1
|
Webb MG, Chow F, McCullough CG, Zhang B, Lee JJY, Bassiouni R, Garrett NE, Hurth K, Carpten JD, Zada G, Craig DW. Resolving spatial subclonal genomic heterogeneity of loss of heterozygosity and extrachromosomal DNA in gliomas. Nat Commun 2025; 16:5290. [PMID: 40514380 DOI: 10.1038/s41467-025-59805-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 04/23/2025] [Indexed: 06/16/2025] Open
Abstract
Mapping the spatial organization of DNA-level somatic copy number changes in tumors can provide insight to understanding higher-level molecular and cellular processes that drive pathogenesis. We describe an integrated framework of spatial transcriptomics, tumor/normal DNA sequencing, and bulk RNA sequencing to identify shared and distinct characteristics of an initial cohort of eleven gliomas of varied pathology and a replication cohort of six high-grade glioblastomas. We identify focally amplified extrachromosomal DNA (ecDNA) in four of the eleven initial gliomas, with subclonal tumor heterogeneity in two EGFR-amplified grade IV glioblastomas. In a TP53-mutated glioblastoma, we detect a subclone with EGFR amplification on ecDNA coupled to chromosome 17 loss of heterozygosity. To validate subclonal somatic aneuploidy and copy number alterations associated with ecDNA double minutes, we examine the replication cohort, identifying MDM2/MDM4 ecDNA subclones in two glioblastomas. The spatial heterogeneity of EGFR and p53 inactivation underscores the role of ecDNA in enabling rapid oncogene amplification and enhancing tumor adaptability under selective pressure.
Collapse
Affiliation(s)
- Michelle G Webb
- Department of Translational Genomics, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Frances Chow
- Department of Neurological Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Carmel G McCullough
- Department of Translational Genomics, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Bohan Zhang
- Department of Translational Genomics, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - John J Y Lee
- Department of Integrative Translational Sciences, City of Hope, Duarte, CA, USA
| | - Rania Bassiouni
- Department of Translational Genomics, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Norman E Garrett
- Department of Neurological Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Kyle Hurth
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - John D Carpten
- Department of Translational Genomics, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Department of Integrative Translational Sciences, City of Hope, Duarte, CA, USA
| | - Gabriel Zada
- Department of Neurological Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
| | - David W Craig
- Department of Translational Genomics, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
- Department of Integrative Translational Sciences, City of Hope, Duarte, CA, USA.
| |
Collapse
|
2
|
Bao J, Pan Z, Wei S. Unlocking new horizons: advances in treating IDH-mutant, 1p/19q-codeleted oligodendrogliomas. Discov Oncol 2025; 16:971. [PMID: 40448901 DOI: 10.1007/s12672-025-02815-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Accepted: 05/25/2025] [Indexed: 06/02/2025] Open
Abstract
Oligodendrogliomas are a distinct subtype of diffuse gliomas characterized by IDH mutations and 1p/19q codeletion, classified as grade 2 or 3 based on histological features. This review examines current advancements in the diagnosis, treatment, and prognosis of oligodendrogliomas, with an emphasis on personalized approaches driven by molecular insights. Surgery remains the cornerstone of treatment, aiming for maximal safe resection to obtain tissue for diagnosis and alleviate symptoms. For grade 2 tumors with residual disease but no symptomatic progression, the IDH inhibitor vorasidenib has emerged as a promising option to delay the need for radiation therapy (RT) and chemotherapy. For grade III oligodendrogliomas, postoperative combined-modality therapy with RT and chemotherapy, such as the PCV regimen, demonstrates significant survival benefits, while temozolomide is an alternative due to its ease of administration and reduced toxicity. Recurrent oligodendrogliomas present therapeutic challenges, necessitating tailored strategies based on prior treatments and the interval since initial therapy. Options include repeat surgery, reirradiation, or novel targeted therapies. Advances in molecular diagnostics, such as homozygous CDKN2A/B deletion as a prognostic marker, have refined risk stratification and informed treatment decisions. Despite these strides, further research is needed to optimize long-term outcomes and address resistance mechanisms. This review underscores the importance of integrating molecular diagnostics with clinical management to achieve personalized, evidence-based care for patients with oligodendrogliomas.
