1
|
Schittenhelm J, Ziegler L, Sperveslage J, Mittelbronn M, Capper D, Burghardt I, Poso A, Biskup S, Skardelly M, Tabatabai G. FGFR3 overexpression is a useful detection tool for FGFR3 fusions and sequence variations in glioma. Neurooncol Pract 2020; 8:209-221. [PMID: 33898054 DOI: 10.1093/nop/npaa075] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Background Fibroblast growth factor receptor (FGFR) inhibitors are currently used in clinical development. A subset of glioblastomas carries gene fusion of FGFR3 and transforming acidic coiled-coil protein 3. The prevalence of other FGFR3 alterations in glioma is currently unclear. Methods We performed RT-PCR in 101 glioblastoma samples to detect FGFR3-TACC3 fusions ("RT-PCR cohort") and correlated results with FGFR3 immunohistochemistry (IHC). Further, we applied FGFR3 IHC in 552 tissue microarray glioma samples ("TMA cohort") and validated these results in two external cohorts with 319 patients. Gene panel sequencing was carried out in 88 samples ("NGS cohort") to identify other possible FGFR3 alterations. Molecular modeling was performed on newly detected mutations. Results In the "RT-PCR cohort," we identified FGFR3-TACC3 fusions in 2/101 glioblastomas. Positive IHC staining was observed in 73/1024 tumor samples of which 10 were strongly positive. In the "NGS cohort," we identified FGFR3 fusions in 9/88 cases, FGFR3 amplification in 2/88 cases, and FGFR3 gene mutations in 7/88 cases in targeted sequencing. All FGFR3 fusions and amplifications and a novel FGFR3 K649R missense mutation were associated with FGFR3 overexpression (sensitivity and specificity of 93% and 95%, respectively, at cutoff IHC score > 7). Modeling of these data indicated that Tyr647, a residue phosphorylated as a part of FGFR3 activation, is affected by the K649R mutation. Conclusions FGFR3 IHC is a useful screening tool for the detection of FGFR3 alterations and could be included in the workflow for isocitrate dehydrogenase (IDH) wild-type glioma diagnostics. Samples with positive FGFR3 staining could then be selected for NGS-based diagnostic tools.
Collapse
Affiliation(s)
- Jens Schittenhelm
- Center for Neuro-Oncology, Comprehensive Cancer Center Tuebingen-Stuttgart, University Hospital of Tuebingen, Eberhard Karls University of Tuebingen, Tuebingen, Germany.,Department of Neuropathology, Institute of Pathology and Neuropathology, University Hospital of Tuebingen, Eberhard Karls University of Tuebingen, Tuebingen, Germany
| | - Lukas Ziegler
- Department of Neuropathology, Institute of Pathology and Neuropathology, University Hospital of Tuebingen, Eberhard Karls University of Tuebingen, Tuebingen, Germany
| | - Jan Sperveslage
- Department of Pathology, Institute of Pathology and Neuropathology, University Hospital of Tuebingen, Eberhard Karls University of Tuebingen, Tuebingen, Germany.,Gerhard-Domagk-Institute of Pathology, University Hospital Münster, Münster, Germany
| | - Michel Mittelbronn
- Luxembourg Center of Neuropathology (LCNP), Dudelange, Luxembourg.,Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg.,National Center of Pathology (NCP), Laboratoire National de Santé (LNS), Dudelange, Luxembourg.,Department of Oncology (DONC), Luxembourg Institute of Health (LIH), Luxembourg, Luxembourg.,Edinger Institute (Neurological Institute), University of Frankfurt, Frankfurt, Germany
| | - David Capper
- Institute of Neuropathology, Berlin Institute of Health, Berlin, Germany.,Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Isabel Burghardt
