1
|
Narang SK, Haney S, Duhaime AC, Martin J, Binenbaum G, de Alba Campomanes AG, Barth R, Bertocci G, Care M, McGuone D. Abusive Head Trauma in Infants and Children: Technical Report. Pediatrics 2025; 155:e2024070457. [PMID: 39992695 DOI: 10.1542/peds.2024-070457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/26/2025] Open
Affiliation(s)
- Sandeep K Narang
- Professor of Pediatrics, Medical College of Wisconsin; Chief, Section of Child Advocacy and Protection, Child Advocacy and Protection Services, Children's Wisconsin, Milwaukee, Wisconsin
| | - Suzanne Haney
- Children's Nebraska and University of Nebraska Medical Center, Omaha, Nebraska
| | - Ann-Christine Duhaime
- Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Jonathan Martin
- Division Head, Neurosurgery, Connecticut Children's; Professor, Surgery and Pediatrics, UConn School of Medicine, Farmington, Connecticut
| | - Gil Binenbaum
- Division of Ophthalmology at Children's Hospital of Philadelphia; Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | | | - Rich Barth
- Department of Radiology, Lucile Packard Children's Hospital, Stanford University, Stanford, California
| | - Gina Bertocci
- Department of Bioengineering, University of Louisville, Louisville, Kentucky
| | - Margarite Care
- Department of Radiology and Medical Imaging, Cincinnati Children's Hospital Medical Center; Department of Radiology, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Declan McGuone
- Department of Pathology, Yale School of Medicine; Associate Medical Examiner, Connecticut Office of the Chief Medical Examiner, New Haven, Connecticut
| |
Collapse
|
2
|
Carteri RB. Mitochondria as a Therapeutic Target: Focusing on Traumatic Brain Injury. J Integr Neurosci 2025; 24:25292. [PMID: 39862005 DOI: 10.31083/jin25292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/21/2024] [Accepted: 09/10/2024] [Indexed: 01/27/2025] Open
Abstract
Mitochondria are organelles of eukaryotic cells delimited by two membranes and cristae that consume oxygen to produce adenosine triphosphate (ATP), and are involved in the synthesis of vital metabolites, calcium homeostasis, and cell death mechanisms. Strikingly, normal mitochondria function as an integration center between multiple conditions that determine neural cell homeostasis, whereas lesions that lead to mitochondrial dysfunction can desynchronize cellular functions, thus contributing to the pathophysiology of traumatic brain injury (TBI). In addition, TBI leads to impaired coupling of the mitochondrial electron transport system with oxidative phosphorylation that provides most of the energy needed to maintain vital functions, ionic homeostasis, and membrane potentials. Furthermore, mitochondrial metabolism produces signaling molecules such as reactive oxygen species (ROS), regulating calcium levels and controlling the expression profile of intrinsic pro-apoptotic effectors influenced by TBI. Hence, the set of these functions is widely referred to as 'mitochondrial function', although the complexity of the relationship between such components limits such a definition. In this review, we present mitochondria as a therapeutic target, focus on TBI, and discuss aspects of mitochondrial structure and function.
Collapse
Affiliation(s)
- Randhall Bruce Carteri
- Department of Hepatology, Federal University of Health Sciences of Porto Alegre (UFCSPA), 90050-170 Porto Alegre, Rio Grande do Sul (RS), Brazil
- Department of Nutrition, Centro Universitário CESUCA, 94935-630 Cachoeirinha, Rio Grande do Sul (RS), Brazil
| |
Collapse
|
3
|
Arena JD, Smith DH, Diaz Arrastia R, Cullen DK, Xiao R, Fan J, Harris DC, Lynch CE, Johnson VE. The neuropathological basis of elevated serum neurofilament light following experimental concussion. Acta Neuropathol Commun 2024; 12:189. [PMID: 39633506 PMCID: PMC11619522 DOI: 10.1186/s40478-024-01883-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 10/31/2024] [Indexed: 12/07/2024] Open
Abstract
Mild traumatic brain injury (mTBI) or concussion is a substantial health problem globally, with up to 15% of patients experiencing persisting symptoms that can significantly impact quality of life. Currently, the diagnosis of mTBI relies on clinical presentation with ancillary neuroimaging to exclude more severe forms of injury. However, identifying patients at risk for a poor outcome or protracted recovery is challenging, in part due to the lack of early objective tests that reflect the relevant underlying pathology. While the pathophysiology of mTBI is poorly understood, axonal damage caused by rotational forces is now recognized as an important consequence of injury. Moreover, serum measurement of the neurofilament light (NfL) protein has emerged as a potentially promising biomarker of injury. Understanding the pathological processes that determine serum NfL dynamics over time, and the ability of NfL to reflect underlying pathology will be critical for future clinical research aimed at reducing the burden of disability after mild TBI. Using a gyrencephalic model of head rotational acceleration scaled to human concussion, we demonstrate significant elevations in serum NfL, with a peak at 3 days post-injury. Moreover, increased serum NfL was detectable out to 2 weeks post-injury, with some evidence it follows a biphasic course. Subsequent quantitative histological examinations demonstrate that axonal pathology, including in the absence of neuronal somatic degeneration, was the likely source of elevated serum NfL. However, the extent of axonal pathology quantified via multiple markers did not correlate strongly with the extent of serum NfL. Interestingly, the extent of blood-brain barrier (BBB) permeability offered more robust correlations with serum NfL measured at multiple time points, suggesting BBB disruption is an important determinant of serum biomarker dynamics after mTBI. These data provide novel insights to the temporal course and pathological basis of serum NfL measurements that inform its utility as a biomarker in mTBI.
Collapse
Affiliation(s)
- John D Arena
- Department of Neurosurgery, Penn Center for Brain Injury and Repair, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Douglas H Smith
- Department of Neurosurgery, Penn Center for Brain Injury and Repair, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Ramon Diaz Arrastia
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - D Kacy Cullen
- Department of Neurosurgery, Penn Center for Brain Injury and Repair, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Rui Xiao
- The Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Jiaxin Fan
- The Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Danielle C Harris
- Department of Neurosurgery, Penn Center for Brain Injury and Repair, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Cillian E Lynch
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Victoria E Johnson
- Department of Neurosurgery, Penn Center for Brain Injury and Repair, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
4
|
Adam CD, Mirzakhalili E, Gagnon KG, Cottone C, Arena JD, Ulyanova AV, Johnson VE, Wolf JA. Disrupted Hippocampal Theta-Gamma Coupling and Spike-Field Coherence Following Experimental Traumatic Brain Injury. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.30.596704. [PMID: 39314320 PMCID: PMC11418945 DOI: 10.1101/2024.05.30.596704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Traumatic brain injury (TBI) often results in persistent learning and memory deficits, likely due to disrupted hippocampal circuitry underlying these processes. Precise temporal control of hippocampal neuronal activity is important for memory encoding and retrieval and is supported by oscillations that dynamically organize single unit firing. Using high-density laminar electrophysiology, we discovered a loss of oscillatory power across CA1 lamina, with a profound, layer-specific reduction in theta-gamma phase amplitude coupling in injured rats. Interneurons from injured animals were less strongly entrained to theta and gamma oscillations, suggesting a mechanism for the loss of coupling, while pyramidal cells were entrained to a later phase of theta. During quiet immobility, we report decreased ripple amplitudes from injured animals during sharp-wave ripple events. These results reveal deficits in information encoding and retrieval schemes essential to cognition that likely underlie TBI-associated learning and memory impairments, and elucidate potential targets for future neuromodulation therapies.
Collapse
Affiliation(s)
- Christopher D Adam
- Center for Brain Injury and Repair, Department of Neurosurgery, University of Pennsylvania, Philadelphia, USA
| | - Ehsan Mirzakhalili
- Center for Brain Injury and Repair, Department of Neurosurgery, University of Pennsylvania, Philadelphia, USA
| | - Kimberly G Gagnon
- Center for Brain Injury and Repair, Department of Neurosurgery, University of Pennsylvania, Philadelphia, USA
| | - Carlo Cottone
- Center for Brain Injury and Repair, Department of Neurosurgery, University of Pennsylvania, Philadelphia, USA
| | - John D Arena
- Center for Brain Injury and Repair, Department of Neurosurgery, University of Pennsylvania, Philadelphia, USA
| | - Alexandra V Ulyanova
- Center for Brain Injury and Repair, Department of Neurosurgery, University of Pennsylvania, Philadelphia, USA
- Center for Neurotrauma, Neurodegeneration, and Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, USA
| | - Victoria E Johnson
- Center for Brain Injury and Repair, Department of Neurosurgery, University of Pennsylvania, Philadelphia, USA
| | - John A Wolf
- Center for Brain Injury and Repair, Department of Neurosurgery, University of Pennsylvania, Philadelphia, USA
- Center for Neurotrauma, Neurodegeneration, and Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, USA
| |
Collapse
|
5
|
Delteil C, Manlius T, Bailly N, Godio-Raboutet Y, Piercecchi-Marti MD, Tuchtan L, Hak JF, Velly L, Simeone P, Thollon L. Traumatic axonal injury: Clinic, forensic and biomechanics perspectives. Leg Med (Tokyo) 2024; 70:102465. [PMID: 38838409 DOI: 10.1016/j.legalmed.2024.102465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/21/2024] [Accepted: 06/01/2024] [Indexed: 06/07/2024]
Abstract
Identification of Traumatic axonal injury (TAI) is critical in clinical practice, particularly in terms of long-term prognosis, but also for medico-legal issues, to verify whether the death or the after-effects were attributable to trauma. Multidisciplinary approaches are an undeniable asset when it comes to solving these problems. The aim of this work is therefore to list the different techniques needed to identify axonal lesions and to understand the lesion mechanisms involved in their formation. Imaging can be used to assess the consequences of trauma, to identify indirect signs of TAI, to explain the patient's initial symptoms and even to assess the patient's prognosis. Three-dimensional reconstructions of the skull can highlight fractures suggestive of trauma. Microscopic and immunohistochemical techniques are currently considered as the most reliable tools for the early identification of TAI following trauma. Finite element models use mechanical equations to predict biomechanical parameters, such as tissue stresses and strains in the brain, when subjected to external forces, such as violent impacts to the head. These parameters, which are difficult to measure experimentally, are then used to predict the risk of injury. The integration of imaging data with finite element models allows researchers to create realistic and personalized computational models by incorporating actual geometry and properties obtained from imaging techniques. The personalization of these models makes their forensic approach particularly interesting.
Collapse
Affiliation(s)
- Clémence Delteil
- Forensic Department, Assistance Publique-Hôpitaux de Marseille, La Timone, 264 rue St Pierre, 13385 Marseille Cedex 05, France; Aix Marseille Univ, CNRS, EFS, ADES, Marseille, France.
| | - Thais Manlius
- Aix Marseille Univ, Univ Gustave Eiffel, LBA, Marseille, France.
| | - Nicolas Bailly
- Aix Marseille Univ, Univ Gustave Eiffel, LBA, Marseille, France; Neuroimagery Department, Assistance Publique-Hôpitaux de Marseille, La Timone, 264 rue St Pierre, 13385 Marseille Cedex 05, France.
| | | | - Marie-Dominique Piercecchi-Marti
- Forensic Department, Assistance Publique-Hôpitaux de Marseille, La Timone, 264 rue St Pierre, 13385 Marseille Cedex 05, France; Aix Marseille Univ, CNRS, EFS, ADES, Marseille, France.
| | - Lucile Tuchtan
- Forensic Department, Assistance Publique-Hôpitaux de Marseille, La Timone, 264 rue St Pierre, 13385 Marseille Cedex 05, France; Aix Marseille Univ, CNRS, EFS, ADES, Marseille, France.
| | | | - Lionel Velly
- Département d'Anesthésie-Réanimation, Assistance Publique-Hôpitaux de Marseille, La Timone, Marseille, France; Université Aix-Marseille/CNRS, Institut des Neurosciences de la Timone, UMR7289, Marseille, France.
| | - Pierre Simeone
- Département d'Anesthésie-Réanimation, Assistance Publique-Hôpitaux de Marseille, La Timone, Marseille, France; Université Aix-Marseille/CNRS, Institut des Neurosciences de la Timone, UMR7289, Marseille, France.
| | - Lionel Thollon
- Aix Marseille Univ, Univ Gustave Eiffel, LBA, Marseille, France.
| |
Collapse
|
6
|
Song H, Tomasevich A, Paolini A, Browne KD, Wofford KL, Kelley B, Kantemneni E, Kennedy J, Qiu Y, Schneider ALC, Dolle JP, Cullen DK, Smith DH. Sex differences in the extent of acute axonal pathologies after experimental concussion. Acta Neuropathol 2024; 147:79. [PMID: 38705966 PMCID: PMC11070329 DOI: 10.1007/s00401-024-02735-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/16/2024] [Accepted: 04/17/2024] [Indexed: 05/07/2024]
Abstract
Although human females appear be at a higher risk of concussion and suffer worse outcomes than males, underlying mechanisms remain unclear. With increasing recognition that damage to white matter axons is a key pathologic substrate of concussion, we used a clinically relevant swine model of concussion to explore potential sex differences in the extent of axonal pathologies. At 24 h post-injury, female swine displayed a greater number of swollen axonal profiles and more widespread loss of axonal sodium channels than males. Axon degeneration for both sexes appeared to be related to individual axon architecture, reflected by a selective loss of small caliber axons after concussion. However, female brains had a higher percentage of small caliber axons, leading to more extensive axon loss after injury compared to males. Accordingly, sexual dimorphism in axonal size is associated with more extensive axonal pathology in females after concussion, which may contribute to worse outcomes.
Collapse
Affiliation(s)
- Hailong Song
- Department of Neurosurgery, Center for Brain Injury and Repair, University of Pennsylvania, 3320 Smith Walk, 105 Hayden Hall, Philadelphia, PA, 19104, USA
| | - Alexandra Tomasevich
- Department of Neurosurgery, Center for Brain Injury and Repair, University of Pennsylvania, 3320 Smith Walk, 105 Hayden Hall, Philadelphia, PA, 19104, USA
| | - Andrew Paolini
- Department of Neurosurgery, Center for Brain Injury and Repair, University of Pennsylvania, 3320 Smith Walk, 105 Hayden Hall, Philadelphia, PA, 19104, USA
| | - Kevin D Browne
- Department of Neurosurgery, Center for Brain Injury and Repair, University of Pennsylvania, 3320 Smith Walk, 105 Hayden Hall, Philadelphia, PA, 19104, USA
- Center for Neurotrauma, Neurodegeneration and Restoration, Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, 19104, USA
| | - Kathryn L Wofford
- Department of Neurosurgery, Center for Brain Injury and Repair, University of Pennsylvania, 3320 Smith Walk, 105 Hayden Hall, Philadelphia, PA, 19104, USA
- Center for Neurotrauma, Neurodegeneration and Restoration, Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, 19104, USA
| | - Brian Kelley
- Department of Neurosurgery, Center for Brain Injury and Repair, University of Pennsylvania, 3320 Smith Walk, 105 Hayden Hall, Philadelphia, PA, 19104, USA
| | - Eashwar Kantemneni
- Department of Neurosurgery, Center for Brain Injury and Repair, University of Pennsylvania, 3320 Smith Walk, 105 Hayden Hall, Philadelphia, PA, 19104, USA
| | - Justin Kennedy
- Department of Neurosurgery, Center for Brain Injury and Repair, University of Pennsylvania, 3320 Smith Walk, 105 Hayden Hall, Philadelphia, PA, 19104, USA
| | - Yue Qiu
- Department of Neurosurgery, Center for Brain Injury and Repair, University of Pennsylvania, 3320 Smith Walk, 105 Hayden Hall, Philadelphia, PA, 19104, USA
| | - Andrea L C Schneider
- Department of Neurology, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Epidemiology, Biostatistics, and Informatics, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Jean-Pierre Dolle
- Department of Neurosurgery, Center for Brain Injury and Repair, University of Pennsylvania, 3320 Smith Walk, 105 Hayden Hall, Philadelphia, PA, 19104, USA
| | - D Kacy Cullen
- Department of Neurosurgery, Center for Brain Injury and Repair, University of Pennsylvania, 3320 Smith Walk, 105 Hayden Hall, Philadelphia, PA, 19104, USA
- Center for Neurotrauma, Neurodegeneration and Restoration, Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, 19104, USA
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Douglas H Smith
- Department of Neurosurgery, Center for Brain Injury and Repair, University of Pennsylvania, 3320 Smith Walk, 105 Hayden Hall, Philadelphia, PA, 19104, USA.
| |
Collapse
|
7
|
Saleem KS, Avram AV, Glen D, Schram V, Basser PJ. The Subcortical Atlas of the Marmoset ("SAM") monkey based on high-resolution MRI and histology. Cereb Cortex 2024; 34:bhae120. [PMID: 38647221 PMCID: PMC11494440 DOI: 10.1093/cercor/bhae120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/07/2024] [Accepted: 03/07/2024] [Indexed: 04/25/2024] Open
Abstract
A comprehensive three-dimensional digital brain atlas of cortical and subcortical regions based on MRI and histology has a broad array of applications in anatomical, functional, and clinical studies. We first generated a Subcortical Atlas of the Marmoset, called the "SAM," from 251 delineated subcortical regions (e.g. thalamic subregions, etc.) derived from high-resolution Mean Apparent Propagator-MRI, T2W, and magnetization transfer ratio images ex vivo. We then confirmed the location and borders of these segmented regions in the MRI data using matched histological sections with multiple stains obtained from the same specimen. Finally, we estimated and confirmed the atlas-based areal boundaries of subcortical regions by registering this ex vivo atlas template to in vivo T1- or T2W MRI datasets of different age groups (single vs. multisubject population-based marmoset control adults) using a novel pipeline developed within Analysis of Functional NeuroImages software. Tracing and validating these important deep brain structures in 3D will improve neurosurgical planning, anatomical tract tracer injections, navigation of deep brain stimulation probes, functional MRI and brain connectivity studies, and our understanding of brain structure-function relationships. This new ex vivo template and atlas are available as volumes in standard NIFTI and GIFTI file formats and are intended for use as a reference standard for marmoset brain research.
