1
|
Uyama M, Hama T. Controlling the formation of ionic complex vesicles through double-tailed surfactants. Int J Cosmet Sci 2024; 46:865-877. [PMID: 38802988 DOI: 10.1111/ics.12973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/04/2024] [Accepted: 04/15/2024] [Indexed: 05/29/2024]
Abstract
OBJECTIVE Liposomes are often used in cosmetics since they are naturally derived and have excellent texture enhancing capabilities. However, when preparing them by using phospholipids with unsaturated acyl groups, they easily suffer from oxidative degradation. Accordingly, hydrogenated phospholipids are preferred, however, it is difficult to prepare stable liposomes due to its high gel-liquid crystalline phase transition temperature. On the other hand, although dialkyl dimethyl ammonium type cationic surfactants are widely known to form vesicles, they have rarely been used for skincare products except for water-in-oil type emulsion creams stabilized by organically modified clay minerals. We decided to overcome all of the problems above through ionic complex vesicles formed by double-tailed cationic and anionic surfactants. METHODS Distearyl dimethyl ammonium chloride (DSAC) and sodium dilauramidoglutamide lysine (DLGL) were selected as cationic and anionic surfactants, respectively. Differential scanning calorimetry (DSC) and small- and wide-angle X-ray scattering (SWAXS) measurements were performed to confirm the DSAC/DLGL/water ternary phase diagram. Newly developed ionic complex vesicle formation was confirmed by cryogenic transmission electron microscopy (cryo-TEM). The adsorbed cosmetic film structure on the skin in vivo was evaluated through the polarized infrared external reflection (PIR-ER). Finally, a cosmetic lotion formula was developed and the vesicle size was determined by dynamic light scattering (DLS). RESULTS DSC and SWAXS data indicated that stable vesicles could be obtained at a molar ratio of DLGL to DSAC = 6:4. At this molar ratio, multi lamellar vesicles with diameters less than 100 nm were observed through cryo-TEM. PIR-ER data revealed that the developed vesicles formed a highly perpendicular orientation to the human skin surface. We have succeeded in formulating a cosmetic lotion containing developed vesicles with a mean diameter of 63.2 nm, which was stable over 1 month at 0, 37, and 50°C. CONCLUSIONS Our newly developed vesicles can be easily obtained through a coagulation process. Also, the adsorbed film structure supported by PIR-ER experiments implies that the developed lotion has an excellent texture that is the same as cosmetic lotions containing liposomes. Therefore, it's possible that this ionic complex vesicle could take the place of liposomes.
Collapse
Affiliation(s)
- Makoto Uyama
- Shiseido Co., Ltd., MIRAI Technology Institute, Yokohama, Japan
| | - Tetsuya Hama
- Komaba Institute for Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
2
|
Tatini D, Raudino M, Ambrosi M, Carretti E, Davidovich I, Talmon Y, Ninham BW, Lo Nostro P. Physicochemical characterization of green sodium oleate-based formulations. Part 1. Structure and rheology. J Colloid Interface Sci 2021; 590:238-248. [PMID: 33548607 DOI: 10.1016/j.jcis.2021.01.040] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 01/14/2021] [Accepted: 01/15/2021] [Indexed: 11/29/2022]
Abstract
HYPOTHESIS The structure, rheology and other physicochemical properties of dilute aqueous dispersions of sodium oleate (NaOL) are well known. This paper is the first report in which a moderately concentrated (13% w/w) dispersion of NaOL in water is investigated. In fact, at this concentration the phase and rheology behavior of the surfactant remarkably deviates from those of its dilute solutions in water and a significant effect is imparted by the addition of potassium chloride. EXPERIMENTAL The structural, thermal and rheological properties of a 13% w/w dispersion of NaOL in water were investigated by cryo-TEM, rheology, and DSC experiments with and without the addition of potassium chloride. The system is comprised of elongated wormlike micelles that turn into a gel-like more disordered viscous material upon addition of small amounts of KCl (4% w/w). FINDINGS This paper illustrates the multifaceted behavior of sodium oleate dispersions at intermediate concentrations that depends on the presence of other cosolutes (such as KCl). The results show that viscoelastic aqueous dispersions of NaOL are excellent candidates for the preparation of stimuli-responsive green materials to be used in a number of different applications. We also discuss the genesis of wormlike micelles (WLMs) in terms of the general theory of self-assembly.