- Center for Neuro-Oncology, Comprehensive Cancer Center Tuebingen-Stuttgart, University Hospital of Tuebingen, Eberhard Karls University of Tuebingen, Tuebingen, Germany.,Department of Neurology & Interdisciplinary Neurooncology, University Hospital Tübingen, Hertie-Institute for Clinical Brain Research, Eberhard Karls University Tübingen, Tuebingen, Germany
| | - Antti Poso
- Department of Internal Medicine VIII, University Hospital Tuebingen, Tuebingen, Germany
| | - Saskia Biskup
- CeGaT GmbH and Praxis für Humangenetik Tuebingen, Tuebingen, Germany
| | - Marco Skardelly
- Center for Neuro-Oncology, Comprehensive Cancer Center Tuebingen-Stuttgart, University Hospital of Tuebingen, Eberhard Karls University of Tuebingen, Tuebingen, Germany.,Department of Neurosurgery, University Hospital of Tuebingen, Eberhard Karls University Tuebingen, Tuebingen, Germany
| | - Ghazaleh Tabatabai
- Center for Neuro-Oncology, Comprehensive Cancer Center Tuebingen-Stuttgart, University Hospital of Tuebingen, Eberhard Karls University of Tuebingen, Tuebingen, Germany.,Department of Neurology & Interdisciplinary Neurooncology, University Hospital Tübingen, Hertie-Institute for Clinical Brain Research, Eberhard Karls University Tübingen, Tuebingen, Germany.,Center for Personalized Medicine, Eberhard Karls University of Tuebingen, Tuebingen, Germany.,German Consortium for Translational Cancer Research (DKTK), DKFZ partner site Tuebingen, Tuebingen, Germany
| |
Collapse
|
2
|
Brendle C, Klose U, Hempel JM, Schittenhelm J, Skardelly M, Tabatabai G, Ernemann U, Bender B. Association of dynamic susceptibility magnetic resonance imaging at initial tumor diagnosis with the prognosis of different molecular glioma subtypes. Neurol Sci 2020; 41:3625-3632. [PMID: 32462389 PMCID: PMC8203510 DOI: 10.1007/s10072-020-04474-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 05/15/2020] [Indexed: 12/17/2022]
Abstract
Purpose The updated 2016 CNS World Health Organization classification differentiates three main groups of diffuse glioma according to their molecular characteristics: astrocytic tumors with and without isocitrate dehydrogenase (IDH) mutation and 1p/19q co-deleted oligodendrogliomas. The present study aimed to determine whether dynamic susceptibility contrast magnetic resonance imaging (DSC-MRI) is an independent prognostic marker within the molecular subgroups of diffuse glioma. Methods Fifty-six patients with treatment-naive gliomas and advanced preoperative MRI examination were assessed retrospectively. The mean and maximal normalized cerebral blood volume values from DSC-MRI within the tumors were measured. Optimal cutoff values for the 1-year progression-free survival (PFS) were defined, and Kaplan-Meier analyses were performed separately for the three glioma subgroups. Results IDH wild-type astrocytic tumors had a higher mean and maximal perfusion than IDH-mutant astrocytic tumors and oligodendrogliomas. Patients with IDH wild-type astrocytic tumors and a low mean or maximal perfusion had a significantly shorter PFS than patients of the same group with high perfusion (p = 0.0159/0.0112). Furthermore, they had a significantly higher risk for early progression (hazard ratio = 5.6/5.1). This finding was independent of the methylation status of O6-methylguanin-DNA-methyltransferase and variations of the therapy. Within the groups of IDH-mutant astrocytic tumors and oligodendrogliomas, the PFS of low and highly perfused tumors did not differ. Conclusion High perfusion upon initial diagnosis is not compellingly associated with worse short-term prognosis within the different molecular subgroups of diffuse glioma. Particularly, the overall highly perfused group of IDH wild-type astrocytic tumors contains tumors with low perfusion but unfavorable prognosis.