Collapse
Affiliation(s)
- Kadharbatcha S Saleem
- Section on Quantitative Imaging and Tissue Sciences (SQITS), Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institute of Health (NIH), 13, South Drive, Bethesda, MD 20892, United States
- Military Traumatic Brain Injury Initiative (MTBI2), Henry M. Jackson Foundation for the Advancement of Military Medicine, 6720A Rockledge Drive, Bethesda, MD 20817, United States
| | - Alexandru V Avram
- Section on Quantitative Imaging and Tissue Sciences (SQITS), Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institute of Health (NIH), 13, South Drive, Bethesda, MD 20892, United States
| | - Daniel Glen
- Scientific and Statistical Computing Core, National Institute of Mental Health (NIMH), NIH, 10 Center Drive, Bethesda, MD 20817, United States
| | - Vincent Schram
- Microscopy and Imaging Core (MIC), Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), NIH, 35 Convent Drive, Bethesda, MD 20892, United States
| | - Peter J Basser
- Section on Quantitative Imaging and Tissue Sciences (SQITS), Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institute of Health (NIH), 13, South Drive, Bethesda, MD 20892, United States
| |
Collapse
|
8
|
Tan S, Hamlin D, Kwon E, Scadeng M, Shim V, Holdsworth S, Guild SJ, Murray H. Histological Characterisation of a Sheep Model of Mild Traumatic Brain Injury: A Pilot Study. Neurotrauma Rep 2024; 5:194-202. [PMID: 38463420 PMCID: PMC10924061 DOI: 10.1089/neur.2023.0105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2024] Open
Abstract
Large animal models of mild traumatic brain injury (mTBI) are needed to elucidate the pathophysiology of mechanical insult to a gyrencephalic brain. Sheep (ovis aries) are an attractive model for mTBI because of their neuroanatomical similarity to humans; however, few histological studies of sheep mTBI models have been conducted. We previously developed a sheep mTBI model to pilot methods for investigating the mechanical properties of brain tissue after injury. Here, we sought to histologically characterize the cortex under the impact site in this model. Three animals received a closed skull mTBI with unconstrained head motion, delivered with an impact stunner, and 3 sham animals were anesthetized but did not receive an impact. Magnetic resonance imaging (MRI) of the brain was performed before and after the impact and revealed variable degrees of damage to the skull and brain. Fluorescent immunohistochemistry revealed regions of hemorrhage in the cortex underlying the impact site in 2 of 3 mTBI sheep, the amount of which correlated with the degree of damage observed on the post-impact MRI scans. Labeling for microtubule-associated protein 2 and neuronal nuclear protein revealed changes in cellular anatomy, but, unexpectedly, glial fibrillary acidic protein and ionized calcium-binding adaptor molecule 1 labeling were relatively unchanged compared to sham animals. Our findings provide preliminary evidence of vascular and neuronal damage with limited glial reactivity and highlight the need for further in-depth histological assessment of large animal mTBI models.
Collapse
Affiliation(s)
- Sheryl Tan
- Centre for Brain Research, University of Auckland, Grafton, New Zealand
- Department of Anatomy and Medical Imaging, University of Auckland, Grafton, New Zealand
| | - Danica Hamlin
- Centre for Brain Research, University of Auckland, Grafton, New Zealand
| | - Eryn Kwon
- Centre for Brain Research, University of Auckland, Grafton, New Zealand
- Department of Anatomy and Medical Imaging, University of Auckland, Grafton, New Zealand
- Mātai Medical Research Institute, Gisborne, New Zealand
- Auckland Bioengineering Institute, Grafton, New Zealand
| | - Miriam Scadeng
- Centre for Brain Research, University of Auckland, Grafton, New Zealand
- Department of Anatomy and Medical Imaging, University of Auckland, Grafton, New Zealand
- Mātai Medical Research Institute, Gisborne, New Zealand
| | - Vickie Shim
- Mātai Medical Research Institute, Gisborne, New Zealand
- Auckland Bioengineering Institute, Grafton, New Zealand
| | - Samantha Holdsworth
- Centre for Brain Research, University of Auckland, Grafton, New Zealand
- Department of Anatomy and Medical Imaging, University of Auckland, Grafton, New Zealand
- Mātai Medical Research Institute, Gisborne, New Zealand
| | | | - Helen Murray
- Centre for Brain Research, University of Auckland, Grafton, New Zealand
- Department of Anatomy and Medical Imaging, University of Auckland, Grafton, New Zealand
| |
Collapse
|
9
|
Xiong G, Jean I, Farrugia AM, Metheny H, Johnson BN, Cohen NA, Cohen AS. Temporal and structural sensitivities of major biomarkers for detecting neuropathology after traumatic brain injury in the mouse. Front Neurosci 2024; 18:1339262. [PMID: 38356651 PMCID: PMC10865493 DOI: 10.3389/fnins.2024.1339262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 01/08/2024] [Indexed: 02/16/2024] Open
Abstract
Traumatic brain injury (TBI) is a leading cause of morbidity and mortality, especially in teenagers to young adults. In recent decades, different biomarkers and/or staining protocols have been employed to evaluate the post-injury development of pathological structures, but they have produced many contradictory findings. Since correctly identifying the underlying neuroanatomical changes is critical to advancing TBI research, we compared three commonly used markers for their ability to detect TBI pathological structures: Fluoro-Jade C, the rabbit monoclonal antibody Y188 against amyloid precursor protein and the NeuroSilver kit were used to stain adjacent slices from naïve or injured mouse brains harvested at different time points from 30 min to 3 months after lateral fluid percussion injury. Although not all pathological structures were stained by all markers at all time points, we found damaged neurons and deformed dendrites in gray matter, punctate and perivascular structures in white matter, and axonal blebs and Wallerian degeneration in both gray and white matter. The present study demonstrates the temporal and structural sensitivities of the three biomarkers: each marker is highly effective for a set of pathological structures, each of which in turn emerges at a particular time point. Furthermore, the different biomarkers showed different abilities at detecting identical types of pathological structures. In contrast to previous studies that have used a single biomarker at a single time range, the present report strongly recommends that a combination of different biomarkers should be adopted and different time points need to be checked when assessing neuropathology after TBI.
Collapse
Affiliation(s)
- Guoxiang Xiong
- Department of Anesthesiology and Critical Care Medicine, The Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | - Ian Jean
- Department of Anesthesiology and Critical Care Medicine, The Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | - Anthony M. Farrugia
- Department of Anesthesiology and Critical Care Medicine, The Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | - Hannah Metheny
- Department of Anesthesiology and Critical Care Medicine, The Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | - Brian N. Johnson
- Department of Anesthesiology and Critical Care Medicine, The Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | - Noam A. Cohen
- Philadelphia Veterans Affairs Medical Center, Philadelphia, PA, United States
- Department of Otorhinolaryngology−Head and Neck Surgery, Philadelphia, PA, United States
| | - Akiva S. Cohen
- Department of Anesthesiology and Critical Care Medicine, The Children’s Hospital of Philadelphia, Philadelphia, PA, United States
- Department of Anesthesiology and Critical Care Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
10
|
Saleem KS, Avram AV, Glen D, Schram V, Basser PJ. The Subcortical Atlas of the Marmoset ("SAM") monkey based on high-resolution MRI and histology. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.06.574429. [PMID: 38260391 PMCID: PMC10802408 DOI: 10.1101/2024.01.06.574429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
A comprehensive three-dimensional digital brain atlas of cortical and subcortical regions based on MRI and histology has a broad array of applications for anatomical, functional, and clinical studies. We first generated a Subcortical Atlas of the Marmoset, called the "SAM," from 251 delineated subcortical regions (e.g., thalamic subregions, etc.) derived from the high-resolution MAP-MRI, T2W, and MTR images ex vivo. We then confirmed the location and borders of these segmented regions in MRI data using matched histological sections with multiple stains obtained from the same specimen. Finally, we estimated and confirmed the atlas-based areal boundaries of subcortical regions by registering this ex vivo atlas template to in vivo T1- or T2W MRI datasets of different age groups (single vs. multisubject population-based marmoset control adults) using a novel pipeline developed within AFNI. Tracing and validating these important deep brain structures in 3D improves neurosurgical planning, anatomical tract tracer injections, navigation of deep brain stimulation probes, fMRI and brain connectivity studies, and our understanding of brain structure-function relationships. This new ex vivo template and atlas are available as volumes in standard NIFTI and GIFTI file formats and are intended for use as a reference standard for marmoset brain research.
Collapse
Affiliation(s)
- Kadharbatcha S Saleem
- Section on Quantitative Imaging and Tissue Sciences (SQITS), Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), NIH, Bethesda, MD 20892
- Military Traumatic Brain Injury Initiative (MTBI), Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817
| | - Alexandru V Avram
- Section on Quantitative Imaging and Tissue Sciences (SQITS), Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), NIH, Bethesda, MD 20892
| | - Daniel Glen
- Scientific and Statistical Computing Core, National Institute of Mental Health (NIMH)
| | - Vincent Schram
- Microscopy and Imaging Core (MIC), Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), NIH, Bethesda, MD 20892
| | - Peter J Basser
- Section on Quantitative Imaging and Tissue Sciences (SQITS), Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), NIH, Bethesda, MD 20892
| |
Collapse
|
11
|
Chen Q, Li L, Xu L, Yang B, Huang Y, Qiao D, Yue X. Proteomic analysis discovers potential biomarkers of early traumatic axonal injury in the brainstem. Int J Legal Med 2024; 138:207-227. [PMID: 37338605 DOI: 10.1007/s00414-023-03039-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 06/01/2023] [Indexed: 06/21/2023]
Abstract
OBJECTIVE Application of Tandem Mass Tags (TMT)-based LC-MS/MS analysis to screen for differentially expressed proteins (DEPs) in traumatic axonal injury (TAI) of the brainstem and to predict potential biomarkers and key molecular mechanisms of brainstem TAI. METHODS A modified impact acceleration injury model was used to establish a brainstem TAI model in Sprague-Dawley rats, and the model was evaluated in terms of both functional changes (vital sign measurements) andstructural changes (HE staining, silver-plating staining and β-APP immunohistochemical staining). TMT combined with LC-MS/MS was used to analyse the DEPs in brainstem tissues from TAI and Sham groups. The biological functions of DEPs and potential molecular mechanisms in the hyperacute phase of TAI were analysed by bioinformatics techniques, and candidate biomarkers were validated using western blotting and immunohistochemistry on brainstem tissues from animal models and humans. RESULTS Based on the successful establishment of the brainstem TAI model in rats, TMT-based proteomics identified 65 DEPs, and bioinformatics analysis indicated that the hyperacute phase of TAI involves multiple stages of biological processes including inflammation, oxidative stress, energy metabolism, neuronal excitotoxicity and apoptosis. Three DEPs, CBR1, EPHX2 and CYP2U1, were selected as candidate biomarkers and all three proteins were found to be significantly expressed in brainstem tissue 30 min-7 days after TAI in both animal models and humans. CONCLUSION Using TMT combined with LC-MS/MS analysis for proteomic study of early TAI in rat brainstem, we report for the first time that CBR1, EPHX2 and CYP2U1 can be used as biomarkers of early TAI in brainstem by means of western blotting and immunohistochemical staining, compensating for the limitations of silver-plating staining and β-APP immunohistochemical staining, especially in the case of very short survival time after TAI (shorter than 30 min). A number of other proteins that also have a potential marker role are also presented, providing new insights into the molecular mechanisms, therapeutic targets and forensic identification of early TAI in brainstem.
Collapse
Affiliation(s)
- Qianling Chen
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Lingyue Li
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Luyao Xu
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Bin Yang
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Yuebing Huang
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Dongfang Qiao
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, 510515, Guangdong, China.
| | - Xia Yue
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, 510515, Guangdong, China.
| |
Collapse
|
12
|
Krieg JL, Leonard AV, Turner RJ, Corrigan F. Identifying the Phenotypes of Diffuse Axonal Injury Following Traumatic Brain Injury. Brain Sci 2023; 13:1607. [PMID: 38002566 PMCID: PMC10670443 DOI: 10.3390/brainsci13111607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 11/15/2023] [Accepted: 11/17/2023] [Indexed: 11/26/2023] Open
Abstract
Diffuse axonal injury (DAI) is a significant feature of traumatic brain injury (TBI) across all injury severities and is driven by the primary mechanical insult and secondary biochemical injury phases. Axons comprise an outer cell membrane, the axolemma which is anchored to the cytoskeletal network with spectrin tetramers and actin rings. Neurofilaments act as space-filling structural polymers that surround the central core of microtubules, which facilitate axonal transport. TBI has differential effects on these cytoskeletal components, with axons in the same white matter tract showing a range of different cytoskeletal and axolemma alterations with different patterns of temporal evolution. These require different antibodies for detection in post-mortem tissue. Here, a comprehensive discussion of the evolution of axonal injury within different cytoskeletal elements is provided, alongside the most appropriate methods of detection and their temporal profiles. Accumulation of amyloid precursor protein (APP) as a result of disruption of axonal transport due to microtubule failure remains the most sensitive marker of axonal injury, both acutely and chronically. However, a subset of injured axons demonstrate different pathology, which cannot be detected via APP immunoreactivity, including degradation of spectrin and alterations in neurofilaments. Furthermore, recent work has highlighted the node of Ranvier and the axon initial segment as particularly vulnerable sites to axonal injury, with loss of sodium channels persisting beyond the acute phase post-injury in axons without APP pathology. Given the heterogenous response of axons to TBI, further characterization is required in the chronic phase to understand how axonal injury evolves temporally, which may help inform pharmacological interventions.
Collapse
Affiliation(s)
| | | | | | - Frances Corrigan
- Translational Neuropathology Laboratory, School of Biomedicine, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide 5000, Australia; (J.L.K.)
| |
Collapse
|
13
|
Krieg JL, Leonard AV, Tuner RJ, Corrigan F. Characterization of Traumatic Brain Injury in a Gyrencephalic Ferret Model Using the Novel Closed Head Injury Model of Engineered Rotational Acceleration (CHIMERA). Neurotrauma Rep 2023; 4:761-780. [PMID: 38028274 PMCID: PMC10659026 DOI: 10.1089/neur.2023.0047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2023] Open
Abstract
Traumatic brain injury (TBI) results from mechanical force to the brain and leads to a series of biochemical responses that further damage neurons and supporting cells. Clinically, most TBIs result from an impact to the intact skull, making closed head TBI pre-clinical models highly relevant. However, most of these closed head TBI models use lissencephalic rodents, which may not transduce biomechanical load in the same manner as gyrencephalic humans. To address this translational gap, this study aimed to characterize acute axonal injury and microglial responses in ferrets-the smallest gyrencephalic mammal. Injury was induced in male ferrets (Mustela furo; 1.20-1.51 kg; 6-9 months old) with the novel Closed Head Injury Model of Engineered Rotational Acceleration (CHIMERA) model. Animals were randomly allocated to either sham (n = 4), a 22J (joules) impact (n = 4), or a 27J impact (n = 4). Axonal injury was examined histologically with amyloid precursor protein (APP), neurofilament M (RMO 14.9) (RMO-14), and phosphorylated tau (AT180) and the microglial response with ionized calcium-binding adaptor molecule 1 at 24 h post-injury in gray and white matter regions. Graded axonal injury was observed with modest increases in APP and RMO-14 immunoreactivity in the 22J TBI group, mostly within the corpus callosum and fornix and more extensive diffuse axonal injury encompassing gray matter structures like the thalamus and hypothalamus in the 27J group. Accompanying microglial activation was only observed in the 27J group, most prominently within the white matter tracts in response to the larger amounts of axonal injury. The 27J, but not the 22J, group showed an increase in AT180 within the base of the sulci post-injury. This could suggest that the strain may be highest in this region, demonstrating the different responses in gyrencephalic compared to lissencephalic brains. The CHIMERA model in ferrets mimic many of the histopathological features of human closed head TBI acutely and provides a promising model to investigate the pathophysiology of TBI.
Collapse
Affiliation(s)
- Justin L. Krieg
- Translational Neuropathology Laboratory, School of Biomedicine, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, Australia
| | - Anna V. Leonard
- Translational Neuropathology Laboratory, School of Biomedicine, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, Australia
| | - Renee J. Tuner
- Translational Neuropathology Laboratory, School of Biomedicine, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, Australia
| | - Frances Corrigan
- Translational Neuropathology Laboratory, School of Biomedicine, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, Australia
| |
Collapse
|
14
|
Ulyanova AV, Adam CD, Cottone C, Maheshwari N, Grovola MR, Fruchet OE, Alamar J, Koch PF, Johnson VE, Cullen DK, Wolf JA. Hippocampal interneuronal dysfunction and hyperexcitability in a porcine model of concussion. Commun Biol 2023; 6:1136. [PMID: 37945934 PMCID: PMC10636018 DOI: 10.1038/s42003-023-05491-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 10/19/2023] [Indexed: 11/12/2023] Open
Abstract
Cognitive impairment is a common symptom following mild traumatic brain injury (mTBI or concussion) and can persist for years in some individuals. Hippocampal slice preparations following closed-head, rotational acceleration injury in swine have previously demonstrated reduced axonal function and hippocampal circuitry disruption. However, electrophysiological changes in hippocampal neurons and their subtypes in a large animal mTBI model have not been examined. Using in vivo electrophysiology techniques, we examined laminar oscillatory field potentials and single unit activity in the hippocampal network 7 days post-injury in anesthetized minipigs. Concussion altered the electrophysiological properties of pyramidal cells and interneurons differently in area CA1. While the firing rate, spike width and amplitude of CA1 interneurons were significantly decreased post-mTBI, these parameters were unchanged in CA1 pyramidal neurons. In addition, CA1 pyramidal neurons in TBI animals were less entrained to hippocampal gamma (40-80 Hz) oscillations. Stimulation of the Schaffer collaterals also revealed hyperexcitability across the CA1 lamina post-mTBI. Computational simulations suggest that reported changes in interneuronal physiology may be due to alterations in voltage-gated sodium channels. These data demonstrate that a single concussion can lead to significant neuronal and circuit level changes in the hippocampus, which may contribute to cognitive dysfunction following mTBI.
