1
|
Liu F, Liang Z, Xu J, Li W, Zhao D, Zhao Y, Yan C. Activation of the wnt/β-Catenin Signaling Pathway in Polymyositis, Dermatomyositis and Duchenne Muscular Dystrophy. J Clin Neurol 2016; 12:351-60. [PMID: 27165423 PMCID: PMC4960221 DOI: 10.3988/jcn.2016.12.3.351] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 01/13/2016] [Accepted: 01/13/2016] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND AND PURPOSE The wnt/β-catenin signaling pathway plays a critical role in embryonic development and adult-tissue homeostasis. Recent investigations implicate the importance of wnt/β-catenin signaling in normal wound healing and its sustained activation being associated with fibrogenesis. We investigated the immunolocalization and activation of wnt/β-catenin in polymyositis (PM), dermatomyositis (DM), and Duchenne muscular dystrophy (DMD). METHODS Immunofluorescence staining and Western blot analysis of β-catenin were performed in muscle specimens from 6 PM, 8 DM, and 6 DMD subjects. The β-catenin/Tcf4 DNA-binding activity in muscle was studied using an electrophoretic mobility shift assay (EMSA), and serum wnt/β-catenin/Tcf transcriptional activity was measured using a luciferase reporter gene assay. RESULTS Immunoreactivity for β-catenin was found in the cytoplasm and nuclei of muscle fibers in PM, DM, and DMD. The protein level of β-catenin was elevated, and EMSA analysis confirmed the activation of wnt/β-catenin signaling. The transcriptional activities of β-catenin/Tcf in the circulation were increased in patients with PM, DM, and DMD, especially in those with interstitial lung disease, and these transcriptional activities decreased when PM or DM patients exhibited obvious clinical improvements. CONCLUSIONS Our findings indicate that wnt/β-catenin signaling is activated in PM, DM, and DMD. Its activation in muscle tissue and the circulation may play a role in modulating muscle regeneration and be at least partly involved in the process of muscle and pulmonary fibrosis.
Collapse
Affiliation(s)
- Fuchen Liu
- Department of Neurology, Qilu Hospital of Shandong University, Jian, China.,Department of Neurobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Zonglai Liang
- Department of Neurology, Qilu Hospital of Shandong University, Jian, China
| | - Jingwen Xu
- Department of Neurology, Qilu Hospital of Shandong University, Jian, China
| | - Wei Li
- Department of Neurology, Qilu Hospital of Shandong University, Jian, China
| | - Dandan Zhao
- Department of Neurology, Qilu Hospital of Shandong University, Jian, China
| | - Yuying Zhao
- Department of Neurology, Qilu Hospital of Shandong University, Jian, China
| | - Chuanzhu Yan
- Department of Neurology, Qilu Hospital of Shandong University, Jian, China.,Key Laboratory for Experimental Teratology of the Ministry of Education, School of Medicine, Shandong University, Jian, China.,Brain Science Research Institute, Shandong University, Jian, China.
| |
Collapse
|
2
|
Dufresne SS, Dumont NA, Bouchard P, Lavergne É, Penninger JM, Frenette J. Osteoprotegerin protects against muscular dystrophy. THE AMERICAN JOURNAL OF PATHOLOGY 2015; 185:920-6. [PMID: 25708645 DOI: 10.1016/j.ajpath.2015.01.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Revised: 01/10/2015] [Accepted: 01/15/2015] [Indexed: 01/18/2023]
Abstract
Receptor-activator of NF-κB, its ligand RANKL, and the soluble decoy receptor osteoprotegerin are the key regulators of osteoclast differentiation and bone remodeling. Although there is a strong association between osteoporosis and skeletal muscle atrophy/dysfunction, the functional relevance of a particular biological pathway that synchronously regulates bone and skeletal muscle physiopathology still is elusive. Here, we show that muscle cells can produce and secrete osteoprotegerin and pharmacologic treatment of dystrophic mdx mice with recombinant osteoprotegerin muscles. (Recombinant osteoprotegerin-Fc mitigates the loss of muscle force in a dose-dependent manner and preserves muscle integrity, particularly in fast-twitch extensor digitorum longus.) Our data identify osteoprotegerin as a novel protector of muscle integrity, and it potentially represents a new therapeutic avenue for both muscular diseases and osteoporosis.