Collapse
Affiliation(s)
- Cornelia Brendle
- Diagnostic and Interventional Neuroradiology, Department of Radiology, Eberhard Karls University, Hoppe-Seyler-Straße 3, 72076, Tuebingen, Germany.
| | - Uwe Klose
- Diagnostic and Interventional Neuroradiology, Department of Radiology, Eberhard Karls University, Hoppe-Seyler-Straße 3, 72076, Tuebingen, Germany
| | - Johann-Martin Hempel
- Diagnostic and Interventional Neuroradiology, Department of Radiology, Eberhard Karls University, Hoppe-Seyler-Straße 3, 72076, Tuebingen, Germany
| | - Jens Schittenhelm
- Neuropathology, Department of Pathology and Neuropathology, Eberhard Karls University, Calwerstr. 3, 72076, Tuebingen, Germany
| | - Marco Skardelly
- University Hospital for Neurosurgery, Eberhard Karls University, Hoppe-Seyler-Straße 3, 72076, Tuebingen, Germany
| | - Ghazaleh Tabatabai
- Interdisciplinary Section of Neurooncology, Eberhard Karls University, Hoppe-Seyler-Straße 3, 72076, Tuebingen, Germany
| | - Ulrike Ernemann
- Diagnostic and Interventional Neuroradiology, Department of Radiology, Eberhard Karls University, Hoppe-Seyler-Straße 3, 72076, Tuebingen, Germany
| | - Benjamin Bender
- Diagnostic and Interventional Neuroradiology, Department of Radiology, Eberhard Karls University, Hoppe-Seyler-Straße 3, 72076, Tuebingen, Germany
| |
Collapse
|
3
|
Ebrahimi A, Skardelly M, Schuhmann MU, Ebinger M, Reuss D, Neumann M, Tabatabai G, Kohlhof-Meinecke P, Schittenhelm J. High frequency of H3 K27M mutations in adult midline gliomas. J Cancer Res Clin Oncol 2019; 145:839-850. [PMID: 30610375 DOI: 10.1007/s00432-018-02836-5] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 12/27/2018] [Indexed: 12/27/2022]
Abstract
PURPOSE Diffuse midline gliomas, H3 K27M-mutant were introduced as a new grade IV entity in WHO classification of tumors 2016. These tumors occur often in pediatric patients and show an adverse prognosis with a median survival less than a year. Most of the studies on these tumors, previously known as pediatric diffuse intrinsic pontine glioma, are on pediatric patients and its significance in adult patients is likely underestimated. METHODS We studied 165 cases of brain tumors of midline localization initially diagnosed as diffuse astrocytomas, oligodendrogliomas, pilocytic astrocytomas, supependymomas, ependymomas and medulloblastomas in patients with an age range of 2-85. RESULTS We identified 41 diffuse midline gliomas according WHO 2016, including 12 pediatric and 29 adult cases, among them two cases with histological features of low grade tumors: pilocytic astrocytoma and subependymoma. 49% (20/41) of the patients were above 30 years old by the first tumor manifestation including 29% (11/41) above 54 that signifies a broader age spectrum as previously reported. Our study confirms that H3 K27M mutations are associated with a poorer prognosis in pediatric patients compared to wild-type tumors, while in adult patients these mutations do not influence the survival significantly. The pattern of tumor growth was different in pediatric compared to adult patients; a diffuse growth along the brain axis was more evident in adult compared to pediatric patients (24% vs. 15%). CONCLUSION H3 K27M mutations are frequent in adult midline gliomas and have a prognostic role similar to H3 K27M wild-type high-grade tumors.
Collapse
Affiliation(s)
- Azadeh Ebrahimi
- Department of Neuropathology, Institute of Pathology and Neuropathology, University Hospital of Tuebingen, Eberhard Karls University of Tuebingen, 72076, Tuebingen, Germany. .,Clinical Cooperation Unit Neuropathology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany. .,Center for CNS Tumors, Comprehensive Cancer Center Tuebingen-Stuttgart, University Hospital of Tuebingen, Eberhard Karls University of Tuebingen, Tuebingen, Germany. .,Department of Neuropathology, Institute of Pathology, University Hospital of Heidelberg, Im Neuenheimer Feld 224, 69120, Heidelberg, Germany.