Collapse
Affiliation(s)
- Alexandra V Ulyanova
- Center for Brain Injury and Repair, Department of Neurosurgery, University of Pennsylvania, Philadelphia, USA
- Center for Neurotrauma, Neurodegeneration, and Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, USA
| | - Christopher D Adam
- Center for Brain Injury and Repair, Department of Neurosurgery, University of Pennsylvania, Philadelphia, USA
| | - Carlo Cottone
- Center for Brain Injury and Repair, Department of Neurosurgery, University of Pennsylvania, Philadelphia, USA
| | - Nikhil Maheshwari
- Center for Brain Injury and Repair, Department of Neurosurgery, University of Pennsylvania, Philadelphia, USA
| | - Michael R Grovola
- Center for Brain Injury and Repair, Department of Neurosurgery, University of Pennsylvania, Philadelphia, USA
| | - Oceane E Fruchet
- Center for Brain Injury and Repair, Department of Neurosurgery, University of Pennsylvania, Philadelphia, USA
| | - Jami Alamar
- Center for Brain Injury and Repair, Department of Neurosurgery, University of Pennsylvania, Philadelphia, USA
| | - Paul F Koch
- Center for Brain Injury and Repair, Department of Neurosurgery, University of Pennsylvania, Philadelphia, USA
| | - Victoria E Johnson
- Center for Brain Injury and Repair, Department of Neurosurgery, University of Pennsylvania, Philadelphia, USA
| | - D Kacy Cullen
- Center for Brain Injury and Repair, Department of Neurosurgery, University of Pennsylvania, Philadelphia, USA
- Center for Neurotrauma, Neurodegeneration, and Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, USA
| | - John A Wolf
- Center for Brain Injury and Repair, Department of Neurosurgery, University of Pennsylvania, Philadelphia, USA.
- Center for Neurotrauma, Neurodegeneration, and Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, USA.
| |
Collapse
|
15
|
Saleem KS, Avram AV, Yen CCC, Magdoom KN, Schram V, Basser PJ. Multimodal anatomical mapping of subcortical regions in marmoset monkeys using high-resolution MRI and matched histology with multiple stains. Neuroimage 2023; 281:120311. [PMID: 37634884 DOI: 10.1016/j.neuroimage.2023.120311] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 07/05/2023] [Accepted: 08/04/2023] [Indexed: 08/29/2023] Open
Abstract
Subcortical nuclei and other deep brain structures play essential roles in regulating the central and peripheral nervous systems. However, many of these nuclei and their subregions are challenging to identify and delineate in conventional MRI due to their small size, hidden location, and often subtle contrasts compared to neighboring regions. To address these limitations, we scanned the whole brain of the marmoset monkeys in ex vivo using a clinically feasible diffusion MRI method, called the mean apparent propagator (MAP)-MRI, along with T2W and MTR (T1-like contrast) images acquired at 7 Tesla. Additionally, we registered these multimodal MRI volumes to the high-resolution images of matched whole-brain histology sections with seven different stains obtained from the same brain specimens. At high spatial resolution, the microstructural parameters and fiber orientation distribution functions derived with MAP-MRI can distinguish the subregions of many subcortical and deep brain structures, including fiber tracts of different sizes and orientations. The good correlation with multiple but distinct histological stains from the same brain serves as a thorough validation of the structures identified with MAP-MRI and other MRI parameters. Moreover, the anatomical details of deep brain structures found in the volumes of MAP-MRI parameters are not visible in conventional T1W or T2W images. The high-resolution mapping using novel MRI contrasts, combined and correlated with histology, can elucidate structures that were previously invisible radiologically. Thus, this multimodal approach offers a roadmap toward identifying salient brain areas in vivo in future neuroradiological studies. It also provides a useful anatomical standard reference for the region definition of subcortical targets and the generation of a 3D digital template atlas for the marmoset brain research (Saleem et al., 2023). Additionally, we conducted a cross-species comparison between marmoset and macaque monkeys using results from our previous studies (Saleem et al., 2021). We found that the two species had distinct patterns of iron distribution in subregions of the basal ganglia, red nucleus, and deep cerebellar nuclei, confirmed with T2W MRI and histology.
Collapse
Affiliation(s)
- Kadharbatcha S Saleem
- Section on Quantitative Imaging and Tissue Sciences (SQITS), Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), NIH, Bethesda, MD 20892, United States; Center for Neuroscience and Regenerative Medicine (CNRM), Henry M. Jackson Foundation (HJF) for the Advancement of Military Medicine, Bethesda, MD 20817, United States.
| | - Alexandru V Avram
- Section on Quantitative Imaging and Tissue Sciences (SQITS), Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), NIH, Bethesda, MD 20892, United States; Center for Neuroscience and Regenerative Medicine (CNRM), Henry M. Jackson Foundation (HJF) for the Advancement of Military Medicine, Bethesda, MD 20817, United States
| | - Cecil Chern-Chyi Yen
- National Institute of Neurological Disorders and Stroke (NINDS), Bethesda, MD, United States
| | - Kulam Najmudeen Magdoom
- Section on Quantitative Imaging and Tissue Sciences (SQITS), Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), NIH, Bethesda, MD 20892, United States; Center for Neuroscience and Regenerative Medicine (CNRM), Henry M. Jackson Foundation (HJF) for the Advancement of Military Medicine, Bethesda, MD 20817, United States
| | - Vincent Schram
- Microscopy and Imaging Core (MIC), Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), NIH, Bethesda, MD 20892, United States
| | - Peter J Basser
- Section on Quantitative Imaging and Tissue Sciences (SQITS), Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), NIH, Bethesda, MD 20892, United States
| |
Collapse
|
16
|
Xiong G, Metheny H, Hood K, Jean I, Farrugia AM, Johnson BN, Tummala SR, Cohen NA, Cohen AS. Detection and verification of neurodegeneration after traumatic brain injury in the mouse: Immunohistochemical staining for amyloid precursor protein. Brain Pathol 2023; 33:e13163. [PMID: 37156643 PMCID: PMC10580020 DOI: 10.1111/bpa.13163] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 04/18/2023] [Indexed: 05/10/2023] Open
Abstract
Previous studies of human traumatic brain injury (TBI) have shown diffuse axonal injury as varicosities or spheroids in white matter (WM) bundles when using immunoperoxidase-ABC staining with 22C11, a mouse monoclonal antibody against amyloid precursor protein (APP). These findings have been interpreted as TBI-induced axonal pathology. In a mouse model of TBI however, when we used immunofluorescent staining with 22C11, as opposed to immunoperoxidase staining, we did not observe varicosities or spheroids. To explore this discrepancy, we performed immunofluorescent staining with Y188, an APP knockout-validated rabbit monoclonal that shows baseline immunoreactivity in neurons and oligodendrocytes of non-injured mice, with some arranged-like varicosities. In gray matter after injury, Y188 intensely stained axonal blebs. In WM, we encountered large patches of heavily stained puncta, heterogeneous in size. Scattered axonal blebs were also identified among these Y188-stained puncta. To assess the neuronal origin of Y188 staining after TBI we made use of transgenic mice with fluorescently labeled neurons and axons. A close correlation was observed between Y188-stained axonal blebs and fluorescently labeled neuronal cell bodies/axons. By contrast, no correlation was observed between Y188-stained puncta and fluorescent axons in WM, suggesting that these puncta in WM did not originate from axons, and casting further doubt on the nature of previous reports with 22C11. As such, we strongly recommend Y188 as a biomarker for detecting damaged neurons and axons after TBI. With Y188, stained axonal blebs likely represent acute axonal truncations that may lead to death of the parent neurons. Y188-stained puncta in WM may indicate damaged oligodendrocytes, whose death and clearance can result in secondary demyelination and Wallerian degeneration of axons. We also provide evidence suggesting that 22C11-stained varicosities or spheroids previously reported in TBI patients might be showing damaged oligodendrocytes, due to a cross-reaction between the ABC kit and upregulated endogenous biotin.
Collapse
Affiliation(s)
- Guoxiang Xiong
- Department of Anesthesiology and Critical Care MedicineThe Children's Hospital of PhiladelphiaPhiladelphiaPennsylvaniaUSA
| | - Hannah Metheny
- Department of Anesthesiology and Critical Care MedicineThe Children's Hospital of PhiladelphiaPhiladelphiaPennsylvaniaUSA
| | - Kaitlin Hood
- Department of Anesthesiology and Critical Care MedicineThe Children's Hospital of PhiladelphiaPhiladelphiaPennsylvaniaUSA
- Neuroscience Graduate GroupUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Ian Jean
- Department of Anesthesiology and Critical Care MedicineThe Children's Hospital of PhiladelphiaPhiladelphiaPennsylvaniaUSA
| | - Anthony M. Farrugia
- Department of Anesthesiology and Critical Care MedicineThe Children's Hospital of PhiladelphiaPhiladelphiaPennsylvaniaUSA
| | - Brian N. Johnson
- Department of Anesthesiology and Critical Care MedicineThe Children's Hospital of PhiladelphiaPhiladelphiaPennsylvaniaUSA
| | - Shanti R. Tummala
- Department of Bioengineering, School of Engineering and Applied SciencesUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Noam A. Cohen
- Philadelphia Veterans Affairs Medical CenterPhiladelphiaPennsylvaniaUSA
- Department of Otorhinolaryngology–Head and Neck SurgeryPerelman School of Medicine, University of PhiladelphiaPhiladelphiaPennsylvaniaUSA
| | - Akiva S. Cohen
- Department of Anesthesiology and Critical Care MedicineThe Children's Hospital of PhiladelphiaPhiladelphiaPennsylvaniaUSA
- Department of Anesthesiology and Critical Care Medicine, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| |
Collapse
|
17
|
Sharkey JM, Quarrington RD, Krieg JL, Kaukas L, Turner RJ, Leonard A, Jones CF, Corrigan F. Evaluating the effect of post-traumatic hypoxia on the development of axonal injury following traumatic brain injury in sheep. Brain Res 2023; 1817:148475. [PMID: 37400012 DOI: 10.1016/j.brainres.2023.148475] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 06/25/2023] [Accepted: 06/29/2023] [Indexed: 07/05/2023]
Abstract
Damage to the axonal white matter tracts within the brain is a key cause of neurological impairment and long-term disability following traumatic brain injury (TBI). Understanding how axonal injury develops following TBI requires gyrencephalic models that undergo shear strain and tissue deformation similar to the clinical situation and investigation of the effects of post-injury insults like hypoxia. The aim of this study was to determine the effect of post-traumatic hypoxia on axonal injury and inflammation in a sheep model of TBI. Fourteen male Merino sheep were allocated to receive a single TBI via a modified humane captive bolt animal stunner, or sham surgery, followed by either a 15 min period of hypoxia or maintenance of normoxia. Head kinematics were measured in injured animals. Brains were assessed for axonal damage, microglia and astrocyte accumulation and inflammatory cytokine expression at 4 hrs following injury. Early axonal injury was characterised by calpain activation, with significantly increased SNTF immunoreactivity, a proteolytic fragment of alpha-II spectrin, but not with impaired axonal transport, as measured by amyloid precursor protein (APP) immunoreactivity. Early axonal injury was associated with an increase in GFAP levels within the CSF, but not with increases in IBA1 or GFAP+ve cells, nor in levels of TNFα, IL1β or IL6 within the cerebrospinal fluid or white matter. No additive effect of post-injury hypoxia was noted on axonal injury or inflammation. This study provides further support that axonal injury post-TBI is driven by different pathophysiological mechanisms, and detection requires specific markers targeting multiple injury mechanisms. Treatment may also need to be tailored for injury severity and timing post-injury to target the correct injury pathway.
Collapse
Affiliation(s)
- Jessica M Sharkey
- Translational Neuropathology Laboratory, School of Biomedicine, Faculty of Health and Medical Sciences, The University of Adelaide, Australia
| | - Ryan D Quarrington
- Adelaide Spinal Research Group, Centre for Orthopaedic & Trauma Research, Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia; School of Electrical and Mechanical Engineering, The University of Adelaide, Adelaide, South Australia, Australia
| | - Justin L Krieg
- Translational Neuropathology Laboratory, School of Biomedicine, Faculty of Health and Medical Sciences, The University of Adelaide, Australia
| | - Lola Kaukas
- Translational Neuropathology Laboratory, School of Biomedicine, Faculty of Health and Medical Sciences, The University of Adelaide, Australia
| | - Renee J Turner
- Translational Neuropathology Laboratory, School of Biomedicine, Faculty of Health and Medical Sciences, The University of Adelaide, Australia
| | - Anna Leonard
- Translational Neuropathology Laboratory, School of Biomedicine, Faculty of Health and Medical Sciences, The University of Adelaide, Australia
| | - Claire F Jones
- Adelaide Spinal Research Group, Centre for Orthopaedic & Trauma Research, Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia; School of Electrical and Mechanical Engineering, The University of Adelaide, Adelaide, South Australia, Australia; Department of Orthopaedics & Trauma, Royal Adelaide Hospital, Adelaide, South Australia, Australia
| | - Frances Corrigan
- Translational Neuropathology Laboratory, School of Biomedicine, Faculty of Health and Medical Sciences, The University of Adelaide, Australia.
| |
Collapse
|
18
|
Maliha F, Adnan A. Mechanical Responses of a Single Myelin Layer: A Molecular Simulation Study. Biomolecules 2023; 13:1525. [PMID: 37892207 PMCID: PMC10605433 DOI: 10.3390/biom13101525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/06/2023] [Accepted: 10/12/2023] [Indexed: 10/29/2023] Open
Abstract
The myelin sheath provides insulation to the brain's neuron cells, which aids in signal transmission and communication with the body. Degenerated myelin hampers the connection between the glial cells, which are the front row responders during traumatic brain injury mitigation. Thus, the structural integrity of the myelin layer is critical for protecting the brain tissue from traumatic injury. At the molecular level, myelin consists of a lipid bilayer, myelin basic proteins (MBP), proteolipid proteins (PLP), water and ions. Structurally, the myelin sheath is formed by repeatedly wrapping forty or more myelin layers around an axon. Here, we have used molecular dynamic simulations to model and capture the tensile response of a single myelin layer. An openly available molecular dynamic solver, LAMMPS, was used to conduct the simulations. The interatomic potentials for the interacting atoms and molecules were defined using CHARMM force fields. Following a standard equilibration process, the molecular model was stretched uniaxially at a deformation rate of 5 Å/ps. We observed that, at around 10% applied strain, the myelin started to cohesively fail via flaw formation inside the bilayers. Further stretching led to a continued expansion of the defect inside the bilayer, both radially and transversely. This study provides the cellular-level mechanisms of myelin damage due to mechanical load.
Collapse
Affiliation(s)
| | - Ashfaq Adnan
- Department of Mechanical and Aerospace Engineering, The University of Texas at Arlington, Arlington, TX 76019, USA;
| |
Collapse
|
19
|
Mayer AR, Dodd AB, Dodd RJ, Stephenson DD, Ling JM, Mehos CJ, Patton DA, Robertson-Benta CR, Gigliotti AP, Vermillion MS, Noghero A. Head Kinematics, Blood Biomarkers, and Histology in Large Animal Models of Traumatic Brain Injury and Hemorrhagic Shock. J Neurotrauma 2023; 40:2205-2216. [PMID: 37341029 PMCID: PMC10701512 DOI: 10.1089/neu.2022.0338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2023] Open
Abstract
Traumatic brain injury (TBI) and severe blood loss resulting in hemorrhagic shock (HS) are each leading causes of mortality and morbidity worldwide, and present additional treatment considerations when they are comorbid (TBI+HS) as a result of competing pathophysiological responses. The current study rigorously quantified injury biomechanics with high precision sensors and examined whether blood-based surrogate markers were altered in general trauma as well as post-neurotrauma. Eighty-nine sexually mature male and female Yucatan swine were subjected to a closed-head TBI+HS (40% of circulating blood volume; n = 68), HS only (n = 9), or sham trauma (n = 12). Markers of systemic (e.g., glucose, lactate) and neural functioning were obtained at baseline, and at 35 and 295 min post-trauma. Opposite and approximately twofold differences existed for both magnitude (device > head) and duration (head > device) of quantified injury biomechanics. Circulating levels of neurofilament light chain (NfL), glial fibrillary acidic protein (GFAP), and ubiquitin C-terminal hydrolase L1 (UCH-L1) demonstrated differential sensitivity for both general trauma (HS) and neurotrauma (TBI+HS) relative to shams in a temporally dynamic fashion. GFAP and NfL were both strongly associated with changes in systemic markers during general trauma and exhibited consistent time-dependent changes in individual sham animals. Finally, circulating GFAP was associated with histopathological markers of diffuse axonal injury and blood-brain barrier breach, as well as variations in device kinematics following TBI+HS. Current findings therefore highlight the need to directly quantify injury biomechanics with head mounted sensors and suggest that GFAP, NfL, and UCH-L1 are sensitive to multiple forms of trauma rather than having a single pathological indication (e.g., GFAP = astrogliosis).