Collapse
Affiliation(s)
- Sébastien S Dufresne
- CHU (CHUL) Research Center of Quebec, Université Laval, Quebec City, Quebec, Canada
| | - Nicolas A Dumont
- CHU (CHUL) Research Center of Quebec, Université Laval, Quebec City, Quebec, Canada
| | - Patrice Bouchard
- CHU (CHUL) Research Center of Quebec, Université Laval, Quebec City, Quebec, Canada
| | - Éliane Lavergne
- CHU (CHUL) Research Center of Quebec, Université Laval, Quebec City, Quebec, Canada
| | - Josef M Penninger
- Institute of Molecular Biotechnology, Austrian Academy of Sciences, Vienna, Austria
| | - Jérôme Frenette
- CHU (CHUL) Research Center of Quebec, Université Laval, Quebec City, Quebec, Canada; Department of Rehabilitation, Faculty of Medicine, Université Laval, Quebec City, Quebec, Canada.
| |
Collapse
|
3
|
Hollinger K, Selsby JT. The physiological response of protease inhibition in dystrophic muscle. Acta Physiol (Oxf) 2013; 208:234-44. [PMID: 23648220 DOI: 10.1111/apha.12114] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2013] [Revised: 03/25/2013] [Accepted: 04/29/2013] [Indexed: 01/06/2023]
Abstract
Duchenne muscular dystrophy (DMD) is caused by the production of a non-functional dystrophin gene product and a failure to accumulate functional dystrophin protein in muscle cells. This leads to membrane instability, loss of Ca(2+) homoeostasis and widespread cellular injury. Associated with these changes are increased protease activities in a variety of proteolytic systems. As such, there have been numerous investigations directed towards determining the therapeutic potential of protease inhibition. In this review, evidence from genetic and/or pharmacological inhibition of proteases as a treatment strategy for DMD is systematically evaluated. Specifically, we review the potential roles of calpain, proteasome, caspase, matrix metalloproteinase and serine protease inhibition as therapeutic approaches for DMD. We conclude that despite early results to the contrary, inhibition of calpain proteases is unlikely to be successful. Conversely, evidence suggests that inhibition of proteasome, matrix metalloproteinases and serine proteases does appear to decrease disease severity. An important caveat to these conclusions, however, is that the fundamental cause of DMD, dystrophin deficiency, is not corrected by this strategy. Hence, this should not be viewed as a cure, but rather, protease inhibitors should be considered for inclusion in a therapeutic cocktail. Physiological Relevance. Selective modulation of protease activity has the potential to profoundly change intracellular physiology resulting in a possible treatment for DMD. However, alteration of protease activities could also lead to worsening of disease progression by promoting the accumulation of substrates in the cell. The balance of benefit and potential damage caused by protease inhibition in human DMD patients is largely unexplored.
Collapse
Affiliation(s)
- K. Hollinger
- Department of Animal Science; Iowa State University; Ames; IA; USA
| | - J. T. Selsby
- Department of Animal Science; Iowa State University; Ames; IA; USA
| |
Collapse
|
4
|
Singh R, Millman G, Turin E, Polisiakeiwicz L, Lee B, Gatti F, Berge J, Smith E, Rutter J, Sumski C, Winders WT, Samadi A, Carlson CG. Increases in nuclear p65 activation in dystrophic skeletal muscle are secondary to increases in the cellular expression of p65 and are not solely produced by increases in IkappaB-alpha kinase activity. J Neurol Sci 2009; 285:159-71. [PMID: 19631348 DOI: 10.1016/j.jns.2009.06.030] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2009] [Accepted: 06/16/2009] [Indexed: 10/20/2022]
Abstract
Dystrophin-deficient muscle exhibits substantial increases in nuclear NF-kappaB activation. To examine potential mechanisms for this enhanced activation, the present study employs conventional Western blot techniques to provide the first determination of the relative expression of NF-kappaB signaling molecules in adult nondystrophic and dystrophic (mdx) skeletal muscle. The results indicate that dystrophic muscle is characterized by increases in the whole cell expression of IkappaB-alpha, p65, p50, RelB, p100, p52, IKK, and TRAF-3. The proportion of phosphorylated IkappaB-alpha, p65, NIK, and IKKbeta, and the level of cytosolic IkappaB-alpha, were also increased in the mdx diaphragm. Proteasomal inhibition using MG-132 increased the proportion of phosphorylated IkappaB-alpha in nondystrophic diaphragm, but did not significantly increase this proportion in the mdx diaphragm. This result suggests that phosphorylated IkappaB-alpha accumulates in dystrophic cytosol because the rate of IkappaB-alpha degradation is lower than the effective rate of IkappaB-alpha synthesis and phosphorylation. Dystrophic increases in SUMO-1 (small ubiquitin modifier-1) protein and in Akt activation were also observed. The results indicate that increases in nuclear p65 activation in dystrophic muscle are not produced solely by increases in the activity of IkappaB-alpha kinase (IKK), but are due primarily to increases in the expression of p65 and other NF-kappaB signaling components.