| | - Marco Skardelly
- Department of Neurosurgery, University Hospital of Tuebingen, Eberhard Karls University of Tuebingen, 72076, Tuebingen, Germany.,Interdisciplinary Division of Neurooncology, Departments of Vascular Neurology and Neurosurgery, University Hospital of Tuebingen, Eberhard Karls University of Tuebingen, 72076, Tuebingen, Germany.,Laboratory for Clinical and Experimental Neurooncology, Hertie-Institute for Clinical Brain Research, Tuebingen, Germany.,Center for CNS Tumors, Comprehensive Cancer Center Tuebingen-Stuttgart, University Hospital of Tuebingen, Eberhard Karls University of Tuebingen, Tuebingen, Germany
| | - Martin U Schuhmann
- Department of Neurosurgery, University Hospital of Tuebingen, Eberhard Karls University of Tuebingen, 72076, Tuebingen, Germany
| | - Martin Ebinger
- Department of General Pediatrics, Hematology/Oncology, University Children's Hospital, 72076, Tuebingen, Germany
| | - David Reuss
- Clinical Cooperation Unit Neuropathology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Neuropathology, Institute of Pathology, University Hospital of Heidelberg, Im Neuenheimer Feld 224, 69120, Heidelberg, Germany
| | - Manuela Neumann
- Department of Neuropathology, Institute of Pathology and Neuropathology, University Hospital of Tuebingen, Eberhard Karls University of Tuebingen, 72076, Tuebingen, Germany.,Center for CNS Tumors, Comprehensive Cancer Center Tuebingen-Stuttgart, University Hospital of Tuebingen, Eberhard Karls University of Tuebingen, Tuebingen, Germany
| | - Ghazaleh Tabatabai
- Interdisciplinary Division of Neurooncology, Departments of Vascular Neurology and Neurosurgery, University Hospital of Tuebingen, Eberhard Karls University of Tuebingen, 72076, Tuebingen, Germany.,Laboratory for Clinical and Experimental Neurooncology, Hertie-Institute for Clinical Brain Research, Tuebingen, Germany.,Center for Personalized Medicine, Eberhard Karls University of Tuebingen, Tuebingen, Germany.,German Consortium for Translational Cancer Research (DKTK), DKFZ Partner Site Tuebingen, Tuebingen, Germany.,Center for CNS Tumors, Comprehensive Cancer Center Tuebingen-Stuttgart, University Hospital of Tuebingen, Eberhard Karls University of Tuebingen, Tuebingen, Germany
| | | | - Jens Schittenhelm
- Department of Neuropathology, Institute of Pathology and Neuropathology, University Hospital of Tuebingen, Eberhard Karls University of Tuebingen, 72076, Tuebingen, Germany. .,Center for CNS Tumors, Comprehensive Cancer Center Tuebingen-Stuttgart, University Hospital of Tuebingen, Eberhard Karls University of Tuebingen, Tuebingen, Germany.
| |
Collapse
|
4
|
Hempel JM, Schittenhelm J, Klose U, Bender B, Bier G, Skardelly M, Tabatabai G, Castaneda Vega S, Ernemann U, Brendle C. In Vivo Molecular Profiling of Human Glioma. Clin Neuroradiol 2018; 29:479-491. [DOI: 10.1007/s00062-018-0676-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 02/02/2018] [Indexed: 10/18/2022]
|
5
|
In vivo molecular profiling of human glioma using diffusion kurtosis imaging. J Neurooncol 2016; 131:93-101. [PMID: 27604789 DOI: 10.1007/s11060-016-2272-0] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 08/30/2016] [Indexed: 10/21/2022]
Abstract
The purpose of this study is to assess the diagnostic performance of diffusion kurtosis imaging (DKI) for in vivo molecular profiling of human glioma. Normalized mean kurtosis (MKn) and mean diffusivity (MDn) metrics from DKI were assessed in 50 patients with histopathologically confirmed glioma. The results were compared in regard to the WHO-based histological findings and molecular characteristics leading to integrated diagnosis (Haarlem Consensus): isocitrate-dehydrogenase (IDH1/2) mutation status, alpha-thalassemia/mental retardation syndrome X-linked (ATRX) expression, chromosome 1p/19q loss of heterozygosity (LOH), and O6-methylguanine DNA methyltransferase (MGMT) promoter methylation status. MKn was significantly lower in tumors with IDH1/2 mutation (0.43 ± 0.09) and ATRX loss of expression (0.41 ± 0.11) than in those with IDH1/2 wild type (0.57 ± 0.09, p < 0.001) and ATRX maintained expression (0.51 ± 0.10, p = 0.004), respectively. Regarding the integrated molecular diagnosis, MKn was significantly higher in primary glioblastoma (0.57 ± 0.10) than in astrocytoma (0.39 ± 0.11, p < 0.001) and oligodendroglioma (0.47 ± 0.05, p = 0.003). MK may be used to provide insight into the human glioma molecular profile regarding IDH1/2 mutation status and ATRX expression. Considering the diagnostic and prognostic significance of these molecular markers, MK appears to be a promising in vivo biomarker for glioma. The diagnostic performance of MK seems to fit more with the integrated molecular approach than the conventional histological findings of the current WHO 2007 classification.