Collapse
Affiliation(s)
- Andrew R. Mayer
- The Mind Research Network/Lovelace Biomedical Research Institute, Pete & Nancy Domenici Hall, Albuquerque, New Mexico, USA
- Department of Neurology, University of New Mexico School of Medicine, Albuquerque, New Mexico, USA
- Department of Psychiatry, University of New Mexico School of Medicine, Albuquerque, New Mexico, USA
- Department of Psychology, and University of New Mexico School of Medicine, Albuquerque, New Mexico, USA
| | - Andrew B. Dodd
- The Mind Research Network/Lovelace Biomedical Research Institute, Pete & Nancy Domenici Hall, Albuquerque, New Mexico, USA
| | - Rebecca J. Dodd
- The Mind Research Network/Lovelace Biomedical Research Institute, Pete & Nancy Domenici Hall, Albuquerque, New Mexico, USA
| | - David D. Stephenson
- The Mind Research Network/Lovelace Biomedical Research Institute, Pete & Nancy Domenici Hall, Albuquerque, New Mexico, USA
| | - Josef M. Ling
- The Mind Research Network/Lovelace Biomedical Research Institute, Pete & Nancy Domenici Hall, Albuquerque, New Mexico, USA
| | - Carissa J. Mehos
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, New Mexico, USA
| | - Declan A. Patton
- Center for Injury Research and Prevention, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Cidney R. Robertson-Benta
- The Mind Research Network/Lovelace Biomedical Research Institute, Pete & Nancy Domenici Hall, Albuquerque, New Mexico, USA
| | - Andrew P. Gigliotti
- The Mind Research Network/Lovelace Biomedical Research Institute, Pete & Nancy Domenici Hall, Albuquerque, New Mexico, USA
| | - Meghan S. Vermillion
- The Mind Research Network/Lovelace Biomedical Research Institute, Pete & Nancy Domenici Hall, Albuquerque, New Mexico, USA
| | - Alessio Noghero
- The Mind Research Network/Lovelace Biomedical Research Institute, Pete & Nancy Domenici Hall, Albuquerque, New Mexico, USA
| |
Collapse
|
20
|
Newcombe V, Richter S, Whitehouse DP, Bloom BM, Lecky F. Fluid biomarkers and neuroimaging in mild traumatic brain injury: current uses and potential future directions for clinical use in emergency medicine. Emerg Med J 2023; 40:671-677. [PMID: 37438096 DOI: 10.1136/emermed-2023-213111] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 07/02/2023] [Indexed: 07/14/2023]
Abstract
Mild traumatic brain injury is a common presentation to the emergency department, with current management often focusing on determining whether a patient requires a CT head scan and/or neurosurgical intervention. There is a growing appreciation that approximately 20%-40% of patients, including those with a negative (normal) CT, will develop ongoing symptoms for months to years, often termed post-concussion syndrome. Owing to the requirement for improved diagnostic and prognostic mechanisms, there has been increasing evidence concerning the utility of both imaging and blood biomarkers.Blood biomarkers offer the potential to better risk stratify patients for requirement of neuroimaging than current clinical decisions rules. However, improved assessment of the clinical utility is required prior to wide adoption. MRI, using clinical sequences and advanced quantitative methods, can detect lesions not visible on CT in up to 30% of patients that may explain, at least in part, some of the ongoing problems. The ability of an acute biomarker (be it imaging, blood or other) to highlight those patients at greater risk of ongoing deficits would allow for greater personalisation of follow-up care and resource allocation.We discuss here both the current evidence and the future potential clinical usage of blood biomarkers and advanced MRI to improve diagnostic pathways and outcome prediction following mild traumatic brain injury.
Collapse
Affiliation(s)
- Virginia Newcombe
- Emergency and Urgent Care Research in Cambridge (EURECA), PACE Section, Department of Medicine, Cambridge University, Cambridge, UK
- Emergency Department, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Sophie Richter
- Emergency and Urgent Care Research in Cambridge (EURECA), PACE Section, Department of Medicine, Cambridge University, Cambridge, UK
- Emergency Department, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Daniel P Whitehouse
- Emergency and Urgent Care Research in Cambridge (EURECA), PACE Section, Department of Medicine, Cambridge University, Cambridge, UK
- Emergency Department, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | | | - Fiona Lecky
- Health Services Research, The University of Sheffield, Sheffield, South Yorkshire, UK
- Emergency Department /TARN, Salford and Trafford Health Authority, Manchester, UK
| |
Collapse
|
21
|
Fang T, Yue L, Longlong Z, Longda M, Fang H, Yehui L, Yang L, Yiwu Z. Peripherin: A proposed biomarker of traumatic axonal injury triggered by mechanical force. Eur J Neurosci 2023; 58:3206-3225. [PMID: 37574217 DOI: 10.1111/ejn.16111] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 07/14/2023] [Accepted: 07/17/2023] [Indexed: 08/15/2023]
Abstract
Traumatic axonal injury (TAI) is one of the most common pathological features of severe traumatic brain injury (TBI). Our previous study using proteomics suggested that peripherin (PRPH) should be a potential candidate as a biomarker for TAI diagnosis. This study is to further elucidate the role and association of PRPH with TAI. In the animal study, we performed immunohistochemistry, ELISA and morphological analysis to evaluate PRPH level and distribution following a severe impact. PRPH-positive regions were widely distributed in the axonal tract throughout the whole brain. Axonal injuries with PRPH inclusion were observed post-TBI. Besides, PRPH was significantly increased in both cerebral spinal fluid and plasma at the early phase post-TBI. Colocalization analysis based on microscopy revealed that PRPH represents an immunohistological biomarker in the neuropathological diagnosis of TAI. Brain samples from patients with TBI were included to further test whether PRPH is feasible in the real practice of neuropathology. Immunohistochemistry of PRPH, NFH, APP and NFL on human brain tissues further confirmed PRPH as an immunohistological biomarker that could be applied in practice. Collectively, we conclude that PRPH mirrors the cytoskeleton injury of axons and could represent a neuropathological biomarker for TAI.
Collapse
Affiliation(s)
- Tong Fang
- Department of Neurology, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
- Institute of Wound Prevention and Treatment, Shanghai University of Medicine and Health Sciences, Shanghai, China
- Department of Physiology and Biochemistry, College of Fundamental Medicine, Shanghai University of Medicine and Health Sciences, Shanghai, China
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liang Yue
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Pathology, Shanghai Medicilon Inc., Shanghai, China
| | - Zhu Longlong
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ma Longda
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huang Fang
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lv Yehui
- Institute of Wound Prevention and Treatment, Shanghai University of Medicine and Health Sciences, Shanghai, China
- Department of Human Anatomy and Histology, School of Fundamental Medicine, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Li Yang
- Institute of Forensic Science, Ministry of Public Security, People's Republic of China, Beijing, China
| | - Zhou Yiwu
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
22
|
Harris JP, Mietus CJ, Browne KD, Wofford KL, Keating CE, Brown DP, Johnson BN, Wolf JA, Smith DH, Cohen AS, Duda JE, Cullen DK. Neuronal somatic plasmalemmal permeability and dendritic beading caused by head rotational traumatic brain injury in pigs-An exploratory study. Front Cell Neurosci 2023; 17:1055455. [PMID: 37519631 PMCID: PMC10381956 DOI: 10.3389/fncel.2023.1055455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 06/23/2023] [Indexed: 08/01/2023] Open
Abstract
Closed-head traumatic brain injury (TBI) is induced by rapid motion of the head, resulting in diffuse strain fields throughout the brain. The injury mechanism(s), loading thresholds, and neuroanatomical distribution of affected cells remain poorly understood, especially in the gyrencephalic brain. We utilized a porcine model to explore the relationships between rapid head rotational acceleration-deceleration loading and immediate alterations in plasmalemmal permeability within cerebral cortex, sub-cortical white matter, and hippocampus. To assess plasmalemmal compromise, Lucifer yellow (LY), a small cell-impermeant dye, was delivered intraventricularly and diffused throughout the parenchyma prior to injury in animals euthanized at 15-min post-injury; other animals (not receiving LY) were survived to 8-h or 7-days. Plasmalemmal permeability preferentially occurred in neuronal somata and dendrites, but rarely in white matter axons. The burden of LY+ neurons increased based on head rotational kinematics, specifically maximum angular velocity, and was exacerbated by repeated TBI. In the cortex, LY+ cells were prominent in both the medial and lateral gyri. Neuronal membrane permeability was observed within the hippocampus and entorhinal cortex, including morphological changes such as beading in dendrites. These changes correlated with reduced fiber volleys and synaptic current alterations at later timepoints in the hippocampus. Further histological observations found decreased NeuN immunoreactivity, increased mitochondrial fission, and caspase pathway activation in both LY+ and LY- cells, suggesting the presence of multiple injury phenotypes. This exploratory study suggests relationships between plasmalemmal disruptions in neuronal somata and dendrites within cortical and hippocampal gray matter as a primary response in closed-head rotational TBI and sets the stage for future, traditional hypothesis-testing experiments.
Collapse
Affiliation(s)
- James P. Harris
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Center for Neurotrauma, Neurodegeneration and Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, United States
| | - Constance J. Mietus
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Kevin D. Browne
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Center for Neurotrauma, Neurodegeneration and Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, United States
| | - Kathryn L. Wofford
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Center for Neurotrauma, Neurodegeneration and Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, United States
| | - Carolyn E. Keating
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Center for Neurotrauma, Neurodegeneration and Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, United States
| | - Daniel P. Brown
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Center for Neurotrauma, Neurodegeneration and Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, United States
| | - Brian N. Johnson
- Department of Anesthesiology and Critical Care Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Research Institute, Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | - John A. Wolf
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Center for Neurotrauma, Neurodegeneration and Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, United States
| | - Douglas H. Smith
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Akiva S. Cohen
- Department of Anesthesiology and Critical Care Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Research Institute, Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | - John E. Duda
- Center for Neurotrauma, Neurodegeneration and Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, United States
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - D. Kacy Cullen
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Center for Neurotrauma, Neurodegeneration and Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, United States
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
23
|
Grovola MR, Jinich A, Paleologos N, Arroyo EJ, Browne KD, Swanson RL, Duda JE, Cullen DK. Persistence of Hyper-Ramified Microglia in Porcine Cortical Gray Matter after Mild Traumatic Brain Injury. Biomedicines 2023; 11:1960. [PMID: 37509599 PMCID: PMC10377269 DOI: 10.3390/biomedicines11071960] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/20/2023] [Accepted: 07/01/2023] [Indexed: 07/30/2023] Open
Abstract
Traumatic brain injury (TBI) is a major contributor to morbidity and mortality in the United States as several million people visit the emergency department every year due to TBI exposures. Unfortunately, there is still no consensus on the pathology underlying mild TBI, the most common severity sub-type of TBI. Previous preclinical and post-mortem human studies have detailed the presence of diffuse axonal injury following TBI, suggesting that white matter pathology is the predominant pathology of diffuse brain injury. However, the inertial loading produced by TBI results in strain fields in both gray and white matter. In order to further characterize gray matter pathology in mild TBI, our lab used a pig model (n = 25) of closed-head rotational acceleration-induced TBI to evaluate blood-brain barrier disruptions, neurodegeneration, astrogliosis, and microglial reactivity in the cerebral cortex out to 1 year post-injury. Immunohistochemical staining revealed the presence of a hyper-ramified microglial phenotype-more branches, junctions, endpoints, and longer summed process length-at 30 days post injury (DPI) out to 1 year post injury in the cingulate gyrus (p < 0.05), and at acute and subacute timepoints in the inferior temporal gyrus (p < 0.05). Interestingly, we did not find neuronal loss or astroglial reactivity paired with these chronic microglia changes. However, we observed an increase in fibrinogen reactivity-a measure of blood-brain barrier disruption-predominately in the gray matter at 3 DPI (p = 0.0003) which resolved to sham levels by 7 DPI out to chronic timepoints. Future studies should employ gene expression assays, neuroimaging, and behavioral assays to elucidate the effects of these hyper-ramified microglia, particularly related to neuroplasticity and responses to potential subsequent insults. Further understanding of the brain's inflammatory activity after mild TBI will hopefully provide understanding of pathophysiology that translates to clinical treatment for TBI.
Collapse
Affiliation(s)
- Michael R Grovola
- Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA 19104, USA
- Center for Brain Injury & Repair, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Alan Jinich
- Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA 19104, USA
- Center for Brain Injury & Repair, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Nicholas Paleologos
- Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA 19104, USA
- Center for Brain Injury & Repair, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Edgardo J Arroyo
- Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA 19104, USA
- Center for Brain Injury & Repair, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Physical Medicine and Rehabilitation, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kevin D Browne
- Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA 19104, USA
- Center for Brain Injury & Repair, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Randel L Swanson
- Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA 19104, USA
- Center for Brain Injury & Repair, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Physical Medicine and Rehabilitation, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - John E Duda
- Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA 19104, USA
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Parkinson's Disease Research, Education and Clinical Center, Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA 19104, USA
| | - D Kacy Cullen
- Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA 19104, USA
- Center for Brain Injury & Repair, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
24
|
Saleem KS, Avram AV, Yen CCC, Magdoom KN, Schram V, Basser PJ. Multimodal anatomical mapping of subcortical regions in Marmoset monkeys using high-resolution MRI and matched histology with multiple stains. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.30.534950. [PMID: 37034636 PMCID: PMC10081239 DOI: 10.1101/2023.03.30.534950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Subcortical nuclei and other deep brain structures play essential roles in regulating the central and peripheral nervous systems. However, many of these nuclei and their subregions are challenging to identify and delineate in conventional MRI due to their small size, hidden location, and often subtle contrasts compared to neighboring regions. To address these limitations, we scanned the whole brain of the marmoset monkeys in ex vivo using a clinically feasible diffusion MRI method, called the mean apparent propagator (MAP)-MRI, along with T2W and MTR (T1-like contrast) images acquired at 7 Tesla. Additionally, we registered these multimodal MRI volumes to the high-resolution images of matched whole-brain histology sections with seven different stains obtained from the same brain specimens. At high spatial resolution, the microstructural parameters and fiber orientation distribution functions derived with MAP-MRI can distinguish the subregions of many subcortical and deep brain structures, including fiber tracts of different sizes and orientations. The good correlation with multiple but distinct histological stains from the same brain serves as a thorough validation of the structures identified with MAP-MRI and other MRI parameters. Moreover, the anatomical details of deep brain structures found in the volumes of MAP-MRI parameters are not visible in conventional T1W or T2W images. The high-resolution mapping using novel MRI contrasts, combined and correlated with histology, can elucidate structures that were previously invisible radiologically. Thus, this multimodal approach offers a roadmap toward identifying salient brain areas in vivo in future neuroradiological studies. It also provides a useful anatomical standard reference for the region definition of subcortical targets and the generation of a 3D digital template atlas for the marmoset brain research (Saleem et al., 2023). Additionally, we conducted a cross-species comparison between marmoset and macaque monkeys using results from our previous studies (Saleem et al., 2021). We found that the two species had distinct patterns of iron distribution in subregions of the basal ganglia, red nucleus, and deep cerebellar nuclei, confirmed with T2W MRI and histology.
Collapse
|
25
|
Michaud J, Plu I, Parai J, Bourgault A, Tanguay C, Seilhean D, Woulfe J. Ballooned neurons in semi-recent severe traumatic brain injury. Acta Neuropathol Commun 2023; 11:37. [PMID: 36899399 PMCID: PMC9999665 DOI: 10.1186/s40478-023-01516-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 01/12/2023] [Indexed: 03/12/2023] Open
Abstract
Traumatic brain injury (TBI) is now recognized as an insult triggering a dynamic process of degeneration and regeneration potentially evolving for years with chronic traumatic encephalopathy (CTE) as one major complication. Neurons are at the center of the clinical manifestations, both in the acute and chronic phases. Yet, in the acute phase, conventional neuropathology detects abnormalities predominantly in the axons, if one excludes contusions and hypoxic ischemic changes. We report the finding of ballooned neurons, predominantly in the anterior cingulum, in three patients who sustained severe TBI and remained comatose until death, 2 ½ weeks to 2 ½ months after the traumatic impact. All three cases showed severe changes of traumatic diffuse axonal injury in line with acceleration/deceleration forces. The immunohistochemical profile of the ballooned neurons was like that described in neurodegenerative disorders like tauopathies which were used as controls. The presence of αB-crystallin positive ballooned neurons in the brain of patients who sustained severe craniocerebral trauma and remained comatose thereafter has never been reported. We postulate that the co-occurrence of diffuse axonal injury in the cerebral white matter and ballooned neurons in the cortex is mechanistically reminiscent of the phenomenon of chromatolysis. Experimental trauma models with neuronal chromatolytic features emphasized the presence of proximal axonal defects. In our three cases, proximal swellings were documented in the cortex and subcortical white matter. This limited retrospective report should trigger further studies in order to better establish, in recent/semi-recent TBI, the frequency of this neuronal finding and its relationship with the proximal axonal defects.
