Laboratory of Fire Retardant Materials, Xiamen University, Xiamen, China
| | - Lizong Dai
- Department of Materials Science and Engineering, College of Materials, Xiamen University, Xiamen, China
- Fujian Provincial Key Laboratory of Fire Retardant Materials, Xiamen University, Xiamen, China
| |
Collapse
|
9
|
Han Y, Tan J, Wang D, Xu K, An H. Novel approach to promote the hydrophobic association: Introduction of short alkyl chains into hydrophobically associating polyelectrolytes. J Appl Polym Sci 2019. [DOI: 10.1002/app.47581] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Yuhao Han
- College of Chemistry, Chemical Engineering and Environmental Engineering; Liaoning Shihua University; Fushun Liaoning Province 113001 People's Republic of China
| | - Jiawen Tan
- College of Chemistry, Chemical Engineering and Environmental Engineering; Liaoning Shihua University; Fushun Liaoning Province 113001 People's Republic of China
| | - Dongping Wang
- College of Chemistry, Chemical Engineering and Environmental Engineering; Liaoning Shihua University; Fushun Liaoning Province 113001 People's Republic of China
| | - Kun Xu
- Key Laboratory of Polymer Ecomaterials; Changchun Institute of Applied Chemistry, Chinese Academy of Science; Changchun Jilin Province 130022 People's Republic of China
| | - Huiyong An
- College of Chemistry, Chemical Engineering and Environmental Engineering; Liaoning Shihua University; Fushun Liaoning Province 113001 People's Republic of China
| |
Collapse
|
10
|
Jiang N, Cheng Y, Wei J. Coumarin-modified fluorescent microcapsules and their photo-switchable release property. Colloids Surf A Physicochem Eng Asp 2017. [DOI: 10.1016/j.colsurfa.2017.02.077] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
11
|
NIR- and UV-dual responsive amphiphilic copolymer micelles with light-dissociable PAG-side groups. Colloid Polym Sci 2017. [DOI: 10.1007/s00396-017-4013-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
12
|
Cao XT, Kim YH, Park JM, Lim KT. One-pot syntheses of dual-responsive core cross-linked polymeric micelles and covalently entrapped drug by click chemistry. Eur Polym J 2016. [DOI: 10.1016/j.eurpolymj.2016.03.039] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
13
|
Luo YL, Wang Y, Wang X, Xu F, Chen YS. Thermosensitive tribrachia star-shaped s-P(NIPAM-co-DMAM) random copolymer micelle aggregates: Preparation, characterization, and drug release applications. J Biomater Appl 2015; 30:662-76. [PMID: 25926671 DOI: 10.1177/0885328215584293] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Tribrachia star-shaped random copolymers with tunable thermosensitive phase transition temperature were designed and synthesized via a simple one-pot ammonolysis reaction approach with trimesic acid as cores. The self-assembly micellization behavior of the copolymers in aqueous solution was examined by surface tension, UV-vis transmittance, transmission electron microscope, and dynamic light scattering measurements, etc. The results indicated that the resultant copolymers formed thermosensitive micelle aggregates through hydrophobic interactions among the isopropyl groups of poly(N-isopropylacrylamide) PNIPAM chains and inter-star association at a polymer concentration above critical aggregation concentrations from 4.06 to 6.55 mg L(-1), with a cloud point range from 36.6℃ to 52.1℃, and homogeneously distributed micelle size below 200 nm. The arm length and the compositional ratios of the two comonomers had effect on physicochemical properties of the polymer micelle aggregates. Particularly, the cloud point values were enhanced as the (N,N-dimethylacrylamide) DMAM monomer was introduced and reached to 36.6℃ and 41.0℃-44.7℃ when the mass ratio of NIPAM to DMAM was 90:10 and 80:20, respectively. The thermo-triggered drug release and cytotoxicity were evaluated to confirm the applicability of the random copolymer micelle aggregates as novel drug targeted release carriers.
Collapse
Affiliation(s)
- Yan-Ling Luo
- Key Laboratory of Macromolecular Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, P. R. China
| | - Yuan Wang
- Key Laboratory of Macromolecular Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, P. R. China
| | - Xuan Wang
- Key Laboratory of Macromolecular Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, P. R. China
| | - Feng Xu
- Key Laboratory of Macromolecular Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, P. R. China
| | - Ya-Shao Chen
- Key Laboratory of Macromolecular Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, P. R. China
| |
Collapse
|