Collapse
|
6
|
Ebrahimi A, Skardelly M, Bonzheim I, Ott I, Mühleisen H, Eckert F, Tabatabai G, Schittenhelm J. ATRX immunostaining predicts IDH and H3F3A status in gliomas. Acta Neuropathol Commun 2016; 4:60. [PMID: 27311324 PMCID: PMC4910252 DOI: 10.1186/s40478-016-0331-6] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 06/02/2016] [Indexed: 12/16/2022] Open
Abstract
Gliomas are the most frequent intraaxial CNS neoplasms with a heterogeneous molecular background. Recent studies on diffuse gliomas have shown frequent alterations in the genes involved in chromatin remodelling pathways such as α-thalassemia/mental-retardation-syndrome-X-linked gene (ATRX). Yet, the reliability of ATRX in predicting isocitrate dehydrogenase (IDH) and H3 histone, family 3A (H3F3A) mutations in gliomas, is unclear.We analysed the ATRX expression status by immunohistochemistry, in a large series of 1064 gliomas and analysed the results in correlation to IDH, H3F3A and loss of heterozygosity (LOH) 1p/19q status in these tumors. We also investigated the prognostic potential of ATRX concerning the clinical outcome of patients with diffuse gliomas.According to our results, loss of nuclear ATRX expression was accompanied with an astrocytic tumor lineage and a younger age of onset. ATRX loss in astrocytomas was also strongly associated with IDH1/2 and H3F3A mutation (p < 0.0001). Among 196 glial tumors with nuclear ATRX loss, 173 (89 %) had an IDH1 or IDH2 mutation. Among the remaining 23 cases (11 %) with ATRX loss and IDH wild type status, 7 cases had a H3F3A G34R mutation (3 %) and 2 cases had a H3F3A K27M mutation (1 %). ATRX retention in IDH1/2 mutant tumors was strongly associated with LOH 1p/19q and oligodendroglioma histology (p < 0.0001). We also confirmed the significant prognostic role of ATRX. Diffuse gliomas with ATRX loss (n = 137, median 1413 days, 95 % CI: 1065-1860 days) revealed a significantly better clinical outcome compared with tumors with ATRX retention (n = 335, median: 609, 95 % CI: 539-760 days, HR = 1.81, p < 0.0001).In conclusion, ATRX is a potential marker for prediction of IDH/H3F3A mutations and substratification of diffuse gliomas into survival relevant tumor groups. Such classification is of great importance for further clinical decision making especially concerning the therapeutic options available for diffuse gliomas.
Collapse
|
7
|
Abstract
Background IDH (Isocitrate dehydrogenase) mutations occur frequently in gliomas, but their prognostic impact has not been fully assessed. We performed a meta-analysis of the association between IDH mutations and survival in gliomas. Methods Pubmed and EMBASE databases were searched for studies reporting IDH mutations (IHD1/2 and IDH1) and survival in gliomas. The primary outcome was overall survival (OS); the secondary outcome was progression-free survival (PFS). Hazard ratios (HR) with 95% confidence interval (CI) were determined using the Mantel-Haenszel random-effect modeling. Funnel plot and Egger's test were conducted to examine the risk of publication bias. Results Fifty-five studies (9487 patients) were included in the analysis. Fifty-four and twenty-seven studies investigated the association between IDH1/2 mutations and OS/PFS respectively in patients with glioma. The results showed that patients possessing an IDH1/2 mutation had significant advantages in OS (HR = 0.39, 95%CI: 0.34–0.45; P < 0.001) and PFS (HR = 0.42, 95% CI: 0.35–0.51; P < 0.001). Subgroup analysis showed a consistent result with pooled analysis, and patients with glioma of WHO grade III or II-III had better outcomes. Conclusions These findings provide further indication that patients with glioma harboring IDH mutations have improved OS and PFS, especially for patients with WHO grade III and grade II-III.