Collapse
Affiliation(s)
- Jean Michaud
- Department of Pathology and Laboratory Medicine, University of Ottawa, Ottawa, Canada.
| | - Isabelle Plu
- Raymond Escourolle Département de Neuropathologie, Hôpital Pitié-Salpêtrière, APHP, Université de La Sorbonne, Paris, France.,Institut Médico-Légal, Paris, France
| | - Jacqueline Parai
- Eastern Ontario Forensic Pathology Unit, University of Ottawa, Ottawa, Canada
| | - André Bourgault
- Laboratoire de Sciences Judiciaires Et de Médecine Légale, Montréal, Québec, Canada
| | - Caroline Tanguay
- Laboratoire de Sciences Judiciaires Et de Médecine Légale, Montréal, Québec, Canada
| | - Danielle Seilhean
- Raymond Escourolle Département de Neuropathologie, Hôpital Pitié-Salpêtrière, APHP, Université de La Sorbonne, Paris, France
| | - John Woulfe
- Department of Pathology and Laboratory Medicine, The Ottawa Hospital, University of Ottawa, Ottawa, Canada.,Program in Neuroscience, Ottawa Hospital Research Institute, Ottawa, Canada
| |
Collapse
|
26
|
Liu XY, Chang ZH, Chen C, Liang J, Shi JX, Fan X, Shao Q, Meng WW, Wang JJ, Li XH. 3D printing of injury-preconditioned secretome/collagen/heparan sulfate scaffolds for neurological recovery after traumatic brain injury in rats. Stem Cell Res Ther 2022; 13:525. [PMID: 36536463 PMCID: PMC9764714 DOI: 10.1186/s13287-022-03208-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 11/30/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND The effects of traumatic brain injury (TBI) can include physical disability and even death. The development of effective therapies to promote neurological recovery is still a challenging problem. 3D-printed biomaterials are considered to have a promising future in TBI repair. The injury-preconditioned secretome derived from human umbilical cord blood mesenchymal stem cells showed better stability in neurological recovery after TBI. Therefore, it is reasonable to assume that a biological scaffold loaded with an injury-preconditioned secretome could facilitate neural network reconstruction after TBI. METHODS In this study, we fabricated injury-preconditioned secretome/collagen/heparan sulfate scaffolds by 3D printing. The scaffold structure and porosity were examined by scanning electron microscopy and HE staining. The cytocompatibility of the scaffolds was characterized by MTT analysis, HE staining and electron microscopy. The modified Neurological Severity Score (mNSS), Morris water maze (MWM), and motor evoked potential (MEP) were used to examine the recovery of cognitive and locomotor function after TBI in rats. HE staining, silver staining, Nissl staining, immunofluorescence, and transmission electron microscopy were used to detect the reconstruction of neural structures and pathophysiological processes. The biocompatibility of the scaffolds in vivo was characterized by tolerance exposure and liver/kidney function assays. RESULTS The excellent mechanical and porosity characteristics of the composite scaffold allowed it to efficiently regulate the secretome release rate. MTT and cell adhesion assays demonstrated that the scaffold loaded with the injury-preconditioned secretome (3D-CH-IB-ST) had better cytocompatibility than that loaded with the normal secretome (3D-CH-ST). In the rat TBI model, cognitive and locomotor function including mNSS, MWM, and MEP clearly improved when the scaffold was transplanted into the damage site. There is a significant improvement in nerve tissue at the site of lesion. More abundant endogenous neurons with nerve fibers, synaptic structures, and myelin sheaths were observed in the 3D-CH-IB-ST group. Furthermore, the apoptotic response and neuroinflammation were significantly reduced and functional vessels were observed at the injury site. Good exposure tolerance in vivo demonstrated favorable biocompatibility of the scaffold. CONCLUSIONS Our results demonstrated that injury-preconditioned secretome/collagen/heparan sulfate scaffolds fabricated by 3D printing promoted neurological recovery after TBI by reconstructing neural networks, suggesting that the implantation of the scaffolds could be a novel way to alleviate brain damage following TBI.
Collapse
Affiliation(s)
- Xiao-Yin Liu
- grid.33763.320000 0004 1761 2484Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072 China ,grid.13291.380000 0001 0807 1581Department of Neurosurgery, West China Hospital, West China Medical School, Sichuan University, Chengdu, 610041 Sichuan China
| | - Zhe-Han Chang
- grid.33763.320000 0004 1761 2484Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072 China
| | - Chong Chen
- grid.33763.320000 0004 1761 2484Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072 China ,Tianjin Key Laboratory of Neurotrauma Repair, Characteristic Medical Center of People’s Armed Police Forces, Tianjin, 300162 China
| | - Jun Liang
- grid.33763.320000 0004 1761 2484Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072 China
| | - Jian-Xin Shi
- grid.33763.320000 0004 1761 2484Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072 China
| | - Xiu Fan
- grid.33763.320000 0004 1761 2484Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072 China
| | - Qi Shao
- grid.33763.320000 0004 1761 2484Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072 China
| | - Wei-Wei Meng
- grid.33763.320000 0004 1761 2484Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072 China
| | - Jing-Jing Wang
- Tianjin Key Laboratory of Neurotrauma Repair, Characteristic Medical Center of People’s Armed Police Forces, Tianjin, 300162 China
| | - Xiao-Hong Li
- grid.33763.320000 0004 1761 2484Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072 China
| |
Collapse
|
27
|
Chen Q, Chen X, Xu L, Zhang R, Li Z, Yue X, Qiao D. Traumatic axonal injury: neuropathological features, postmortem diagnostic methods, and strategies. Forensic Sci Med Pathol 2022; 18:530-544. [PMID: 36117238 DOI: 10.1007/s12024-022-00522-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/24/2022] [Indexed: 12/14/2022]
Abstract
Traumatic brain injury (TBI) has high morbidity and poor prognosis and imposes a serious socioeconomic burden. Traumatic axonal injury (TAI), which is one of the common pathological changes in the primary injury of TBI, is often caused by the external force to the head that causes the white matter bundles to generate shear stress and tension; resulting in tissue damage and leading to the cytoskeletal disorder. At present, the forensic pathological diagnosis of TAI-caused death is still a difficult problem. Most of the TAI biomarkers studied are used for the prediction, evaluation, and prognosis of TAI in the living state. The research subjects are mainly humans in the living state or model animals, which are not suitable for the postmortem diagnosis of TAI. In addition, there is still a lack of recognized indicators for the autopsy pathological diagnosis of TAI. Different diagnostic methods and markers have their limitations, and there is a lack of systematic research and summary of autopsy diagnostic markers of TAI. Therefore, this study mainly summarizes the pathological mechanism, common methods, techniques of postmortem diagnosis, and corresponding biomarkers of TAI, and puts forward the strategies for postmortem diagnosis of TAI for forensic cases with different survival times, which is of great significance to forensic pathological diagnosis.
Collapse
Affiliation(s)
- Qianling Chen
- School of Forensic Medicine, Southern Medical University, South Shaitai Road #1023, Guangzhou, 510515, Guangdong, China
| | - Xuebing Chen
- School of Forensic Medicine, Southern Medical University, South Shaitai Road #1023, Guangzhou, 510515, Guangdong, China
| | - Luyao Xu
- School of Forensic Medicine, Southern Medical University, South Shaitai Road #1023, Guangzhou, 510515, Guangdong, China
| | - Rui Zhang
- School of Forensic Medicine, Southern Medical University, South Shaitai Road #1023, Guangzhou, 510515, Guangdong, China
| | - Zhigang Li
- Guangzhou Forensic Science Institute & Key Laboratory of Forensic Pathology, Ministry of Public Security, Guangzhou, 510442, China.
| | - Xia Yue
- School of Forensic Medicine, Southern Medical University, South Shaitai Road #1023, Guangzhou, 510515, Guangdong, China.
| | - Dongfang Qiao
- School of Forensic Medicine, Southern Medical University, South Shaitai Road #1023, Guangzhou, 510515, Guangdong, China.
| |
Collapse
|
28
|
Avram AV, Saleem KS, Komlosh ME, Yen CC, Ye FQ, Basser PJ. High-resolution cortical MAP-MRI reveals areal borders and laminar substructures observed with histological staining. Neuroimage 2022; 264:119653. [PMID: 36257490 DOI: 10.1016/j.neuroimage.2022.119653] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 09/11/2022] [Accepted: 09/26/2022] [Indexed: 11/06/2022] Open
Abstract
The variations in cellular composition and tissue architecture measured with histology provide the biological basis for partitioning the brain into distinct cytoarchitectonic areas and for characterizing neuropathological tissue alterations. Clearly, there is an urgent need to develop whole-brain neuroradiological methods that can assess cortical cyto- and myeloarchitectonic features non-invasively. Mean apparent propagator (MAP) MRI is a clinically feasible diffusion MRI method that quantifies efficiently and comprehensively the net microscopic displacements of water molecules diffusing in tissues. We investigate the sensitivity of high-resolution MAP-MRI to detecting areal and laminar variations in cortical cytoarchitecture and compare our results with observations from corresponding histological sections in the entire brain of a rhesus macaque monkey. High-resolution images of MAP-derived parameters, in particular the propagator anisotropy (PA), non-gaussianity (NG), and the return-to-axis probability (RTAP) reveal cortical area-specific lamination patterns in good agreement with the corresponding histological stained sections. In a few regions, the MAP parameters provide superior contrast to the five histological stains used in this study, delineating more clearly boundaries and transition regions between cortical areas and laminar substructures. Throughout the cortex, various MAP parameters can be used to delineate transition regions between specific cortical areas observed with histology and to refine areal boundaries estimated using atlas registration-based cortical parcellation. Using surface-based analysis of MAP parameters we quantify the cortical depth dependence of diffusion propagators in multiple regions-of-interest in a consistent and rigorous manner that is largely independent of the cortical folding geometry. The ability to assess cortical cytoarchitectonic features efficiently and non-invasively, its clinical feasibility, and translatability make high-resolution MAP-MRI a promising 3D imaging tool for studying whole-brain cortical organization, characterizing abnormal cortical development, improving early diagnosis of neurodegenerative diseases, identifying targets for biopsies, and complementing neuropathological investigations.
Collapse
Affiliation(s)
- Alexandru V Avram
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health,9000 Rockville Pike,Bethesda 20892, MD, USA; Center for Neuroscience and Regenerative Medicine, 4301 Jones Bridge Road,Bethesda, 20814,MD, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., 6720A Rockledge Drive, Bethesda, 20814, MD, USA.
| | - Kadharbatcha S Saleem
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health,9000 Rockville Pike,Bethesda 20892, MD, USA; Center for Neuroscience and Regenerative Medicine, 4301 Jones Bridge Road,Bethesda, 20814,MD, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., 6720A Rockledge Drive, Bethesda, 20814, MD, USA
| | - Michal E Komlosh
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health,9000 Rockville Pike,Bethesda 20892, MD, USA; Center for Neuroscience and Regenerative Medicine, 4301 Jones Bridge Road,Bethesda, 20814,MD, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., 6720A Rockledge Drive, Bethesda, 20814, MD, USA
| | - Cecil C Yen
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, 9000 Rockville Pike, Bethesda, 20892, MD, USA
| | - Frank Q Ye
- National Institute of Mental Health, National Institutes of Health, 9000 Rockville Pike, Bethesda, 20892,MD, USA
| | - Peter J Basser
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health,9000 Rockville Pike,Bethesda 20892, MD, USA
| |
Collapse
|
29
|
Song H, McEwan PP, Ameen-Ali KE, Tomasevich A, Kennedy-Dietrich C, Palma A, Arroyo EJ, Dolle JP, Johnson VE, Stewart W, Smith DH. Concussion leads to widespread axonal sodium channel loss and disruption of the node of Ranvier. Acta Neuropathol 2022; 144:967-985. [PMID: 36107227 PMCID: PMC9547928 DOI: 10.1007/s00401-022-02498-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 09/08/2022] [Accepted: 09/08/2022] [Indexed: 01/26/2023]
Abstract
Despite being a major health concern, little is known about the pathophysiological changes that underly concussion. Nonetheless, emerging evidence suggests that selective damage to white matter axons, or diffuse axonal injury (DAI), disrupts brain network connectivity and function. While voltage-gated sodium channels (NaChs) and their anchoring proteins at the nodes of Ranvier (NOR) on axons are key elements of the brain's network signaling machinery, changes in their integrity have not been studied in context with DAI. Here, we utilized a clinically relevant swine model of concussion that induces evolving axonal pathology, demonstrated by accumulation of amyloid precursor protein (APP) across the white matter. Over a two-week follow-up post-concussion with this model, we found widespread loss of NaCh isoform 1.6 (Nav1.6), progressive increases in NOR length, the appearance of void and heminodes and loss of βIV-spectrin, ankyrin G, and neurofascin 186 or their collective diffusion into the paranode. Notably, these changes were in close proximity, yet distinct from APP-immunoreactive swollen axonal profiles, potentially representing a unique, newfound phenotype of axonal pathology in DAI. Since concussion in humans is non-fatal, the clinical relevance of these findings was determined through examination of post-mortem brain tissue from humans with higher levels of acute traumatic brain injury. Here, a similar loss of Nav1.6 and changes in NOR structures in brain white matter were observed as found in the swine model of concussion. Collectively, this widespread and progressive disruption of NaChs and NOR appears to be a form of sodium channelopathy, which may represent an important substrate underlying brain network dysfunction after concussion.
Collapse
Affiliation(s)
- Hailong Song
- Department of Neurosurgery, Center for Brain Injury and Repair, University of Pennsylvania, 3320 Smith Walk, 105 Hayden Hall, Philadelphia, PA, 19104, USA
| | - Przemyslaw P McEwan
- Department of Neurosurgery, Center for Brain Injury and Repair, University of Pennsylvania, 3320 Smith Walk, 105 Hayden Hall, Philadelphia, PA, 19104, USA
| | - Kamar E Ameen-Ali
- School of Neuroscience and Psychology, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Alexandra Tomasevich
- Department of Neurosurgery, Center for Brain Injury and Repair, University of Pennsylvania, 3320 Smith Walk, 105 Hayden Hall, Philadelphia, PA, 19104, USA
| | | | - Alexander Palma
- Department of Neurosurgery, Center for Brain Injury and Repair, University of Pennsylvania, 3320 Smith Walk, 105 Hayden Hall, Philadelphia, PA, 19104, USA
| | - Edgardo J Arroyo
- Department of Neurosurgery, Center for Brain Injury and Repair, University of Pennsylvania, 3320 Smith Walk, 105 Hayden Hall, Philadelphia, PA, 19104, USA
| | - Jean-Pierre Dolle
- Department of Neurosurgery, Center for Brain Injury and Repair, University of Pennsylvania, 3320 Smith Walk, 105 Hayden Hall, Philadelphia, PA, 19104, USA
| | - Victoria E Johnson
- Department of Neurosurgery, Center for Brain Injury and Repair, University of Pennsylvania, 3320 Smith Walk, 105 Hayden Hall, Philadelphia, PA, 19104, USA
| | - William Stewart
- School of Neuroscience and Psychology, University of Glasgow, Glasgow, G12 8QQ, UK
- Department of Neuropathology, Queen Elizabeth University Hospital, Glasgow, G51 4TF, UK
| | - Douglas H Smith
- Department of Neurosurgery, Center for Brain Injury and Repair, University of Pennsylvania, 3320 Smith Walk, 105 Hayden Hall, Philadelphia, PA, 19104, USA.
| |
Collapse
|
30
|
Song H, Chen C, Kelley B, Tomasevich A, Lee H, Dolle JP, Cheng J, Garcia B, Meaney DF, Smith DH. Traumatic brain injury recapitulates developmental changes of axons. Prog Neurobiol 2022; 217:102332. [PMID: 35870679 PMCID: PMC9454890 DOI: 10.1016/j.pneurobio.2022.102332] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 07/14/2022] [Accepted: 07/19/2022] [Indexed: 11/28/2022]
Abstract
During development, half of brain white matter axons are maintained for growth, while the remainder undergo developmental axon degeneration. After traumatic brain injury (TBI), injured axons also appear to follow pathways leading to either degeneration or repair. These observations raise the intriguing, but unexamined possibility that TBI recapitulates developmental axonal programs. Here, we examined axonal changes in the developing brain in young rats and after TBI in adult rat. Multiple shared changes in axonal microtubule (MT) through tubulin post-translational modifications and MT associated proteins (MAPs), tau and MAP6, were found in both development and TBI. Specifically, degenerating axons in both development and TBI underwent phosphorylation of tau and excessive tubulin tyrosination, suggesting MT instability and depolyermization. Conversely, nearby axons without degenerating morphologies, had increased MAP6 expression and maintenance of tubulin acetylation, suggesting enhanced MT stabilization, thereby supporting survival or repair. Quantitative proteomics revealed similar signaling pathways of axon degeneration and growth/repair, including protein clusters and networks. This comparison approach demonstrates how focused evaluation of developmental processes may provide insight into pathways initiated by TBI. In particular, the data suggest that TBI may reawaken dormant axonal programs that direct axons towards either degeneration or growth/repair, supporting further study in this area.
Collapse
Affiliation(s)
- Hailong Song
- Department of Neurosurgery, Center for Brain Injury and Repair, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Chen Chen
- Department of Computer Sciences, University of Missouri, Columbia, MO 65211, United States
| | - Brian Kelley
- Department of Neurosurgery, Center for Brain Injury and Repair, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Alexandra Tomasevich
- Department of Neurosurgery, Center for Brain Injury and Repair, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Hyoungjoo Lee
- Department of Biochemistry and Biophysics, Quantitative Proteomics Resource Core, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Jean-Pierre Dolle
- Department of Neurosurgery, Center for Brain Injury and Repair, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Jianlin Cheng
- Department of Computer Sciences, University of Missouri, Columbia, MO 65211, United States
| | - Benjamin Garcia
- Department of Biochemistry and Biophysics, Quantitative Proteomics Resource Core, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - David F Meaney
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Douglas H Smith
- Department of Neurosurgery, Center for Brain Injury and Repair, University of Pennsylvania, Philadelphia, PA 19104, United States.
| |
Collapse
|
31
|
Pozo Devoto VM, Onyango IG, Stokin GB. Mitochondrial behavior when things go wrong in the axon. Front Cell Neurosci 2022; 16:959598. [PMID: 35990893 PMCID: PMC9389222 DOI: 10.3389/fncel.2022.959598] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 07/18/2022] [Indexed: 11/13/2022] Open
Abstract
Axonal homeostasis is maintained by processes that include cytoskeletal regulation, cargo transport, synaptic activity, ionic balance, and energy supply. Several of these processes involve mitochondria to varying degrees. As a transportable powerplant, the mitochondria deliver ATP and Ca2+-buffering capabilities and require fusion/fission to maintain proper functioning. Taking into consideration the long distances that need to be covered by mitochondria in the axons, their transport, distribution, fusion/fission, and health are of cardinal importance. However, axonal homeostasis is disrupted in several disorders of the nervous system, or by traumatic brain injury (TBI), where the external insult is translated into physical forces that damage nervous tissue including axons. The degree of damage varies and can disconnect the axon into two segments and/or generate axonal swellings in addition to cytoskeletal changes, membrane leakage, and changes in ionic composition. Cytoskeletal changes and increased intra-axonal Ca2+ levels are the main factors that challenge mitochondrial homeostasis. On the other hand, a proper function and distribution of mitochondria can determine the recovery or regeneration of the axonal physiological state. Here, we discuss the current knowledge regarding mitochondrial transport, fusion/fission, and Ca2+ regulation under axonal physiological or pathological conditions.
Collapse
Affiliation(s)
- Victorio M. Pozo Devoto
- Translational Neuroscience and Ageing Program, Centre for Translational Medicine, International Clinical Research Centre, St. Anne's University Hospital, Brno, Czechia
| | - Isaac G. Onyango
- Translational Neuroscience and Ageing Program, Centre for Translational Medicine, International Clinical Research Centre, St. Anne's University Hospital, Brno, Czechia
| | - Gorazd B. Stokin
- Translational Neuroscience and Ageing Program, Centre for Translational Medicine, International Clinical Research Centre, St. Anne's University Hospital, Brno, Czechia
- Division of Neurology, University Medical Centre, Ljubljana, Slovenia
- Department of Neurosciences, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
32
|
Golub VM, Reddy DS. Post-Traumatic Epilepsy and Comorbidities: Advanced Models, Molecular Mechanisms, Biomarkers, and Novel Therapeutic Interventions. Pharmacol Rev 2022; 74:387-438. [PMID: 35302046 PMCID: PMC8973512 DOI: 10.1124/pharmrev.121.000375] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Post-traumatic epilepsy (PTE) is one of the most devastating long-term, network consequences of traumatic brain injury (TBI). There is currently no approved treatment that can prevent onset of spontaneous seizures associated with brain injury, and many cases of PTE are refractory to antiseizure medications. Post-traumatic epileptogenesis is an enduring process by which a normal brain exhibits hypersynchronous excitability after a head injury incident. Understanding the neural networks and molecular pathologies involved in epileptogenesis are key to preventing its development or modifying disease progression. In this article, we describe a critical appraisal of the current state of PTE research with an emphasis on experimental models, molecular mechanisms of post-traumatic epileptogenesis, potential biomarkers, and the burden of PTE-associated comorbidities. The goal of epilepsy research is to identify new therapeutic strategies that can prevent PTE development or interrupt the epileptogenic process and relieve associated neuropsychiatric comorbidities. Therefore, we also describe current preclinical and clinical data on the treatment of PTE sequelae. Differences in injury patterns, latency period, and biomarkers are outlined in the context of animal model validation, pathophysiology, seizure frequency, and behavior. Improving TBI recovery and preventing seizure onset are complex and challenging tasks; however, much progress has been made within this decade demonstrating disease modifying, anti-inflammatory, and neuroprotective strategies, suggesting this goal is pragmatic. Our understanding of PTE is continuously evolving, and improved preclinical models allow for accelerated testing of critically needed novel therapeutic interventions in military and civilian persons at high risk for PTE and its devastating comorbidities.
Collapse
Affiliation(s)
- Victoria M Golub
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, Texas
| | - Doodipala Samba Reddy
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, Texas
| |
Collapse
|
33
|
Saleem KS, Avram AV, Glen D, Yen CCC, Ye FQ, Komlosh M, Basser PJ. High-resolution mapping and digital atlas of subcortical regions in the macaque monkey based on matched MAP-MRI and histology. Neuroimage 2021; 245:118759. [PMID: 34838750 PMCID: PMC8815330 DOI: 10.1016/j.neuroimage.2021.118759] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 11/21/2021] [Accepted: 11/23/2021] [Indexed: 12/21/2022] Open
Abstract
Subcortical nuclei and other deep brain structures are known to play an important role in the regulation of the central and peripheral nervous systems. It can be difficult to identify and delineate many of these nuclei and their finer subdivisions in conventional MRI due to their small size, buried location, and often subtle contrast compared to neighboring tissue. To address this problem, we applied a multi-modal approach in ex vivo non-human primate (NHP) brain that includes high-resolution mean apparent propagator (MAP)-MRI and five different histological stains imaged with high-resolution microscopy in the brain of the same subject. By registering these high-dimensional MRI data to high-resolution histology data, we can map the location, boundaries, subdivisions, and micro-architectural features of subcortical gray matter regions in the macaque monkey brain. At high spatial resolution, diffusion MRI in general, and MAP-MRI in particular, can distinguish a large number of deep brain structures, including the larger and smaller white matter fiber tracts as well as architectonic features within various nuclei. Correlation with histology from the same brain enables a thorough validation of the structures identified with MAP-MRI. Moreover, anatomical details that are evident in images of MAP-MRI parameters are not visible in conventional T1-weighted images. We also derived subcortical template "SC21" from segmented MRI slices in three-dimensions and registered this volume to a previously published anatomical template with cortical parcellation (Reveley et al., 2017; Saleem and Logothetis, 2012), thereby integrating the 3D segmentation of both cortical and subcortical regions into the same volume. This newly updated three-dimensional D99 digital brain atlas (V2.0) is intended for use as a reference standard for macaque neuroanatomical, functional, and connectional imaging studies, involving both cortical and subcortical targets. The SC21 and D99 digital templates are available as volumes and surfaces in standard NIFTI and GIFTI formats.
Collapse
Affiliation(s)
- Kadharbatcha S Saleem
- Center for Neuroscience and Regenerative Medicine (CNRM), Henry M. Jackson Foundation (HJF) for the Advancement of Military Medicine, 6720A Rockledge Drive, Bethesda, MD 20817, United States; Section on Quantitative Imaging and Tissue Sciences (SQITS), Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), NIH, Bethesda, MD 20892, United States.
| | - Alexandru V Avram
- Center for Neuroscience and Regenerative Medicine (CNRM), Henry M. Jackson Foundation (HJF) for the Advancement of Military Medicine, 6720A Rockledge Drive, Bethesda, MD 20817, United States; Section on Quantitative Imaging and Tissue Sciences (SQITS), Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), NIH, Bethesda, MD 20892, United States
| | - Daniel Glen
- Scientific and Statistical Computing Core, National Institute of Mental Health (NIMH), United States
| | | | - Frank Q Ye
- Neurophysiology Imaging Facility, NIMH and NINDS, NIH, , United States
| | - Michal Komlosh
- Center for Neuroscience and Regenerative Medicine (CNRM), Henry M. Jackson Foundation (HJF) for the Advancement of Military Medicine, 6720A Rockledge Drive, Bethesda, MD 20817, United States; Section on Quantitative Imaging and Tissue Sciences (SQITS), Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), NIH, Bethesda, MD 20892, United States
| | - Peter J Basser
- Center for Neuroscience and Regenerative Medicine (CNRM), Henry M. Jackson Foundation (HJF) for the Advancement of Military Medicine, 6720A Rockledge Drive, Bethesda, MD 20817, United States; Section on Quantitative Imaging and Tissue Sciences (SQITS), Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), NIH, Bethesda, MD 20892, United States
| |
Collapse
|
34
|
Zhou Z, Li X, Liu Y, Fahlstedt M, Georgiadis M, Zhan X, Raymond SJ, Grant G, Kleiven S, Camarillo D, Zeineh M. Toward a Comprehensive Delineation of White Matter Tract-Related Deformation. J Neurotrauma 2021; 38:3260-3278. [PMID: 34617451 DOI: 10.1089/neu.2021.0195] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Finite element (FE) models of the human head are valuable instruments to explore the mechanobiological pathway from external loading, localized brain response, and resultant injury risks. The injury predictability of these models depends on the use of effective criteria as injury predictors. The FE-derived normal deformation along white matter (WM) fiber tracts (i.e., tract-oriented strain) recently has been suggested as an appropriate predictor for axonal injury. However, the tract-oriented strain only represents a partial depiction of the WM fiber tract deformation. A comprehensive delineation of tract-related deformation may improve the injury predictability of the FE head model by delivering new tract-related criteria as injury predictors. Thus, the present study performed a theoretical strain analysis to comprehensively characterize the WM fiber tract deformation by relating the strain tensor of the WM element to its embedded fiber tract. Three new tract-related strains with exact analytical solutions were proposed, measuring the normal deformation perpendicular to the fiber tracts (i.e., tract-perpendicular strain), and shear deformation along and perpendicular to the fiber tracts (i.e., axial-shear strain and lateral-shear strain, respectively). The injury predictability of these three newly proposed strain peaks along with the previously used tract-oriented strain peak and maximum principal strain (MPS) were evaluated by simulating 151 impacts with known outcome (concussion or non-concussion). The results preliminarily showed that four tract-related strain peaks exhibited superior performance than MPS in discriminating concussion and non-concussion cases. This study presents a comprehensive quantification of WM tract-related deformation and advocates the use of orientation-dependent strains as criteria for injury prediction, which may ultimately contribute to an advanced mechanobiological understanding and enhanced computational predictability of brain injury.
Collapse
Affiliation(s)
- Zhou Zhou
- Department of Bioengineering, Stanford University, Stanford, California, USA.,Neuronic Engineering, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Xiaogai Li
- Neuronic Engineering, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Yuzhe Liu
- Department of Bioengineering, Stanford University, Stanford, California, USA
| | - Madelen Fahlstedt
- Neuronic Engineering, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Marios Georgiadis
- Department of Radiology, Stanford University, Stanford, California, USA
| | - Xianghao Zhan
- Department of Bioengineering, Stanford University, Stanford, California, USA
| | - Samuel J Raymond
- Department of Bioengineering, Stanford University, Stanford, California, USA
| | - Gerald Grant
- Department of Neurosurgery, Stanford University, Stanford, California, USA.,Department of Neurology, Stanford University, Stanford, California, USA
| | - Svein Kleiven
- Neuronic Engineering, KTH Royal Institute of Technology, Stockholm, Sweden
| | - David Camarillo
- Department of Bioengineering, Stanford University, Stanford, California, USA.,Department of Neurology, Stanford University, Stanford, California, USA.,Department of Mechanical Engineering, Stanford University, Stanford, California, USA
| | - Michael Zeineh
- Department of Radiology, Stanford University, Stanford, California, USA
| |
Collapse
|
35
|
Grovola MR, Paleologos N, Brown DP, Tran N, Wofford KL, Harris JP, Browne KD, Shewokis PA, Wolf JA, Cullen DK, Duda JE. Diverse changes in microglia morphology and axonal pathology during the course of 1 year after mild traumatic brain injury in pigs. Brain Pathol 2021; 31:e12953. [PMID: 33960556 PMCID: PMC8412066 DOI: 10.1111/bpa.12953] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 02/10/2021] [Accepted: 03/09/2021] [Indexed: 12/11/2022] Open
Abstract
Over 2.8 million people experience mild traumatic brain injury (TBI) in the United States each year, which may lead to long-term neurological dysfunction. The mechanical forces that are caused by TBI propagate through the brain to produce diffuse axonal injury (DAI) and trigger secondary neuroinflammatory cascades. The cascades may persist from acute to chronic time points after injury, altering the homeostasis of the brain. However, the relationship between the hallmark axonal pathology of diffuse TBI and potential changes in glial cell activation or morphology have not been established in a clinically relevant large animal model at chronic time points. In this study, we assessed the tissue from pigs subjected to rapid head rotation in the coronal plane to generate mild TBI. Neuropathological assessments for axonal pathology, microglial morphological changes, and astrocyte reactivity were conducted in specimens out to 1-year post-injury. We detected an increase in overall amyloid precursor protein pathology, as well as periventricular white matter and fimbria/fornix pathology after a single mild TBI. We did not detect the changes in corpus callosum integrity or astrocyte reactivity. However, detailed microglial skeletal analysis revealed changes in morphology, most notably increases in the number of microglial branches, junctions, and endpoints. These subtle changes were most evident in periventricular white matter and certain hippocampal subfields, and were observed out to 1-year post-injury in some cases. These ongoing morphological alterations suggest persistent change in neuroimmune homeostasis. Additional studies are needed to characterize the underlying molecular and neurophysiological alterations, as well as potential contributions to neurological deficits.
Collapse
Affiliation(s)
- Michael R. Grovola
- Center for Neurotrauma, Neurodegeneration & RestorationCorporal Michael J. Crescenz VA Medical CenterPhiladelphiaPAUSA
- Center for Brain Injury & RepairDepartment of NeurosurgeryUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - Nicholas Paleologos
- Center for Neurotrauma, Neurodegeneration & RestorationCorporal Michael J. Crescenz VA Medical CenterPhiladelphiaPAUSA
- Center for Brain Injury & RepairDepartment of NeurosurgeryUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - Daniel P. Brown
- Center for Neurotrauma, Neurodegeneration & RestorationCorporal Michael J. Crescenz VA Medical CenterPhiladelphiaPAUSA
- Center for Brain Injury & RepairDepartment of NeurosurgeryUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - Nathan Tran
- Center for Neurotrauma, Neurodegeneration & RestorationCorporal Michael J. Crescenz VA Medical CenterPhiladelphiaPAUSA
| | - Kathryn L. Wofford
- Center for Neurotrauma, Neurodegeneration & RestorationCorporal Michael J. Crescenz VA Medical CenterPhiladelphiaPAUSA
- Center for Brain Injury & RepairDepartment of NeurosurgeryUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - James P. Harris
- Center for Neurotrauma, Neurodegeneration & RestorationCorporal Michael J. Crescenz VA Medical CenterPhiladelphiaPAUSA
- Center for Brain Injury & RepairDepartment of NeurosurgeryUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - Kevin D. Browne
- Center for Neurotrauma, Neurodegeneration & RestorationCorporal Michael J. Crescenz VA Medical CenterPhiladelphiaPAUSA
- Center for Brain Injury & RepairDepartment of NeurosurgeryUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - Patricia A. Shewokis
- Department of Nutrition SciencesCollege of Nursing and Health ProfessionsDrexel UniversityPhiladelphiaPAUSA
- School of Biomedical Engineering, Science and Health SystemsDrexel UniversityPhiladelphiaPAUSA
| | - John A. Wolf
- Center for Neurotrauma, Neurodegeneration & RestorationCorporal Michael J. Crescenz VA Medical CenterPhiladelphiaPAUSA
- Center for Brain Injury & RepairDepartment of NeurosurgeryUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - D. Kacy Cullen
- Center for Neurotrauma, Neurodegeneration & RestorationCorporal Michael J. Crescenz VA Medical CenterPhiladelphiaPAUSA
- Center for Brain Injury & RepairDepartment of NeurosurgeryUniversity of PennsylvaniaPhiladelphiaPAUSA
- Department of BioengineeringSchool of Engineering and Applied ScienceUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - John E. Duda
- Center for Neurotrauma, Neurodegeneration & RestorationCorporal Michael J. Crescenz VA Medical CenterPhiladelphiaPAUSA
- Parkinson's Disease Research, Education and Clinical CenterCorporal Michael J. Crescenz VA Medical CenterPhiladelphiaPAUSA
- Department of NeurologyPerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
| |
Collapse
|
36
|
Modeling links softening of myelin and spectrin scaffolds of axons after a concussion to increased vulnerability to repeated injuries. Proc Natl Acad Sci U S A 2021; 118:2024961118. [PMID: 34234016 DOI: 10.1073/pnas.2024961118] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Damage to the microtubule lattice, which serves as a rigid cytoskeletal backbone for the axon, is a hallmark mechanical initiator of pathophysiology after concussion. Understanding the mechanical stress transfer from the brain tissue to the axonal cytoskeleton is essential to determine the microtubule lattice's vulnerability to mechanical injury. Here, we develop an ultrastructural model of the axon's cytoskeletal architecture to identify the components involved in the dynamic load transfer during injury. Corroborative in vivo studies were performed using a gyrencephalic swine model of concussion via single and repetitive head rotational acceleration. Computational analysis of the load transfer mechanism demonstrates that the myelin sheath and the actin/spectrin cortex play a significant role in effectively shielding the microtubules from tissue stress. We derive failure maps in the space spanned by tissue stress and stress rate to identify physiological conditions in which the microtubule lattice can rupture. We establish that a softer axonal cortex leads to a higher susceptibility of the microtubules to failure. Immunohistochemical examination of tissue from the swine model of single and repetitive concussion confirms the presence of postinjury spectrin degradation, with more extensive pathology observed following repetitive injury. Because the degradation of myelin and spectrin occurs over weeks following the first injury, we show that softening of the myelin layer and axonal cortex exposes the microtubules to higher stress during repeated incidences of traumatic brain injuries. Our predictions explain how mechanical injury predisposes axons to exacerbated responses to repeated injuries, as observed in vitro and in vivo.
Collapse
|
37
|
Nolan AL, Petersen C, Iacono D, Mac Donald CL, Mukherjee P, van der Kouwe A, Jain S, Stevens A, Diamond BR, Wang R, Markowitz AJ, Fischl B, Perl DP, Manley GT, Keene CD, Diaz-Arrastia R, Edlow BL. Tractography-Pathology Correlations in Traumatic Brain Injury: A TRACK-TBI Study. J Neurotrauma 2021; 38:1620-1631. [PMID: 33412995 PMCID: PMC8165468 DOI: 10.1089/neu.2020.7373] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Diffusion tractography magnetic resonance imaging (MRI) can infer changes in network connectivity in patients with traumatic brain injury (TBI), but the pathological substrates of disconnected tracts have not been well defined because of a lack of high-resolution imaging with histopathological validation. We developed an ex vivo MRI protocol to analyze tract terminations at 750-μm isotropic resolution, followed by histopathological evaluation of white matter pathology, and applied these methods to a 60-year-old man who died 26 days after TBI. Analysis of 74 cerebral hemispheric white matter regions revealed a heterogeneous distribution of tract disruptions. Associated histopathology identified variable white matter injury with patchy deposition of amyloid precursor protein (APP), loss of neurofilament-positive axonal processes, myelin dissolution, astrogliosis, microgliosis, and perivascular hemosiderin-laden macrophages. Multiple linear regression revealed that tract disruption strongly correlated with the density of APP-positive axonal swellings and neurofilament loss. Ex vivo diffusion MRI can detect tract disruptions in the human brain that reflect axonal injury.