Collapse
Affiliation(s)
- Duccio Tatini
- Department of Chemistry "Ugo Schiff" and CSGI, University of Florence, 50019 Sesto Fiorentino (Firenze), Italy
| | - Martina Raudino
- Department of Chemistry "Ugo Schiff" and CSGI, University of Florence, 50019 Sesto Fiorentino (Firenze), Italy
| | - Moira Ambrosi
- Department of Chemistry "Ugo Schiff" and CSGI, University of Florence, 50019 Sesto Fiorentino (Firenze), Italy
| | - Emiliano Carretti
- Department of Chemistry "Ugo Schiff" and CSGI, University of Florence, 50019 Sesto Fiorentino (Firenze), Italy
| | - Irina Davidovich
- Department of Chemical Engineering and the Russell Berrie Nanotechnology Institute (RBNI), Technion - Israel Institute of Technology, Haifa 3200003, Israel
| | - Yeshayahu Talmon
- Department of Chemical Engineering and the Russell Berrie Nanotechnology Institute (RBNI), Technion - Israel Institute of Technology, Haifa 3200003, Israel
| | - Barry W Ninham
- Department of Applied Mathematics, Research School of Physical Sciences and Engineering, Australian National University, Canberra ACT 0200, Australia
| | - Pierandrea Lo Nostro
- Department of Chemistry "Ugo Schiff" and CSGI, University of Florence, 50019 Sesto Fiorentino (Firenze), Italy.
| |
Collapse
|
3
|
Warr GG, Atkin R. Solvophobicity and amphiphilic self-assembly in neoteric and nanostructured solvents. Curr Opin Colloid Interface Sci 2020. [DOI: 10.1016/j.cocis.2019.12.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
4
|
Yavrukova VI, Radulova GM, Danov KD, Kralchevsky PA, Xu H, Ung YW, Petkov JT. Rheology of mixed solutions of sulfonated methyl esters and betaine in relation to the growth of giant micelles and shampoo applications. Adv Colloid Interface Sci 2020; 275:102062. [PMID: 31718784 DOI: 10.1016/j.cis.2019.102062] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 11/02/2019] [Accepted: 11/03/2019] [Indexed: 11/15/2022]
Abstract
This is a review article on the rheological properties of mixed solutions of sulfonated methyl esters (SME) and cocamidopropyl betaine (CAPB), which are related to the synergistic growth of giant micelles. Effects of additives, such as fatty alcohols, cocamide monoethanolamine (CMEA) and salt, which are expected to boost the growth of wormlike micelles, are studied. We report and systematize the most significant observed effects with an emphasis on the interpretation at molecular level and understanding the rheological behavior of these systems. The experiments show that the mixing of SME and CAPB produces a significant rise of viscosity, which is greater than in the mixed solutions of sodium dodecyl sulfate and CAPB. The addition of fatty alcohols, CMEA and cationic polymer, leads to broadening of the synergistic peak in viscosity without any pronounced effect on its height. The addition of NaCl leads to a typical salt curve with high maximum, but in the presence of dodecanol this maximum is much lower. At lower salt concentrations, the fatty alcohol acts as a thickener, whereas at higher salt concentrations - as a thinning agent. Depending on the shape of the frequency dependences of the measured storage and loss moduli, G' and G", the investigated micellar solutions behave as systems of standard or nonstandard rheological behavior. The systems with standard behavior obey the Maxwell viscoelastic model (at least) up to the crossover point (G' = G") and can be analyzed in terms of the Cates reptation-reaction model. The systems with nonstandard rheological behavior obey the Maxwell model only in a restricted domain below the crossover frequency; they can be analyzed in the framework of an augmented version of the Maxwell model. The methodology for data analysis and interpretation could be applied to any other viscoelastic micellar system.
Collapse
Affiliation(s)
- Veronika I Yavrukova
- Department of Chemical and Pharmaceutical Engineering, Faculty of Chemistry and Pharmacy, Sofia University, 1164 Sofia, Bulgaria
| | - Gergana M Radulova
- Department of Chemical and Pharmaceutical Engineering, Faculty of Chemistry and Pharmacy, Sofia University, 1164 Sofia, Bulgaria
| | - Krassimir D Danov
- Department of Chemical and Pharmaceutical Engineering, Faculty of Chemistry and Pharmacy, Sofia University, 1164 Sofia, Bulgaria
| | - Peter A Kralchevsky
- Department of Chemical and Pharmaceutical Engineering, Faculty of Chemistry and Pharmacy, Sofia University, 1164 Sofia, Bulgaria.