Collapse
|
8
|
Bisdas S, Chadzynski GL, Braun C, Schittenhelm J, Skardelly M, Hagberg GE, Ethofer T, Pohmann R, Shajan G, Engelmann J, Tabatabai G, Ziemann U, Ernemann U, Scheffler K. MR spectroscopy for in vivo assessment of the oncometabolite 2-hydroxyglutarate and its effects on cellular metabolism in human brain gliomas at 9.4T. J Magn Reson Imaging 2016; 44:823-33. [PMID: 26970248 DOI: 10.1002/jmri.25221] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 02/22/2016] [Indexed: 12/27/2022] Open
Abstract
PURPOSE To examine in vivo metabolic alterations in the isocitrate dehydrogenase (IDH) mutated gliomas using magnetic resonance spectroscopy (MRS) at magnetic field 9.4T. MATERIALS AND METHODS Spectra were acquired with a 9.4T whole-body scanner with the use of a custom-built head coil (16 channel transmit and 31 channel receive). A modified stimulated echo acquisition mode (STEAM) sequence was used for localization. Eighteen patients with brain tumors of probable glial origin participated in this study. The study was performed in accordance with the guidelines of the local Ethics Committee. RESULTS The increased spectral resolution allowed us to directly address metabolic alterations caused by the specific pathophysiology of IDH mutations including the presence of the oncometabolite 2-hydroxglutarate (2HG) and a significant decrease of the pooled glutamate and glutamine (20%, P = 0.024), which probably reflects an attempt to replenish α-ketoglutarate lost by conversion to 2HG. We also observed significantly reduced glutathione (GSH) levels (39%, P = 0.019), which could be similarly caused by depletion of dihydronicotinamide-adenine dinucleotide phosphate (NADPH) during this conversion in IDH mutant gliomas. CONCLUSION We demonstrate that MRS at 9.4T provides a noninvasive measure of 2HG in vivo, which may be used for therapy planning and prognostication, and may provide insights into related pathophysiologic metabolic alterations associated with IDH mutations. J. MAGN. RESON. IMAGING 2016;44:823-833.
Collapse
Affiliation(s)
- Sotirios Bisdas
- Department of Neuroradiology, Eberhard-Karls University Tübingen, Tübingen, Germany.,Department of Neuroradiology, National Hospital for Neurology and Neurosurgery, University College London Hospitals, London, UK.,Center for CNS tumors, Comprehensive Cancer Center Tübingen-Stuttgart, University Hospital Tübingen, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Grzegorz L Chadzynski
- Department of Biomedical Magnetic Resonance, Eberhard-Karls University Tübingen, Tübingen, Germany. .,High-field Magnetic Resonance Center, Max Planck Institute for Biological Cybernetics, Tübingen, Germany.