Collapse
Affiliation(s)
- Jing Bao
- Department of Neurosurgery, Shidong Hospital, No. 999, Shiguang Road, Yangpu District, Shanghai, 200438, China
| | - Zhenjiang Pan
- Department of Neurosurgery, Shidong Hospital, No. 999, Shiguang Road, Yangpu District, Shanghai, 200438, China
| | - Shepeng Wei
- Department of Neurosurgery, Shidong Hospital, No. 999, Shiguang Road, Yangpu District, Shanghai, 200438, China.
| |
Collapse
|
3
|
Qiu X, Liang L, Chen L, Hong P, Lin W, Liu J, Zhou Z, Zhu W, Wu T, Pan M, Zhong Y, Gao J, Qin Z, Wang Y. An Analysis for IDH-Mutant Grade 4 Astrocytoma Based on WHO CNS 5: Implication of Clinical Practice. Ann Clin Transl Neurol 2025. [PMID: 40400212 DOI: 10.1002/acn3.70081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 04/15/2025] [Accepted: 05/05/2025] [Indexed: 05/23/2025] Open
Abstract
PURPOSE There is ongoing debate regarding the therapeutic approach and prognosis for IDH-mutant grade 4 astrocytoma, a newly defined subtype of diffuse glioma in the 2021 WHO classification system for central nervous system tumors (WHO CNS 5). The aim of this study was to explore the clinical outcome and prognosticators for newly diagnosed IDH-mutant grade 4 astrocytoma based on our single institutional data. METHODS This retrospective analysis included 53 consecutive patients with newly diagnosed IDH-mutant grade 4 astrocytoma, who underwent radiotherapy between September 2021 and December 2023. All patients were administered concurrent and adjuvant temozolomide. Eleven patients received adjuvant tumor-treating fields (TTFields). RESULTS The median follow-up was 15.7 months. Twenty patients had tumor relapse; three patients died, all of whom were without TTFields therapy. The median PFS for the entire cohort was 19.3 months, and the median OS was not reached. Univariate analysis indicated patients younger than 40 years (p = 0.11) or without homozygous deletion of CDKN2A/B (p = 0.11) tended to have better PFS. In addition, the TTFields group tended to have longer median PFS than the non-TTFields group in both analyses before and after propensity score matching (PSM) (24.4 vs. 18.5 months, p = 0.097, before PSM; 24.4 vs. 15.9 months, p = 0.080, after PSM). No significant independent prognostic factor was found in the multivariate analysis. CONCLUSIONS The study reveals important insights into clinical practice for IDH-mutant grade 4 astrocytoma. Younger age and tumor without deleted CDKN2A/B might be predictive of better outcomes. The addition of TTFields trended towards improved PFS, necessitating prospective clinical trials for further investigation.
Collapse
Affiliation(s)
- Xianxin Qiu
- Department of Radiation Oncology, Huashan Hospital, Fudan University, Shanghai, China
| | - Liping Liang
- Department of Radiation Oncology, Huashan Hospital, Fudan University, Shanghai, China
| | - Lingchao Chen
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Pengjie Hong
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Wanzun Lin
- Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jiabing Liu
- Department of Radiation Oncology, Huashan Hospital, Fudan University, Shanghai, China
| | - Zhirui Zhou
- Department of Radiation Oncology, Huashan Hospital, Fudan University, Shanghai, China
| | - Wenjia Zhu
- Department of Radiation Oncology, Huashan Hospital, Fudan University, Shanghai, China
| | - Tianqi Wu
- Department of Radiation Oncology, Huashan Hospital, Fudan University, Shanghai, China
| | - Mingyuan Pan
- Department of Radiation Oncology, Huashan Hospital, Fudan University, Shanghai, China
| | - Yihua Zhong
- Department of Radiation Oncology, Huashan Hospital, Fudan University, Shanghai, China
| | - Jing Gao
- Shanghai Engineering Research Center of Proton and Heavy ion Radiation Therapy, Shanghai, China
| | - Zhiyong Qin
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Yang Wang
- