Huang T, Gong S. Preparation of Emulsifier-Free Styrene-Acrylic Emulsion via Reverse Iodine Transfer Polymerization.
Polymers (Basel) 2021;
13:3348. [PMID:
34641164 PMCID:
PMC8512759 DOI:
10.3390/polym13193348]
[Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/17/2021] [Accepted: 09/26/2021] [Indexed: 11/17/2022] Open
Abstract
Styrene-acrylic emulsions containing hydroxyl functional monomer unit's component are widely used for maintenance coating. In this paper, a stable emulsifier-free styrene-acrylic emulsion with solid content over 43% could be obtained in 210 min via reverse iodine transfer polymerization (RITP). By adding a mixture of methacrylic acid (MAA) and poly(ethylene glycol)methyl ether methacrylate (PEGMA) into a system containing a high content of hydroxyl functional monomer component (19.4 wt.% of the total monomer mass), styrene (St) could be copolymerized with methyl methacrylate (MMA); the modified film exhibited good hardness properties, good adhesive properties, and low water absorption. An increase in the amount of PEGMA decreased the glass transition temperature (Tg). When 1.4 times the reference amount of initiator was added, the highest molecular weight Mn could reach 40,000 g.·mol-1 with 0.25 times the reference amount of iodine in the emulsion. The largest tensile strength of the dried emulsion film over 5.5 MPa endowed the material with good mechanical properties. Living polymerization was proven by the kinetics of RITP emulsion and chain extension reaction. TEM micrographs manifest the emulsification of the seed random copolymer. This paper may provide a potential methodology for preparing polymer materials with excellent mechanical properties.
Collapse