| | - Christian Braun
- Center for CNS tumors, Comprehensive Cancer Center Tübingen-Stuttgart, University Hospital Tübingen, Eberhard Karls University Tübingen, Tübingen, Germany.,Department of Neurology & Stroke, Hertie Institute for Clinical Brain Research, Eberhard-Karls University Tübingen, Tübingen, Germany.,Interdisciplinary Division of Neuro-Oncology, University Hospital Tübingen, Hertie Institute for Clinical Brain Research, Eberahrd Karls University, Tübingen, Germany
| | - Jens Schittenhelm
- Center for CNS tumors, Comprehensive Cancer Center Tübingen-Stuttgart, University Hospital Tübingen, Eberhard Karls University Tübingen, Tübingen, Germany.,Interdisciplinary Division of Neuro-Oncology, University Hospital Tübingen, Hertie Institute for Clinical Brain Research, Eberahrd Karls University, Tübingen, Germany.,Department of Neuropathology, Eberhard-Karls University Tübingen, Tübingen, Germany.,Center for Personalized Medicine, Eberhard Karls University, Tübingen, Germany
| | - Marco Skardelly
- Center for CNS tumors, Comprehensive Cancer Center Tübingen-Stuttgart, University Hospital Tübingen, Eberhard Karls University Tübingen, Tübingen, Germany.,Interdisciplinary Division of Neuro-Oncology, University Hospital Tübingen, Hertie Institute for Clinical Brain Research, Eberahrd Karls University, Tübingen, Germany.,Center for Personalized Medicine, Eberhard Karls University, Tübingen, Germany.,Department of Neurosurgery, Eberhard-Karls University Tübingen, Tübingen, Germany
| | - Gisela E Hagberg
- Department of Biomedical Magnetic Resonance, Eberhard-Karls University Tübingen, Tübingen, Germany.,High-field Magnetic Resonance Center, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| | - Thomas Ethofer
- Department of Biomedical Magnetic Resonance, Eberhard-Karls University Tübingen, Tübingen, Germany.,Clinic for Psychiatry and Psychotherapy, Eberhard-Karls University Tübingen, Tübingen, Germany
| | - Rolf Pohmann
- High-field Magnetic Resonance Center, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| | - G Shajan
- High-field Magnetic Resonance Center, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| | - Jörn Engelmann
- Department of Biomedical Magnetic Resonance, Eberhard-Karls University Tübingen, Tübingen, Germany.,High-field Magnetic Resonance Center, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| | - Ghazaleh Tabatabai
- Center for CNS tumors, Comprehensive Cancer Center Tübingen-Stuttgart, University Hospital Tübingen, Eberhard Karls University Tübingen, Tübingen, Germany.,Department of Neurology & Stroke, Hertie Institute for Clinical Brain Research, Eberhard-Karls University Tübingen, Tübingen, Germany.,Interdisciplinary Division of Neuro-Oncology, University Hospital Tübingen, Hertie Institute for Clinical Brain Research, Eberahrd Karls University, Tübingen, Germany.,Center for Personalized Medicine, Eberhard Karls University, Tübingen, Germany.,German Cancer Consortium (DKTK), DKFZ partner site Tübingen, Tübingen, Germany
| | - Ulf Ziemann
- Center for CNS tumors, Comprehensive Cancer Center Tübingen-Stuttgart, University Hospital Tübingen, Eberhard Karls University Tübingen, Tübingen, Germany.,Department of Neurology & Stroke, Hertie Institute for Clinical Brain Research, Eberhard-Karls University Tübingen, Tübingen, Germany.,Center for Personalized Medicine, Eberhard Karls University, Tübingen, Germany
| | - Ulrike Ernemann
- Department of Neuroradiology, Eberhard-Karls University Tübingen, Tübingen, Germany.,Center for CNS tumors, Comprehensive Cancer Center Tübingen-Stuttgart, University Hospital Tübingen, Eberhard Karls University Tübingen, Tübingen, Germany.,Center for Personalized Medicine, Eberhard Karls University, Tübingen, Germany
| | - Klaus Scheffler
- Department of Biomedical Magnetic Resonance, Eberhard-Karls University Tübingen, Tübingen, Germany.,High-field Magnetic Resonance Center, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| |
Collapse
|
9
|
Analysis of IDH1-R132 mutation, BRAF V600 mutation and KIAA1549-BRAF fusion transcript status in central nervous system tumors supports pediatric tumor classification. J Cancer Res Clin Oncol 2015; 142:89-100. [PMID: 26115961 DOI: 10.1007/s00432-015-2006-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 06/15/2015] [Indexed: 10/23/2022]
Abstract
