1
|
Du J, Liu S, Xue Q, Xu Q, Li J, Shen W, Si Y. A Time-Interval Strategy to Prepare Porous SiO 2 Spheres with Adjustable Core-Shell Ratio for Multiple Guest Loading. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:20443-20451. [PMID: 39292618 DOI: 10.1021/acs.langmuir.4c01863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/20/2024]
Abstract
Porous microspheres with desired pore size and distribution are in high demand for loading various guest materials, especially various pollutants that are several nanometers in size or stably suspended in liquid. Herein, multilevel porous SiO2 microspheres with arbitrarily adjustable core-shell ratios are prepared by solely regulating the time interval between the start of the hydrolysis reaction and the addition of organic solvent. The core-shell ratio of the SiO2 microspheres increases gradually with prolongation of the addition time interval; meanwhile, the specific surface area can be adjusted from 543.2 m2 g-1 to 992.9 m2 g-1, and the average pore diameter varies from 2.3 to 5.7 nm together with a high pore volume reaching 0.91 cm3 g-1. Moreover, the hierarchical core-shell SiO2 microspheres with an adjustable core-shell ratio, a large specific surface area, and a multilevel pore size could be obtained on a large scale. These SiO2 microspheres demonstrate excellent performance in coloading platinum nanoparticles and various dye molecules, suggesting their great potential in treating various pollutants in printing and dyeing wastewater.
Collapse
Affiliation(s)
- Jiaxin Du
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
| | - Su Liu
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
| | - Qiangyu Xue
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
| | - Qiao Xu
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology of Ministry of Education, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
| | - Jinhan Li
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
| | - Wenting Shen
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
| | - Yinsong Si
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology of Ministry of Education, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
| |
Collapse
|
2
|
Alharissa EZ, Efhiliana Y, Roto R, Mudasir M, Wahyuni ET. Efficient removal of Cr(VI) contaminant using recoverable silica from volcanic ash as natural adsorbent: Synthesis and activity in the mechanism and kinetic adsorption. Heliyon 2024; 10:e23273. [PMID: 38304819 PMCID: PMC10831607 DOI: 10.1016/j.heliyon.2023.e23273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 10/11/2023] [Accepted: 11/29/2023] [Indexed: 02/03/2024] Open
Abstract
Modification of silica purified from the Merapi volcanic ash with magnetic material of Fe3O4 and attachment of cetyl triamine bromide (CTA-Br) on the magnetic cored has been performed to provide recoverable and positive surfaced of natural adsorbent. The magnetic cored was prepared via co-precipitation and CTA-Br attachment was conducted by a facile strategy. Then, the modified adsorbents were characterized by SEM, TEM, XRD, and FTIR instruments and examined for removing anionic Cr(VI) from the water media. The characterization data confirmed that crystals of Fe3O4 coated by SiO2 that has been bound with CTA-Br have been successfully formed. Additionally, increasing CTA-Br loaded gives thicker lamination on Fe3O4@SiO2/CTA-Br, but the CTA-Br loaded with higher than 0.25 mmol, leads to the coating peeled out. It is also demonstrated that Fe3O4@SiO2/CTA-Br prepared with CTA-Br 0.25 mmol is ideal for Cr(VI) anionic removal, regarding to the highest adsorption and very good separation or recovery process. Moreover, the optimal dose of Fe3O4@SiO2/CTA-Br in the Cr(VI) removal was observed at 0.25 g/20 mL under condition of pH 3 for 60 min. The adsorption of Cr(VI) well fits the Langmuir isotherm model with an adsorption capacity of 3.38 mg g-1 and is in a good agreement with pseudo-second order giving kinetic constant at 0.005 g mg-1 min-1. Thus, it is clear that the natural adsorbent material with recoverable properties for more efficient and wider application of removal Cr(VI) contaminant was expected from this study.
Collapse
Affiliation(s)
- Early Zahwa Alharissa
- Chemistry Department, Faculty of Mathematic and Natural Sciences, Gadjah Mada University, Sekip Utara PO. Box Bls 21, Yogyakarta, 55281, Indonesia
| | - Yuanita Efhiliana
- Chemistry Department, Faculty of Mathematic and Natural Sciences, Gadjah Mada University, Sekip Utara PO. Box Bls 21, Yogyakarta, 55281, Indonesia
| | - Roto Roto
- Chemistry Department, Faculty of Mathematic and Natural Sciences, Gadjah Mada University, Sekip Utara PO. Box Bls 21, Yogyakarta, 55281, Indonesia
| | - Mudasir Mudasir
- Chemistry Department, Faculty of Mathematic and Natural Sciences, Gadjah Mada University, Sekip Utara PO. Box Bls 21, Yogyakarta, 55281, Indonesia
| | - Endang Tri Wahyuni
- Chemistry Department, Faculty of Mathematic and Natural Sciences, Gadjah Mada University, Sekip Utara PO. Box Bls 21, Yogyakarta, 55281, Indonesia
| |
Collapse
|
3
|
Yang F, Jin C, Wang S, Wang Y, Wei L, Zheng L, Gu H, Lam SS, Naushad M, Li C, Sonne C. Bamboo-based magnetic activated carbon for efficient removal of sulfadiazine: Application and adsorption mechanism. CHEMOSPHERE 2023; 323:138245. [PMID: 36841450 DOI: 10.1016/j.chemosphere.2023.138245] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/22/2023] [Accepted: 02/23/2023] [Indexed: 06/18/2023]
Abstract
Due to increasing antibiotic pollution in the water environment, green and efficient adsorbents are urgently needed to solve this problem. Here we prepare magnetic bamboo-based activated carbon (MDBAC) through delignification and carbonization using ZnCl2 as activator, resulting in production of an activated carbon with large specific surface area (1388.83 m2 g-1). The influencing factors, such as solution pH, initial sulfadiazine (SD) concentration, temperature, and contact time, were assessed in batch adsorption experiments. The Langmuir isotherm model demonstrated that MDBAC adsorption capacity on SD was 645.08 mg g-1 at its maximum, being higher than majority of previously reported adsorbents. In SD adsorption, the kinetic adsorption process closely followed the pseudo-second kinetic model, and the thermodynamic adsorption process was discovered to be exothermic and spontaneous in nature. The MDBAC exhibited excellent physicochemical stability, facile magnetic recovery and acceptable recyclability properties. Moreover, the synergistic interactions between MDBAC and SD mainly involved electrostatic forces, hydrogen bonding, π-π stacking, and chelation. Within the benefits of low cost, ease of production and excellent adsorption performance, the MDBAC biosorbent shows promising utilization in removing antibiotic contaminants from wastewater.