Collapse
Affiliation(s)
- Amber L. Nolan
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
- Department of Pathology, University of California San Francisco, San Francisco, California, USA
| | - Cathrine Petersen
- Neuroscience Graduate Program, University of California San Francisco, San Francisco, California, USA
| | - Diego Iacono
- Department of Pathology, Uniformed Services University (USU), Bethesda, Maryland, USA
- Department of Neurology, F. Edward Hébert School of Medicine, Uniformed Services University (USU), Bethesda, Maryland, USA
- DoD/USU Brain Tissue Repository (BTR) & Neuropathology Core, Uniformed Services University (USU), Bethesda, Maryland, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine (HJF), Bethesda, Maryland, USA
- Complex Neurodegenerative Disorders, Motor Neuron Disorders Unit, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | | | - Pratik Mukherjee
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California, USA
| | - Andre van der Kouwe
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Sonia Jain
- Biostatistics Research Center, Herbert Wertheim School of Public Health and Human Longevity Science, University of California San Diego, San Diego, California, USA
| | - Allison Stevens
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Bram R. Diamond
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Ruopeng Wang
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Amy J. Markowitz
- Department of Neurological Surgery, University of California San Francisco, San Francisco, California, USA
| | - Bruce Fischl
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Division of Health Sciences and Technology, Computer Science and Artificial Intelligence Laboratory (CSAIL), Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Daniel P. Perl
- Department of Pathology, Uniformed Services University (USU), Bethesda, Maryland, USA
- DoD/USU Brain Tissue Repository (BTR) & Neuropathology Core, Uniformed Services University (USU), Bethesda, Maryland, USA
| | - Geoffrey T. Manley
- Department of Neurological Surgery, University of California San Francisco, San Francisco, California, USA
| | - C. Dirk Keene
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
| | - Ramon Diaz-Arrastia
- Department of Neurology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Brian L. Edlow
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
38
|
Mayer AR, Ling JM, Dodd AB, Rannou-Latella JG, Stephenson DD, Dodd RJ, Mehos CJ, Patton DA, Cullen DK, Johnson VE, Pabbathi Reddy S, Robertson-Benta CR, Gigliotti AP, Meier TB, Vermillion MS, Smith DH, Kinsler R. Reproducibility and Characterization of Head Kinematics During a Large Animal Acceleration Model of Traumatic Brain Injury. Front Neurol 2021; 12:658461. [PMID: 34177763 PMCID: PMC8219951 DOI: 10.3389/fneur.2021.658461] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 05/03/2021] [Indexed: 11/13/2022] Open
Abstract
Acceleration parameters have been utilized for the last six decades to investigate pathology in both human and animal models of traumatic brain injury (TBI), design safety equipment, and develop injury thresholds. Previous large animal models have quantified acceleration from impulsive loading forces (i.e., machine/object kinematics) rather than directly measuring head kinematics. No study has evaluated the reproducibility of head kinematics in large animal models. Nine (five males) sexually mature Yucatan swine were exposed to head rotation at a targeted peak angular velocity of 250 rad/s in the coronal plane. The results indicated that the measured peak angular velocity of the skull was 51% of the impulsive load, was experienced over 91% longer duration, and was multi- rather than uni-planar. These findings were replicated in a second experiment with a smaller cohort (N = 4). The reproducibility of skull kinematics data was mostly within acceptable ranges based on published industry standards, although the coefficients of variation (8.9% for peak angular velocity or 12.3% for duration) were higher than the impulsive loading parameters produced by the machine (1.1 vs. 2.5%, respectively). Immunohistochemical markers of diffuse axonal injury and blood-brain barrier breach were not associated with variation in either skull or machine kinematics, suggesting that the observed levels of variance in skull kinematics may not be biologically meaningful with the current sample sizes. The findings highlight the reproducibility of a large animal acceleration model of TBI and the importance of direct measurements of skull kinematics to determine the magnitude of angular velocity, refine injury criteria, and determine critical thresholds.
Collapse
Affiliation(s)
- Andrew R. Mayer
- The Mind Research Network/Lovelace Biomedical Research Institute, Albuquerque, NM, United States
- Neurology Department, University of New Mexico School of Medicine, Albuquerque, NM, United States
- Psychiatry Department, University of New Mexico School of Medicine, Albuquerque, NM, United States
- Psychology Department, University of New Mexico School of Medicine, Albuquerque, NM, United States
| | - Josef M. Ling
- The Mind Research Network/Lovelace Biomedical Research Institute, Albuquerque, NM, United States
| | - Andrew B. Dodd
- The Mind Research Network/Lovelace Biomedical Research Institute, Albuquerque, NM, United States
| | - Julie G. Rannou-Latella
- The Mind Research Network/Lovelace Biomedical Research Institute, Albuquerque, NM, United States
| | - David D. Stephenson
- The Mind Research Network/Lovelace Biomedical Research Institute, Albuquerque, NM, United States
| | - Rebecca J. Dodd
- The Mind Research Network/Lovelace Biomedical Research Institute, Albuquerque, NM, United States
| | - Carissa J. Mehos
- Neurosciences Department, University of New Mexico School of Medicine, Albuquerque, NM, United States
| | - Declan A. Patton
- Center for Injury Research and Prevention, Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - D. Kacy Cullen
- Department of Neurosurgery and Penn Center for Brain Injury and Repair, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Victoria E. Johnson
- Department of Neurosurgery and Penn Center for Brain Injury and Repair, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Sharvani Pabbathi Reddy
- The Mind Research Network/Lovelace Biomedical Research Institute, Albuquerque, NM, United States
| | | | - Andrew P. Gigliotti
- The Mind Research Network/Lovelace Biomedical Research Institute, Albuquerque, NM, United States
| | - Timothy B. Meier
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, United States
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI, United States
- Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Meghan S. Vermillion
- The Mind Research Network/Lovelace Biomedical Research Institute, Albuquerque, NM, United States
| | - Douglas H. Smith
- Department of Neurosurgery and Penn Center for Brain Injury and Repair, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Rachel Kinsler
- Enroute Care Group, U.S. Army Aeromedical Research Laboratory, Fort Rucker, AL, United States
| |
Collapse
|
39
|
Alisafaei F, Gong Z, Johnson VE, Dollé JP, Smith DH, Shenoy VB. Mechanisms of Local Stress Amplification in Axons near the Gray-White Matter Interface. Biophys J 2021; 119:1290-1300. [PMID: 33027609 DOI: 10.1016/j.bpj.2020.08.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 08/11/2020] [Accepted: 08/21/2020] [Indexed: 12/12/2022] Open
Abstract
Diffuse axonal injury is a primary neuropathological feature of concussion and is thought to greatly contribute to the classical symptoms of decreased processing speed and memory dysfunction. Although previous studies have investigated the injury biomechanics at the micro- and mesoscale of concussion, few have addressed the multiscale transmission of mechanical loading at thresholds that can induce diffuse axonal injury. Because it has been recognized that axonal pathology is commonly found at anatomic interfaces across all severities of traumatic brain injury, we combined computational, analytical, and experimental approaches to investigate the potential mechanical vulnerability of axons that span the gray-white tissue interface. Our computational models predict that material heterogeneities at the gray-white interface lead to a highly nonuniform distribution of stress in axons, which was most amplified in axonal regions near the interface. This mechanism was confirmed using an analytical model of an individual fiber in a strained bimaterial interface. Comparisons of these collective data with histopathological evaluation of a swine model of concussion demonstrated a notably similar pattern of axonal damage adjacent to the gray-white interface. The results suggest that the tissue property mismatch at the gray-white matter interface places axons crossing this region at greater risk of mechanical damage during brain tissue deformation from traumatic brain injury.
Collapse
Affiliation(s)
- Farid Alisafaei
- Department of Materials Science and Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, Pennsylvania; Center for Engineering Mechanobiology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Ze Gong
- Department of Materials Science and Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, Pennsylvania; Center for Engineering Mechanobiology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Victoria E Johnson
- Penn Center for Brain Injury and Repair, Department of Neurosurgery, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Jean-Pierre Dollé
- Penn Center for Brain Injury and Repair, Department of Neurosurgery, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Douglas H Smith
- Penn Center for Brain Injury and Repair, Department of Neurosurgery, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Vivek B Shenoy
- Department of Materials Science and Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, Pennsylvania; Center for Engineering Mechanobiology, University of Pennsylvania, Philadelphia, Pennsylvania.
| |
Collapse
|
40
|
Almeida MF, Piehler T, Carstens KE, Zhao M, Samadi M, Dudek SM, Norton CJ, Parisian CM, Farizatto KL, Bahr BA. Distinct and dementia-related synaptopathy in the hippocampus after military blast exposures. Brain Pathol 2021; 31:e12936. [PMID: 33629462 PMCID: PMC8412116 DOI: 10.1111/bpa.12936] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 11/19/2020] [Accepted: 01/05/2021] [Indexed: 12/13/2022] Open
Abstract
Explosive shockwaves, and other types of blast exposures, are linked to injuries commonly associated with military service and to an increased risk for the onset of dementia. Neurological complications following a blast injury, including depression, anxiety, and memory problems, often persist even when brain damage is undetectable. Here, hippocampal explants were exposed to the explosive 1,3,5-trinitro-1,3,5-triazinane (RDX) to identify indicators of blast-induced changes within important neuronal circuitries. Highly controlled detonations of small, 1.7-gram RDX spherical charges reduced synaptic markers known to be downregulated in cognitive disorders, but without causing overt neuronal loss or astroglial responses. In the absence of neuromorphological alterations, levels of synaptophysin, GluA1, and synapsin IIb were significantly diminished within 24 hr, and these synaptic components exhibited progressive reductions following blast exposure as compared to their stable maintenance in control explants. In contrast, labeling of the synapsin IIa isoform remained unaltered, while neuropilar staining of other markers decreased, including synapsin IIb and neural cell adhesion molecule (NCAM) isoforms, along with evidence of NCAM proteolytic breakdown. NCAM180 displayed a distinct decline after the RDX blasts, whereas NCAM140 and NCAM120 exhibited smaller or no deterioration, respectively. Interestingly, the extent of synaptic marker reduction correlated with AT8-positive tau levels, with tau pathology stochastically found in CA1 neurons and their dendrites. The decline in synaptic components was also reflected in the size of evoked postsynaptic currents recorded from CA1 pyramidals, which exhibited a severe and selective reduction. The identified indicators of blast-mediated synaptopathy point to the need for early biomarkers of explosives altering synaptic integrity with links to dementia risk, to advance strategies for both cognitive health and therapeutic monitoring.
Collapse
Affiliation(s)
- Michael F. Almeida
- Biotechnology Research and Training CenterUniversity of North Carolina—PembrokePembrokeNCUSA
| | - Thuvan Piehler
- U.S. Army Research LaboratoryAberdeen Proving GroundMDUSA
| | - Kelly E. Carstens
- Neurobiology LaboratoryNational Institute of Environmental Health SciencesResearch Triangle ParkNCUSA
- Present address:
Center for Computational Toxicology and ExposureU.S. Environmental Protection AgencyResearch Triangle ParkNCUSA
| | - Meilan Zhao
- Neurobiology LaboratoryNational Institute of Environmental Health SciencesResearch Triangle ParkNCUSA
| | - Mahsa Samadi
- Neurobiology LaboratoryNational Institute of Environmental Health SciencesResearch Triangle ParkNCUSA
- Present address:
Faculty of Medicine CentreImperial College LondonLondonUK
| | - Serena M. Dudek
- Neurobiology LaboratoryNational Institute of Environmental Health SciencesResearch Triangle ParkNCUSA
| | - Christopher J. Norton
- Biotechnology Research and Training CenterUniversity of North Carolina—PembrokePembrokeNCUSA
| | - Catherine M. Parisian
- Biotechnology Research and Training CenterUniversity of North Carolina—PembrokePembrokeNCUSA
| | - Karen L.G. Farizatto
- Biotechnology Research and Training CenterUniversity of North Carolina—PembrokePembrokeNCUSA
| | - Ben A. Bahr
- Biotechnology Research and Training CenterUniversity of North Carolina—PembrokePembrokeNCUSA
| |
Collapse
|
41
|
Ghosh KK, Padmanabhan P, Yang CT, Wang Z, Palanivel M, Ng KC, Lu J, Carlstedt-Duke J, Halldin C, Gulyás B. An In Vivo Study of a Rat Fluid-Percussion-Induced Traumatic Brain Injury Model with [ 11C]PBR28 and [ 18F]flumazenil PET Imaging. Int J Mol Sci 2021; 22:ijms22020951. [PMID: 33477960 PMCID: PMC7835883 DOI: 10.3390/ijms22020951] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/13/2021] [Accepted: 01/14/2021] [Indexed: 12/29/2022] Open
Abstract
Traumatic brain injury (TBI) modelled by lateral fluid percussion-induction (LFPI) in rats is a widely used experimental rodent model to explore and understand the underlying cellular and molecular alterations in the brain caused by TBI in humans. Current improvements in imaging with positron emission tomography (PET) have made it possible to map certain features of TBI-induced cellular and molecular changes equally in humans and animals. The PET imaging technique is an apt supplement to nanotheranostic-based treatment alternatives that are emerging to tackle TBI. The present study aims to investigate whether the two radioligands, [11C]PBR28 and [18F]flumazenil, are able to accurately quantify in vivo molecular-cellular changes in a rodent TBI-model for two different biochemical targets of the processes. In addition, it serves to observe any palpable variations associated with primary and secondary injury sites, and in the affected versus the contralateral hemispheres. As [11C]PBR28 is a radioligand of the 18 kD translocator protein, the up-regulation of which is coupled to the level of neuroinflammation in the brain, and [18F]flumazenil is a radioligand for GABAA-benzodiazepine receptors, whose level mirrors interneuronal activity and eventually cell death, the use of the two radioligands may reveal two critical features of TBI. An up-regulation in the [11C]PBR28 uptake triggered by the LFP in the injured (right) hemisphere was noted on day 14, while the uptake of [18F]flumazenil was down-regulated on day 14. When comparing the left (contralateral) and right (LFPI) hemispheres, the differences between the two in neuroinflammation were obvious. Our results demonstrate a potential way to measure the molecular alterations in a rodent-based TBI model using PET imaging with [11C]PBR28 and [18F]flumazenil. These radioligands are promising options that can be eventually used in exploring the complex in vivo pharmacokinetics and delivery mechanisms of nanoparticles in TBI treatment.
Collapse
Affiliation(s)
- Krishna Kanta Ghosh
- Lee Kong Chian School of Medicine, Nanyang Technological University, 59 Nanyang Drive, Singapore 636921, Singapore; (K.K.G.); (C.-T.Y.); (Z.W.); (M.P.); (C.H.)
| | - Parasuraman Padmanabhan
- Lee Kong Chian School of Medicine, Nanyang Technological University, 59 Nanyang Drive, Singapore 636921, Singapore; (K.K.G.); (C.-T.Y.); (Z.W.); (M.P.); (C.H.)
- Cognitive Neuroimaging Centre, Nanyang Technological University, 59 Nanyang Drive, Singapore 636921, Singapore
- Correspondence: (P.P.); (B.G.); Tel.:+65-69041186 (P.P.)
| | - Chang-Tong Yang
- Lee Kong Chian School of Medicine, Nanyang Technological University, 59 Nanyang Drive, Singapore 636921, Singapore; (K.K.G.); (C.-T.Y.); (Z.W.); (M.P.); (C.H.)
- Department of Nuclear Medicine and Molecular Imaging, Radiological Sciences Division, Singapore General Hospital, Outram Road, Singapore 169608, Singapore
- Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| | - Zhimin Wang
- Lee Kong Chian School of Medicine, Nanyang Technological University, 59 Nanyang Drive, Singapore 636921, Singapore; (K.K.G.); (C.-T.Y.); (Z.W.); (M.P.); (C.H.)
| | - Mathangi Palanivel
- Lee Kong Chian School of Medicine, Nanyang Technological University, 59 Nanyang Drive, Singapore 636921, Singapore; (K.K.G.); (C.-T.Y.); (Z.W.); (M.P.); (C.H.)
| | - Kian Chye Ng
- DSO National Laboratories (Kent Ridge), 27 Medical Drive, Singapore 117510, Singapore; (K.C.N.); (J.L.)
| | - Jia Lu
- DSO National Laboratories (Kent Ridge), 27 Medical Drive, Singapore 117510, Singapore; (K.C.N.); (J.L.)
| | - Jan Carlstedt-Duke
- President’s Office, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore;
| | - Christer Halldin
- Lee Kong Chian School of Medicine, Nanyang Technological University, 59 Nanyang Drive, Singapore 636921, Singapore; (K.K.G.); (C.-T.Y.); (Z.W.); (M.P.); (C.H.)
- Department of Clinical Neuroscience, Karolinska Institute, S-171 76 Stockholm, Sweden
| | - Balázs Gulyás
- Lee Kong Chian School of Medicine, Nanyang Technological University, 59 Nanyang Drive, Singapore 636921, Singapore; (K.K.G.); (C.-T.Y.); (Z.W.); (M.P.); (C.H.)
- Cognitive Neuroimaging Centre, Nanyang Technological University, 59 Nanyang Drive, Singapore 636921, Singapore
- Department of Clinical Neuroscience, Karolinska Institute, S-171 76 Stockholm, Sweden
- Correspondence: (P.P.); (B.G.); Tel.:+65-69041186 (P.P.)
| |
Collapse
|
42
|
Zhang J, Liu X, Ma K, Chen M, Xu H, Niu X, Gu H, Wang R, Chen X, Sun H. Collagen/heparin scaffold combined with vascular endothelial growth factor promotes the repair of neurological function in rats with traumatic brain injury. Biomater Sci 2021; 9:745-764. [DOI: 10.1039/c9bm01446b] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The objective of this study was to evaluate the therapy effects of a novel biological scaffold containing heparin, collagen and vascular endothelial growth factor (VEGF) in treating traumatic brain injury (TBI).