Collapse
Affiliation(s)
- Rajvir Singh
- Department of Physiology, Kirksville College of Osteopathic Medicine, AT Still University, Kirksville, MO 63501, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Heydemann A, McNally EM. Consequences of disrupting the dystrophin-sarcoglycan complex in cardiac and skeletal myopathy. Trends Cardiovasc Med 2007; 17:55-9. [PMID: 17292047 DOI: 10.1016/j.tcm.2006.12.002] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2006] [Revised: 12/22/2006] [Accepted: 12/26/2006] [Indexed: 01/16/2023]
Abstract
Mutations that disrupt the dystrophin glycoprotein complex lead to plasma membrane instability of cardiomyocytes and skeletal muscle myofibers. Instability of the plasma membrane leads to degeneration largely due to activation of a necrotic process in these disorders. In response to ongoing degeneration, skeletal muscle exhibits robust regeneration while in cardiac muscle regeneration is not obvious. The dystrophin complex is concentrated along the plasma membrane in costameric structures that correspond to the Z bands of sarcomeres, thus positioning the dystrophin complex to transmit force between the sarcomere and the plasma membrane to the extracellular matrix. Although it is apparent that this position is important for perpendicular force transmission, it is clear that the dystrophin complex also fulfills signaling roles. Nitric oxide synthase and stress-induced signaling cascades are activated to participate in protection but may also contribute to pathology.
Collapse
Affiliation(s)
- Ahlke Heydemann
- Department of Medicine, Section of Cardiology, The University of Chicago, Chicago, IL 60637, USA
| | | |
Collapse
|
6
|
Pathophysiology of duchenne muscular dystrophy: current hypotheses. Pediatr Neurol 2007; 36:1-7. [PMID: 17162189 DOI: 10.1016/j.pediatrneurol.2006.09.016] [Citation(s) in RCA: 300] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2006] [Revised: 07/11/2006] [Accepted: 09/20/2006] [Indexed: 11/15/2022]
Abstract
Duchenne muscular dystrophy is a devastating inherited neuromuscular disorder that affects one in 3300 live male births. Although the responsible gene and its product, dystrophin, have been characterized for more than 15 years, and a mouse model (mdx) has been developed, comprehensive understanding of the mechanism leading from the absence of dystrophin to the muscular degeneration is still debated. First, dystrophin is considered a key structural element in the muscle fiber, and the primary function of the dystrophin-associated protein complex is to stabilize plasma membrane, although a role of signaling is still possible. Mechanically induced damage through eccentric contractions puts a high stress on fragile membranes and provokes micro-lesions that could eventually lead to loss of calcium homeostasis, and cell death. Altered regeneration, inflammation, impaired vascular adaptation, and fibrosis are probably downstream events that take part in the muscular dystrophy and that probably vary a lot along species (i.e., mdx mice), probands within families, stressing the importance of epigenic factors. Because no etiologic therapy is available for Duchenne muscular dystrophy, a better understanding of the primary and downstream mechanisms could prove useful for producing new adjuvant treatments. All pathophysiologic mechanisms are reviewed together with perspectives on management.
Collapse
|
7
|
Abstract
There is evidence that apoptotic cell death mechanisms contribute to muscle fiber loss in dystrophin-deficient muscle but there is little knowledge about the final degrading events of muscle fiber apoptosis. In muscle biopsy specimens from 14 patients with a dystrophinopathy (10 patients with DMD, two with Becker MD, two DMD carriers), expression of APAF-1 and caspase-9, upstream members of the apoptotic protease cascade, as well as of the downstream executioners caspase-2, -6 and -7, were studied by immunohistochemistry and Western blots. Besides predominant immunoreactivity in regenerating muscle fibers, which may contribute to apoptotic events during new muscle fiber formation, caspase-9, -6 and -7 displayed upregulation in non-regenerating, light microscopically intact but atrophic muscle fibers. Western blot analyses confirmed the upregulations. These findings indicate that, once activated, caspase-9 initiates a proteolytic, muscle fiber degrading cascade involving the downstream executioners caspase-6 and -7. However, lacking coexpression of APAF-1 suggests the existence of other pathways of caspase-9 activation than through the "apoptosome" in dystrophinopathies.
Collapse
Affiliation(s)
- Dominique S Tews
- Neurological (Edinger-) Institute, Johann Wolfgang Goethe University Hospital, Frankfurt/M, Germany.
| |
Collapse
|
8
|
Abstract
Muscle-fiber loss is a characteristic of many progressive neuromuscular disorders. Over the past decade, identification of a growing number of apoptosis-associated factors and events in pathological skeletal muscle provided increasing evidence that apoptotic cell-death mechanisms account significantly for muscle-fiber atrophy and loss in a wide spectrum of neuromuscular disorders. It became obvious that there is not one specific pathway for muscle fibers to undergo apoptotic degradation. In contrast, certain neuromuscular diseases seem to involve characteristic expression patterns of apoptosis-related factors and pathways. Furthermore, there are some characteristics of muscle-fiber apoptosis that rely on the muscle fiber itself as an extremely specified cell type. Multinucleated muscle fibers with successive muscle-fiber segments controlled by individual nuclei display some specifics different from apoptosis of mononucleated cells. This review focuses on the expression patterns of apoptosis-associated factors in different primary and secondary neuromuscular disorders and gives a synopsis of current knowledge.
Collapse
Affiliation(s)
- Dominique S Tews
- Edinger-Institute, Johann Wolfgang Goethe University Hospital, Deutschordenstrasse 46, D-60528 Frankfurt am Main, Germany.
| |
Collapse
|