1
|
Aziz T, Li W, Zhu J, Chen B. Innovative cellulose-lactone hybrid material for efficient rhodamine 6G dye adsorption: Synthesis and characterization. Int J Biol Macromol 2024:136847. [PMID: 39447803 DOI: 10.1016/j.ijbiomac.2024.136847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/28/2024] [Accepted: 10/21/2024] [Indexed: 10/26/2024]
Abstract
This study uses a simple solvent casting technique to offer an innovative, cost-effective synthesis of a cellulose-lactone hybrid material for Rhodamine 6G dye adsorption. The modified cellulose revealed superior adsorption competencies, triumphing a maximum dye removal efficiency of 97.8 % under neutral pH. Adsorption isotherms were best defined by the Langmuir model (R2 = 0.999), signifying monolayer adsorption, while the Freundlich model (R2 = 0.9714) suggested the existence of heterogeneous adsorption sites. Characterization methods, including FTIR, TGA, DSC, and SEM, confirmed the structural, thermal, and morphological changes induced by lactone modification, which enhanced the material's mechanical properties and adsorption efficiency. The hybrid material demonstrated excellent long-term stability, recyclability, and potential for large-scale water treatment applications. These findings emphasize the material's potential as a sustainable solution for removing organic pollutants from wastewater.
Collapse
Affiliation(s)
- Tariq Aziz
- Faculty of Civil Engineering and Mechanics, Jiangsu University 212013, Zhenjiang, China
| | - Wenlong Li
- Faculty of Civil Engineering and Mechanics, Jiangsu University 212013, Zhenjiang, China
| | - Jianguo Zhu
- Faculty of Civil Engineering and Mechanics, Jiangsu University 212013, Zhenjiang, China.
| | - Beibei Chen
- School of Materials Science and Engineering, Institute for Advanced Materials, Jiangsu University 212013, Zhenjiang, China.
| |
Collapse
|
2
|
Aziz T, Farid A, Chinnam S, Haq F, Kiran M, Wani AW, Alothman ZA, Aljuwayid AM, Habila MA, Akhtar MS. Synthesis, characterization and adsorption behavior of modified cellulose nanocrystals towards different cationic dyes. CHEMOSPHERE 2023; 321:137999. [PMID: 36724850 DOI: 10.1016/j.chemosphere.2023.137999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 01/09/2023] [Accepted: 01/27/2023] [Indexed: 06/18/2023]
Abstract
Green and efficient removal of polluted materials are essential for the sustainability of a clean and green environment. Nanomaterials, particularly cellulose nanocrystals (CNCs), are abundant in nature and can be extracted from various sources, including cotton, rice, wheat, and plants. CNCs are renewable biomass materials with a high concentration of polar functional groups. This study used succinic anhydride to modify the surface of native cellulose nanocrystals (NCNCs). Succinic anhydride has been frequently used in adhesives and sealant chemicals for a long time, and here, it is evaluated for dye removal performance. The morphology and modification of CNCs studied using FTIR, TGA & DTG, XRD, SEM, AFM, and TEM. The ability of modified cellulose nanocrystals (MCNCs) to adsorb cationic golden yellow dye and methylene blue dye was investigated. The MCNCs exhibited high adsorption affinity for the two different cationic dyes. The maximum adsorption efficiency of NCNCs and MCNCs towards the cationic dye was 0.009 and 0.156 wt%. The investigation for adhesive properties is based on the strength and toughness of MCNCs. MCNCs demonstrated improved tensile strength (2350 MPa) and modulus (13.9 MPa) using E-51 epoxy system and a curing agent compared to 3 wt% composites. This research lays the groundwork for environmentally friendly fabrication and consumption in the industrial sector.