OBJECTIVE Gliomas are the leading cause of cancer-related morbidity in children and comprise a clinical, histological and molecular heterogenous group of CNS tumors. Appropriate treatment of these tumors relies on correct classification into tumor types and malignancy grades. METHODS We examined 170 (0-18 years) pediatric and 131 (19-35 years) young adult brain tumors including pilocytic astrocytomas (PAs), pilomyxoid astrocytomas (PMAs), diffuse astrocytomas (DAs), gangliogliomas, dysembryoplastic neuroepithelial tumors (DNTs) and pleomorphic xanthoastrocytomas (PXAs) for IDH1 and BRAF mutation/BRAF fusion gene status. The obtained data were compared to results in 464 (<35 years) adult brain tumors. In 32 tumors with an oligodendroglial or mixed glioma differentiation, additionally the LOH1p/19q status was determined. RESULTS By combining immunohistochemistry and molecular methods, IDH1/2 mutations were observed in 6 pediatric, 35 young adult and 43 adult tumors of the astrocytic/oligodendroglial lineage. BRAF V600E mutations (20 pediatric, 7 young adults and 2 adults) were found mostly in gangliogliomas, PXAs, few astrocytomas and few DNTs. Except for one DA case, BRAF fusions (35 pediatric, 8 young adults and 2 adults) were restricted to PA and PMA and associated with age and infratentorial location. All mutations were mutually exclusive and always present in the primary tumor. Two-thirds of all pediatric samples harbored one of the three examined mutations. CONCLUSION Combination of IDH1-R132, BRAF V600 and KIAA1549-BRAF fusion analysis is therefore a useful tool to increase diagnostic accuracy in pediatric gliomas.
Collapse
|
10
|
Stupp R, Brada M, van den Bent MJ, Tonn JC, Pentheroudakis G. High-grade glioma: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol 2014; 25 Suppl 3:iii93-101. [PMID: 24782454 DOI: 10.1093/annonc/mdu050] [Citation(s) in RCA: 473] [Impact Index Per Article: 47.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Affiliation(s)
- R Stupp
- Department of Oncology and Cancer Centre, University Hospital Zurich, Zurich, Switzerland
| | - M Brada
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Clatterbridge Cancer Centre, Wirral, UK
| | - M J van den Bent
- Department of Neuro-Oncology, Erasmus MC Cancer Center, Rotterdam, Netherlands
| | - J-C Tonn
- Department of Neurosurgery, Ludwig-Maximilians-University, Munich, Germany
| | - G Pentheroudakis
- Department of Medical Oncology, Medical School, University of Ioannina, Ioannina, Greece
| | | |
Collapse
|
11
|
Longitudinal expression analysis of αv integrins in human gliomas reveals upregulation of integrin αvβ3 as a negative prognostic factor. J Neuropathol Exp Neurol 2013; 72:194-210. [PMID: 23399898 DOI: 10.1097/nen.0b013e3182851019] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Integrin inhibitors targeting αv series integrins are being tested for their therapeutic potential in patients with brain tumors, but pathologic studies have been limited by lack of antibodies suitable for immunohistochemistry (IHC) on formalin-fixed, paraffin-embedded specimens. We compared the expression of αv integrins by IHC in brain tumor and normal human brain samples with gene expression data in a public database using new rabbit monoclonal antibodies against αvβ3, αvβ5, αvβ6, and αvβ8 complexes using both manual and automated microscopy analyses. Glial tumors usually shared an αvβ3-positive/αvβ5-positive/αvβ8-positive/αvβ6-negative phenotype. In 94 WHO (World Health Organization) grade II astrocytomas, 85 anaplastic astrocytomas WHO grade III, and 324 glioblastomas from archival sources, expression of integrins generally increased with grade of malignancy. Integrins αvβ3 and αvβ5 were expressed in many glioma vessels; the intensity of vascular expression of αvβ3 increased with grade of malignancy, whereas αvβ8 was absent. Analysis of gene expression in an independent cohort showed a similar increase in integrin expression with tumor grade, particularly of ITGB3 and ITGB8; ITGB6 was not expressed, consistent with the IHC data. Parenchymal αvβ3 expression and ITGB3 gene overexpression in glioblastomas were associated with a poor prognosis, as revealed by survival analysis (Kaplan-Meier logrank, p = 0.016). Together, these data strengthen the rationale for anti-integrin treatment of glial tumors.
Collapse
|