Collapse
Affiliation(s)
- Jian Zhang
- Tianjin Key Laboratory of Neurotrauma Repair
- Institute of Traumatic Brain Injury and Neuroscience
- Characteristic Medical Center of Chinese People's Armed Police Force
- Tianjin 300162
- China
| | - Xiaoyin Liu
- Tianjin Key Laboratory of Neurotrauma Repair
- Institute of Traumatic Brain Injury and Neuroscience
- Characteristic Medical Center of Chinese People's Armed Police Force
- Tianjin 300162
- China
| | - Ke Ma
- Tianjin Key Laboratory of Neurotrauma Repair
- Institute of Traumatic Brain Injury and Neuroscience
- Characteristic Medical Center of Chinese People's Armed Police Force
- Tianjin 300162
- China
| | - Miao Chen
- Affiliated Hospital of Traditional Chinese Medicine
- Xinjiang Medical University
- Urumqi
- China
| | - Huiyou Xu
- Tianjin Key Laboratory of Neurotrauma Repair
- Institute of Traumatic Brain Injury and Neuroscience
- Characteristic Medical Center of Chinese People's Armed Police Force
- Tianjin 300162
- China
| | | | - Haoran Gu
- The 947th hospital of Chinese People's Liberation Army
- Xinjiang
- China
| | - Renjie Wang
- Tianjin Key Laboratory of Neurotrauma Repair
- Institute of Traumatic Brain Injury and Neuroscience
- Characteristic Medical Center of Chinese People's Armed Police Force
- Tianjin 300162
- China
| | - Xuyi Chen
- Tianjin Key Laboratory of Neurotrauma Repair
- Institute of Traumatic Brain Injury and Neuroscience
- Characteristic Medical Center of Chinese People's Armed Police Force
- Tianjin 300162
- China
| | - HongTao Sun
- Tianjin Key Laboratory of Neurotrauma Repair
- Institute of Traumatic Brain Injury and Neuroscience
- Characteristic Medical Center of Chinese People's Armed Police Force
- Tianjin 300162
- China
| |
Collapse
|
43
|
Beard K, Meaney DF, Issadore D. Clinical Applications of Extracellular Vesicles in the Diagnosis and Treatment of Traumatic Brain Injury. J Neurotrauma 2020; 37:2045-2056. [PMID: 32312151 PMCID: PMC7502684 DOI: 10.1089/neu.2020.6990] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Extracellular vesicles (EVs) have emerged as key mediators of cell-cell communication during homeostasis and in pathology. Central nervous system (CNS)-derived EVs contain cell type-specific surface markers and intralumenal protein, RNA, DNA, and metabolite cargo that can be used to assess the biochemical and molecular state of neurons and glia during neurological injury and disease. The development of EV isolation strategies coupled with analysis of multi-plexed biomarker and clinical data have the potential to improve our ability to classify and treat traumatic brain injury (TBI) and resulting sequelae. Additionally, their ability to cross the blood-brain barrier (BBB) has implications for both EV-based diagnostic strategies and for potential EV-based therapeutics. In the present review, we discuss encouraging data for EV-based diagnostic, prognostic, and therapeutic strategies in the context of TBI monitoring and management.
Collapse
Affiliation(s)
- Kryshawna Beard
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - David F. Meaney
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Neurosurgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - David Issadore
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
44
|
Traumatic Brain Injury Preserves Firing Rates But Disrupts Laminar Oscillatory Coupling and Neuronal Entrainment in Hippocampal CA1. eNeuro 2020; 7:ENEURO.0495-19.2020. [PMID: 32737188 PMCID: PMC7477953 DOI: 10.1523/eneuro.0495-19.2020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 07/15/2020] [Accepted: 07/19/2020] [Indexed: 11/21/2022] Open
Abstract
While hippocampal-dependent learning and memory are particularly vulnerable to traumatic brain injury (TBI), the functional status of individual hippocampal neurons and their interactions with oscillations are unknown following injury. Using the most common rodent TBI model and laminar recordings in CA1, we found a significant reduction in oscillatory input into the radiatum layer of CA1 after TBI. Surprisingly, CA1 neurons maintained normal firing rates despite attenuated input, but did not maintain appropriate synchronization with this oscillatory input or with local high-frequency oscillations. Normal synchronization between these coordinating oscillations was also impaired. Simultaneous recordings of medial septal neurons known to participate in theta oscillations revealed increased GABAergic/glutamatergic firing rates postinjury under anesthesia, potentially because of a loss of modulating feedback from the hippocampus. These results suggest that TBI leads to a profound disruption of connectivity and oscillatory interactions, potentially disrupting the timing of CA1 neuronal ensembles that underlie aspects of learning and memory.
Collapse
|
45
|
Ledreux A, Pryhoda MK, Gorgens K, Shelburne K, Gilmore A, Linseman DA, Fleming H, Koza LA, Campbell J, Wolff A, Kelly JP, Margittai M, Davidson BS, Granholm AC. Assessment of Long-Term Effects of Sports-Related Concussions: Biological Mechanisms and Exosomal Biomarkers. Front Neurosci 2020; 14:761. [PMID: 32848549 PMCID: PMC7406890 DOI: 10.3389/fnins.2020.00761] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 06/29/2020] [Indexed: 12/24/2022] Open
Abstract
Concussion or mild traumatic brain injury (mTBI) in athletes can cause persistent symptoms, known as post-concussion syndrome (PCS), and repeated injuries may increase the long-term risk for an athlete to develop neurodegenerative diseases such as chronic traumatic encephalopathy (CTE), and Alzheimer's disease (AD). The Center for Disease Control estimates that up to 3.8 million sport-related mTBI are reported each year in the United States. Despite the magnitude of the phenomenon, there is a current lack of comprehensive prognostic indicators and research has shown that available monitoring tools are moderately sensitive to short-term concussion effects but less sensitive to long-term consequences. The overall aim of this review is to discuss novel, quantitative, and objective measurements that can predict long-term outcomes following repeated sports-related mTBIs. The specific objectives were (1) to provide an overview of the current clinical and biomechanical tools available to health practitioners to ensure recovery after mTBIs, (2) to synthesize potential biological mechanisms in animal models underlying the long-term adverse consequences of mTBIs, (3) to discuss the possible link between repeated mTBI and neurodegenerative diseases, and (4) to discuss the current knowledge about fluid biomarkers for mTBIs with a focus on novel exosomal biomarkers. The conclusions from this review are that current post-concussion clinical tests are not sufficiently sensitive to injury and do not accurately quantify post-concussion alterations associated with repeated mTBIs. In the current review, it is proposed that current practices should be amended to include a repeated symptom inventory, a cognitive assessment of executive function and impulse control, an instrumented assessment of balance, vestibulo-ocular assessments, and an improved panel of blood or exosome biomarkers.
Collapse
Affiliation(s)
- Aurélie Ledreux
- Knoebel Institute for Healthy Aging, University of Denver, Denver, CO, United States
| | - Moira K. Pryhoda
- Department of Mechanical and Materials Engineering, University of Denver, Denver, CO, United States
| | - Kim Gorgens
- Graduate School of Professional Psychology, University of Denver, Denver, CO, United States
| | - Kevin Shelburne
- Department of Mechanical and Materials Engineering, University of Denver, Denver, CO, United States
| | - Anah Gilmore
- Knoebel Institute for Healthy Aging, University of Denver, Denver, CO, United States
| | - Daniel A. Linseman
- Knoebel Institute for Healthy Aging, University of Denver, Denver, CO, United States
- Biological Sciences, University of Denver, Denver, CO, United States
| | - Holly Fleming
- Biological Sciences, University of Denver, Denver, CO, United States
| | - Lilia A. Koza
- Knoebel Institute for Healthy Aging, University of Denver, Denver, CO, United States
- Biological Sciences, University of Denver, Denver, CO, United States
| | - Julie Campbell
- Pioneer Health and Performance, University of Denver, Denver, CO, United States
| | - Adam Wolff
- Denver Neurological Clinic, Denver, CO, United States
| | - James P. Kelly
- Marcus Institute for Brain Health, Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Martin Margittai
- Department of Chemistry and Biochemistry, University of Denver, Denver, CO, United States
| | - Bradley S. Davidson
- Department of Mechanical and Materials Engineering, University of Denver, Denver, CO, United States
| | | |
Collapse
|
46
|
|
47
|
Arena JD, Smith DH, Lee EB, Gibbons GS, Irwin DJ, Robinson JL, Lee VMY, Trojanowski JQ, Stewart W, Johnson VE. Tau immunophenotypes in chronic traumatic encephalopathy recapitulate those of ageing and Alzheimer's disease. Brain 2020; 143:1572-1587. [PMID: 32390044 PMCID: PMC7241956 DOI: 10.1093/brain/awaa071] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 01/21/2020] [Accepted: 02/02/2020] [Indexed: 12/14/2022] Open
Abstract
Traumatic brain injury (TBI) is a risk factor for neurodegenerative disease, including chronic traumatic encephalopathy (CTE). Preliminary consensus criteria define the pathognomonic lesion of CTE as patchy tau pathology within neurons and astrocytes at the depths of cortical sulci. However, the specific tau isoform composition and post-translational modifications in CTE remain largely unexplored. Using immunohistochemistry, we performed tau phenotyping of CTE neuropathologies and compared this to a range of tau pathologies, including Alzheimer's disease, primary age-related tauopathy, ageing-related tau astrogliopathy and multiple subtypes of frontotemporal lobar degeneration with tau inclusions. Cases satisfying preliminary consensus diagnostic criteria for CTE neuropathological change (CTE-NC) were identified (athletes, n = 10; long-term survivors of moderate or severe TBI, n = 4) from the Glasgow TBI Archive and Penn Neurodegenerative Disease Brain Bank. In addition, material from a range of autopsy-proven ageing-associated and primary tauopathies in which there was no known history of exposure to TBI was selected as non-injured controls (n = 32). Each case was then stained with a panel of tau antibodies specific for phospho-epitopes (PHF1, CP13, AT100, pS262), microtubule-binding repeat domains (3R, 4R), truncation (Tau-C3) or conformation (GT-7, GT-38) and the extent and distribution of staining assessed. Cell types were confirmed with double immunofluorescent labelling. Results demonstrate that astroglial tau pathology in CTE is composed of 4R-immunoreactive thorn-shaped astrocytes, echoing the morphology and immunophenotype of astrocytes encountered in ageing-related tau astrogliopathy. In contrast, neurofibrillary tangles of CTE contain both 3R and 4R tau, with post-translational modifications and conformations consistent with Alzheimer's disease and primary age-related tauopathy. Our observations establish that the astroglial and neurofibrillary tau pathologies of CTE are phenotypically distinct from each other and recapitulate the tau immunophenotypes encountered in ageing and Alzheimer's disease. As such, the immunohistochemical distinction of CTE neuropathology from other mixed 3R/4R tauopathies of Alzheimer's disease and ageing may rest solely on the pattern and distribution of pathology.
Collapse
Affiliation(s)
- John D Arena
- Department of Neurosurgery, Penn Center for Brain Injury and Repair, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Douglas H Smith
- Department of Neurosurgery, Penn Center for Brain Injury and Repair, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Edward B Lee
- Department of Pathology and Laboratory Medicine, Center for Neurodegenerative Disease Research, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
- Translational Neuropathology Research Laboratory, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Garrett S Gibbons
- Department of Pathology and Laboratory Medicine, Center for Neurodegenerative Disease Research, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| | - David J Irwin
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - John L Robinson
- Department of Pathology and Laboratory Medicine, Center for Neurodegenerative Disease Research, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| | - Virginia M -Y Lee
- Department of Pathology and Laboratory Medicine, Center for Neurodegenerative Disease Research, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| | - John Q Trojanowski
- Department of Pathology and Laboratory Medicine, Center for Neurodegenerative Disease Research, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| | - William Stewart
- Department of Neuropathology, Queen Elizabeth University Hospital, Glasgow G51 4TF, UK
- Institute of Neuroscience and Psychology, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Victoria E Johnson
- Department of Neurosurgery, Penn Center for Brain Injury and Repair, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
48
|
Abstract
Periventricular injury is frequently noted as one aspect of severe traumatic brain injury (TBI) and the presence of the ventricles has been hypothesized to be a primary pathogenesis associated with the prevalence of periventricular injury in patients with TBI. Although substantial endeavors have been made to elucidate the potential mechanism, a thorough explanation for this hypothesis appears lacking. In this study, a three-dimensional (3D) finite element (FE) model of the human head with an accurate representation of the cerebral ventricles is developed accounting for the fluid properties of the intraventricular cerebrospinal fluid (CSF) as well as its interaction with the brain. An additional model is developed by replacing the intraventricular CSF with a substitute with brain material. Both models are subjected to rotational accelerations with magnitudes suspected to induce severe diffuse axonal injury. The results reveal that the presence of the ventricles leads to increased strain in the periventricular region, providing a plausible explanation for the vulnerability of the periventricular region. In addition, the strain-exacerbation effect associated with the presence of the ventricles is also noted in the paraventricular region, although less pronounced than that in the periventricular region. The current study advances the understanding of the periventricular injury mechanism as well as the detrimental effects that the ventricles exert on the periventricular and paraventricular brain tissue.
Collapse
Affiliation(s)
- Zhou Zhou
- Division of Neuronic Engineering, Royal Institute of Technology (KTH), Huddinge, Sweden
| | - Xiaogai Li
- Division of Neuronic Engineering, Royal Institute of Technology (KTH), Huddinge, Sweden
| | - Svein Kleiven
- Division of Neuronic Engineering, Royal Institute of Technology (KTH), Huddinge, Sweden
| |
Collapse
|
49
|
Siman R, Cui H, Wewerka SS, Hamel L, Smith DH, Zwank MD. Serum SNTF, a Surrogate Marker of Axonal Injury, Is Prognostic for Lasting Brain Dysfunction in Mild TBI Treated in the Emergency Department. Front Neurol 2020; 11:249. [PMID: 32322237 PMCID: PMC7156622 DOI: 10.3389/fneur.2020.00249] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 03/13/2020] [Indexed: 11/30/2022] Open
Abstract
Mild traumatic brain injury (mTBI) causes persisting post-concussion syndrome for many patients without abnormalities on conventional neuroimaging. Currently, there is no method for identifying at-risk cases at an early stage for directing concussion management and treatment. SNTF is a calpain-derived N-terminal proteolytic fragment of spectrin (αII-spectrin1-1176) generated in damaged axons following mTBI. Preliminary human studies suggest that elevated blood SNTF on the day of mTBI correlates with white matter disruption and lasting brain dysfunction. Here, we further evaluated serum SNTF as a prognostic marker for persistent brain dysfunction in uncomplicated mTBI patients treated in a Level I trauma center emergency department. Compared with healthy controls (n = 40), serum SNTF increased by 92% within 24 h of mTBI (n = 95; p < 0.0001), and as a diagnostic marker exhibited 100% specificity and 37% sensitivity (AUC = 0.87). To determine whether the subset of mTBI cases positive for SNTF preferentially developed lasting brain dysfunction, serum levels on the day of mTBI were compared with multiple measures of brain performance at 90 days post-injury. Elevated serum SNTF correlated significantly with persistent impairments in cognition and sensory-motor integration, and predicted worse performance in each test on a case by case basis (AUC = 0.68 and 0.76, respectively). SNTF also predicted poorer recovery of cognitive stress function from 30 to 90 days (AUC = 0.79–0.90). These results suggest that serum SNTF, a surrogate marker for axonal injury after mTBI, may have potential for the rapid prognosis of lasting post-concussion syndrome and impaired functional recovery following CT-negative mTBI. They provide further evidence linking axonal injury to persisting brain dysfunction after uncomplicated mTBI. A SNTF blood test, either alone or combined with other markers of axonal injury, may have important utilities for research, prognosis, management and treatment of concussion.
Collapse
Affiliation(s)
- Robert Siman
- Department of Neurosurgery, Center for Brain Injury and Repair, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Hongmei Cui
- Department of Neurosurgery, Center for Brain Injury and Repair, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Sandi S Wewerka
- Department of Emergency Medicine, Regions Hospital, St. Paul, MN, United States
| | - Lydia Hamel
- Department of Emergency Medicine, Regions Hospital, St. Paul, MN, United States
| | - Douglas H Smith
- Department of Neurosurgery, Center for Brain Injury and Repair, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Michael D Zwank
- Department of Emergency Medicine, Regions Hospital, St. Paul, MN, United States
| |
Collapse
|
50
|
Scimone MT, Cramer HC, Hopkins P, Estrada JB, Franck C. Application of mild hypothermia successfully mitigates neural injury in a 3D in-vitro model of traumatic brain injury. PLoS One 2020; 15:e0229520. [PMID: 32236105 PMCID: PMC7112206 DOI: 10.1371/journal.pone.0229520] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 02/07/2020] [Indexed: 12/12/2022] Open
Abstract
Therapeutic hypothermia (TH) is an attractive target for mild traumatic brain injury (mTBI) treatment, yet significant gaps in our mechanistic understanding of TH, especially at the cellular level, remain and need to be addressed for significant forward progress to be made. Using a recently-established 3D in-vitro neural hydrogel model for mTBI we investigated the efficacy of TH after compressive impact injury and established critical treatment parameters including target cooling temperature, and time windows for application and maintenance of TH. Across four temperatures evaluated (31.5, 33, 35, and 37°C), 33°C was found to be most neuroprotective after 24 and 48 hours post-injury. Assessment of TH administration onset time and duration showed that TH should be administered within 4 hours post-injury and be maintained for at least 6 hours for achieving maximum viability. Cellular imaging showed TH reduced the percentage of cells positive for caspases 3/7 and increased the expression of calpastatin, an endogenous neuroprotectant. These findings provide significant new insight into the biological parameter space that renders TH effective in mitigating the deleterious effects of cellular mTBI and provides a quantitative foundation for the future development of animal and preclinical treatment protocols.
Collapse
Affiliation(s)
- Mark T. Scimone
- School of Engineering, Brown University, Providence, RI, United States of America
- Center for Biomedical Engineering, Brown University, Providence, RI, United States of America
| | - Harry C. Cramer
- School of Engineering, Brown University, Providence, RI, United States of America
- Center for Biomedical Engineering, Brown University, Providence, RI, United States of America
| | - Paul Hopkins
- School of Engineering, Brown University, Providence, RI, United States of America
- Center for Biomedical Engineering, Brown University, Providence, RI, United States of America
| | - Jonathan B. Estrada
- Department of Mechanical Engineering, University of Michigan—Ann Arbor, Ann Arbor, MI, United States of America
| | - Christian Franck
- Mechanical Engineering, University of Wisconsin–Madison, Madison, WI, United States of America
| |
Collapse
|