Collapse
Affiliation(s)
- Fan Yang
- College of Forestry, Henan Agricultural University, Zhengzhou, 450002, China
| | - Can Jin
- Institute of Chemical Industry of Forest Products, CAF; National Engineering Research Center of Low-Carbon Processing and Utilization of Forest Biomass; Key Lab. of Biomass Energy and Material, Jiangsu Province, Nanjing, 210042, China
| | - Sen Wang
- College of Landscape Architecture and Art, Henan Agricultural University, Zhengzhou, 450002, China
| | - Yujie Wang
- College of Forestry, Henan Agricultural University, Zhengzhou, 450002, China
| | - Lu Wei
- College of Forestry, Henan Agricultural University, Zhengzhou, 450002, China
| | - Longhui Zheng
- College of Forestry, Henan Agricultural University, Zhengzhou, 450002, China
| | - Haiping Gu
- College of Forestry, Henan Agricultural University, Zhengzhou, 450002, China
| | - Su Shiung Lam
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia; Center for Transdisciplinary Research, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Mu Naushad
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Cheng Li
- College of Forestry, Henan Agricultural University, Zhengzhou, 450002, China.
| | - Christian Sonne
- Department of Ecoscience, Aarhus University, Frederiksborgvej 399, DK-4000, Roskilde, Denmark.
| |
Collapse
|
4
|
Zhao Q, Liu X, Veldhuis S, Zhitomirsky I. Colloidal processing of ferroelectric poly(vinylidene fluoride-co-hexafluoropropylene)—ferrimagnetic pseudocapacitive CuFe2O4 composite films. Colloid Polym Sci 2022. [DOI: 10.1007/s00396-022-05022-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
5
|
Lee JH, Ahn Y, Kwak SY. Facile Sonochemical Synthesis of Flexible Fe-Based Metal-Organic Frameworks and Their Efficient Removal of Organic Contaminants from Aqueous Solutions. ACS OMEGA 2022; 7:23213-23222. [PMID: 35847297 PMCID: PMC9280777 DOI: 10.1021/acsomega.2c01068] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
An iron-based metal-organic framework, MIL-53(Fe), was synthesized via the simple sonochemical method, which is a facial and fast strategy, and their adsorption performance for organic contaminants removal from aqueous solutions was studied. The crystal structure and morphology analysis indicate that the sonochemical synthesis of MIL-53(Fe) particles was faster than the solvothermal preparation method, showing high crystallinity with a downsized hexagonal bipyramid shape. Furthermore, the prepared MIL-53(Fe) exhibited enhanced adsorption capability for the organic dyes compared to metal-organic framework prepared via the solvothermal method and showed excellent maximum adsorption capability for the methyl orange removal from aqueous solutions. Based on the superior adsorption properties and facile synthesis, MIL-53(Fe) prepared by ultrasound irradiation has a potential application for an efficient, economic, and ecofriendly wastewater purification process.
Collapse
Affiliation(s)
- Ji Hwan Lee
- Department
of Materials Science and Engineering, Seoul
National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, South Korea
| | - Yongjun Ahn
- Department
of Materials Science and Engineering, Seoul
National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, South Korea
| | - Seung-Yeop Kwak
- Department
of Materials Science and Engineering, Seoul
National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, South Korea
- Research
Institute of Advanced Materials (RIAM), Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, South Korea
- Institute
of Engineering Research, Seoul National
University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, South Korea
| |
Collapse
|
6
|
Cui MY, Wang DK, Li Y, Zhao W, Liang C, Liu X, Fu SY, Wang L, Wei X. Preparation of magnetic silica supported Brönsted acidic ionic liquids for the depolymerization of lignin to aromatic monomers. NEW J CHEM 2022. [DOI: 10.1039/d1nj04777a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Lignin, the most abundant renewable resource of aromatics in nature, is recognized as an alternative for fossil-based fuels and chemicals. Herein, we proposed an efficient method to obtain aromatic monomers...
Collapse
|
7
|
Lu ZH, Abdelhai Senosy I, Zhou DD, Yang ZH, Guo HM, Liu X. Synthesis and adsorption properties investigation of Fe3O4@ZnAl-LDH@MIL-53(Al) for azole fungicides removal from environmental water. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119282] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
8
|
Water Purification of Classical and Emerging Organic Pollutants: An Extensive Review. CHEMENGINEERING 2021. [DOI: 10.3390/chemengineering5030047] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The main techniques used for organic pollutant removal from water are adsorption, reductive and oxidative processes, phytoremediation, bioremediation, separation by membranes and liquid–liquid extraction. In this review, strengths and weaknesses of the different purification techniques are discussed, with particular attention to the newest results published in the scientific literature. This study highlighted that adsorption is the most frequently used method for water purification, since it can balance high organic pollutants removal efficiency, it has the possibility to treat a large quantity of water in semi-continuous way and has acceptable costs.
Collapse
|