Collapse
Affiliation(s)
- Tariq Aziz
- Westlake University, School of Engineering, Hangzhou, China
| | - Arshad Farid
- Gomal Center of Biochemistry and Biotechnology, Gomal University, D. I. Khan, 29050, Pakistan.
| | - Sampath Chinnam
- Department of Chemistry, M.S. Ramaiah Institute of Technology (Affiliated to Visvesvaraya Technological University, Belgaum), Bengaluru, Karnataka, 560054, India
| | - Fazal Haq
- Institute of Chemical Sciences, Gomal University, D. I. Khan, 29050, Pakistan
| | - Mehwish Kiran
- Department of Horticulture, Faculty of Agriculture, Gomal University, D. I. Khan, 29050, Pakistan
| | - Ab Waheed Wani
- Department of Horticulture, Lovely Professional University, Punjab, 144411, India
| | - Zeid A Alothman
- Department of Chemistry, College of Science, King Saud University, P. O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Ahmed Muteb Aljuwayid
- Department of Chemistry, College of Science, King Saud University, P. O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Mohamed A Habila
- Department of Chemistry, College of Science, King Saud University, P. O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Muhammad Saeed Akhtar
- School of Chemical Engineering, Yeungnam University, Gyeongsan, 712-749, South Korea.
| |
Collapse
|
3
|
Ullah N, Haq F, Farid A, Kiran M, Al Othman ZA, Aljuwayid AM, Habila MA, Bokhari A, Rajendran S, Khoo KS. Coupling of carboxymethyl starch with 2-carboxyethyl acrylate: A new sorbent for the wastewater remediation of methylene blue. ENVIRONMENTAL RESEARCH 2023; 219:115091. [PMID: 36529323 DOI: 10.1016/j.envres.2022.115091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/20/2022] [Accepted: 12/15/2022] [Indexed: 06/17/2023]
Abstract
Textile and printing industries play a vital role in the economy of any country. But the effluents of these industries, which contain toxic Methylene Blue (MB) dye when mixed with fresh water, make it unfit for human health and aquatic life. For the removal of MB, different adsorbents were used, but they were expensive, non-biodegradable or less effective. In this research, novel carboxymethyl starch grafted poly 2-carboxyethyl acrylate (CM-St-g-P2CEtA) was synthesized by reacting carboxymethyl starch with 2-carboxyethyl acrylate. The reaction followed a free radical polymerization mechanism. The structure and properties of CM-St-g-P2CEtA were investigated by advanced analytical techniques. The CM-St-g-P2CEtA was employed for the remediation of Methylene Blue (MB) dye from wastewater. The removal percentage (%R) of MB was checked under different parameters, like different pH levels, different initial concentrations of dye, different adsorbent doses, and different contact times. The results obtained during the experiment were subjected to different adsorption and kinetic models. In the kinetic investigation, the experimental results were best represented by the pseudo-second-order kinetic model due to its high R2 value of 0.999. Similarly, with a regression coefficient (R2) value of 0.947, the Langmuir adsorption isotherm was best represented by the experimental results. The Langmuir adsorption model showed that MB dye was adsorbed on the surface of CM-St-g-P2CEtA in a monolayer pattern. The pseudo 2nd order kinetic model suggested that the adsorption process favored chemisorption mechanism. The CM-St-g-P2CEtA showed maximum percentage removal efficiency (%R) of 99.3% for MB dye.
Collapse
Affiliation(s)
- Naveed Ullah
- Institute of Chemical Sciences, Gomal University, D.I.Khan, 29050, KPK, Pakistan.
| | - Fazal Haq
- Institute of Chemical Sciences, Gomal University, D.I.Khan, 29050, KPK, Pakistan.
| | - Arshad Farid
- Gomal Center of Biochemistry and Biotechnology, Gomal University, D.I.Khan, 29050, KPK, Pakistan.
| | - Mehwish Kiran
- Department of Horticulture, Gomal University, D.I.Khan, 29050, KPK, Pakistan.
| | - Zeid A Al Othman
- Department of Chemistry, College of Science, King Saud University, P. O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Ahmed Muteb Aljuwayid
- Department of Chemistry, College of Science, King Saud University, P. O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Mohamed A Habila
- Department of Chemistry, College of Science, King Saud University, P. O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Awais Bokhari
- Sustainable Process Integration Laboratory, SPIL, NETME Centre, Faculty of Mechanical Engineering, Brno University of Technology, VUT Brno, Technická 2896/2, 616 00, Brno, Czech Republic.
| | - Saravanan Rajendran
- Departamento de Ingeniería Mec ́anica, Facultad de Ingeniería, Universidad de Tarapac ́a, Avda. General Vel ́asquez, 1775, Arica, Chile.
| | - Kuan Shiong Khoo
- Department of Chemical Engineering and Materials Science, Yuan Ze University, Taiwan.
| |
Collapse
|