| | - Hui Xu
- KLK OLEO, KL-Kepong Oleomas Sdn Bhd, Menara KLK, Jalan PJU 7/6, Mutiara Damansara, 47810 Petaling Jaya, Selangor, Dalur Ehsan, Malaysia
| | - Yee Wei Ung
- KLK OLEO, KL-Kepong Oleomas Sdn Bhd, Menara KLK, Jalan PJU 7/6, Mutiara Damansara, 47810 Petaling Jaya, Selangor, Dalur Ehsan, Malaysia
| | - Jordan T Petkov
- KLK OLEO, KL-Kepong Oleomas Sdn Bhd, Menara KLK, Jalan PJU 7/6, Mutiara Damansara, 47810 Petaling Jaya, Selangor, Dalur Ehsan, Malaysia
| |
Collapse
|
5
|
Catanionic and chain-packing effects on surfactant self-assembly in the ionic liquid ethylammonium nitrate. J Colloid Interface Sci 2019; 540:515-523. [DOI: 10.1016/j.jcis.2019.01.048] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 01/11/2019] [Accepted: 01/11/2019] [Indexed: 11/19/2022]
|
6
|
Russo Krauss I, Imperatore R, De Santis A, Luchini A, Paduano L, D'Errico G. Structure and dynamics of cetyltrimethylammonium chloride-sodium dodecylsulfate (CTAC-SDS) catanionic vesicles: High-value nano-vehicles from low-cost surfactants. J Colloid Interface Sci 2017; 501:112-122. [PMID: 28437699 DOI: 10.1016/j.jcis.2017.04.032] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 04/09/2017] [Accepted: 04/10/2017] [Indexed: 12/11/2022]
Abstract
HYPOTHESIS Catanionic vesicles based on large-scale produced surfactants represent a promising platform for the design of innovative, effective and relatively inexpensive nano-vehicles for a variety of actives. Structural, dynamic and functional behavior of these aggregates is finely tuned by the molecular features of their components and can be opportunely tailored for their applications as drug carriers. EXPERIMENTS Here we investigate the aggregates formed by CTAC and SDS, two of the most diffused surfactants, by means of Dynamic Light Scattering, Small Angle Neutron Scattering and Electron Paramagnetic Resonance spectroscopy (EPR). The exploitation of these aggregates as nano-vehicles is explored using the poorly water-soluble antioxidant trans-resveratrol (t-RESV), testing t-RESV solubility and antioxidant activity by means of UV, fluorescence spectroscopy and EPR. FINDINGS The presence of a large stability region of catanionic vesicles on the CTAC-rich side of the phase diagram is highlighted and interpreted in terms of the mismatch between the lengths of the surfactant tails and of first reported effects of the chloride counterions. CTAC-SDS vesicles massively solubilize t-RESV, which in catanionic vesicles exerts a potent antioxidant and radical-scavenging activity. This behavior arises from the positioning of the active at the surface of the vesicular aggregates thus being sufficiently exposed to the external medium.
Collapse
Affiliation(s)
- Irene Russo Krauss
- Department of Chemical Sciences, University of Naples ''Federico II'', Complesso di Monte S. Angelo, Via Cinthia, I-80126 Naples, Italy; CSGI (Consorzio per lo Sviluppo dei Sistemi a Grande Interfase), via della Lastruccia 3, I-50019 Florence, Italy
| | - Riccardo Imperatore
- Department of Chemical Sciences, University of Naples ''Federico II'', Complesso di Monte S. Angelo, Via Cinthia, I-80126 Naples, Italy; CSGI (Consorzio per lo Sviluppo dei Sistemi a Grande Interfase), via della Lastruccia 3, I-50019 Florence, Italy
| | - Augusta De Santis
- Department of Chemical Sciences, University of Naples ''Federico II'', Complesso di Monte S. Angelo, Via Cinthia, I-80126 Naples, Italy; CSGI (Consorzio per lo Sviluppo dei Sistemi a Grande Interfase), via della Lastruccia 3, I-50019 Florence, Italy
| | - Alessandra Luchini
- Department of Chemical Sciences, University of Naples ''Federico II'', Complesso di Monte S. Angelo, Via Cinthia, I-80126 Naples, Italy; CSGI (Consorzio per lo Sviluppo dei Sistemi a Grande Interfase), via della Lastruccia 3, I-50019 Florence, Italy; Institut Laue-Langevin, BP 156, 71 Avenue des Martyrs, 38000 Grenoble, France
| | - Luigi Paduano
- Department of Chemical Sciences, University of Naples ''Federico II'', Complesso di Monte S. Angelo, Via Cinthia, I-80126 Naples, Italy; CSGI (Consorzio per lo Sviluppo dei Sistemi a Grande Interfase), via della Lastruccia 3, I-50019 Florence, Italy
| | - Gerardino D'Errico
- Department of Chemical Sciences, University of Naples ''Federico II'', Complesso di Monte S. Angelo, Via Cinthia, I-80126 Naples, Italy; CSGI (Consorzio per lo Sviluppo dei Sistemi a Grande Interfase), via della Lastruccia 3, I-50019 Florence, Italy.
| |
Collapse
|
7
|
Dharaiya N, Patel U, Ray D, Aswal VK, Sastry NV, Bahadur P. Different pH triggered aggregate morphologies in sodium oleate–cationic surfactants mixed systems. NEW J CHEM 2017. [DOI: 10.1039/c6nj03871a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The unusual effect of pH on the aggregate morphology of pH dependent surfactant systems.
Collapse
Affiliation(s)
- Nilesh Dharaiya
- Department of Chemistry
- Veer Narmad South Gujarat University
- Surat-395007
- India
| | - Urja Patel
- Department of Chemistry
- Veer Narmad South Gujarat University
- Surat-395007
- India
| | - Debes Ray
- Solid State Physics Division
- Bhabha Atomic Research Centre
- Mumbai-400085
- India
| | - Vinod K. Aswal
- Solid State Physics Division
- Bhabha Atomic Research Centre
- Mumbai-400085
- India
| | | | - Pratap Bahadur
- Department of Chemistry
- Veer Narmad South Gujarat University
- Surat-395007
- India
| |
Collapse
|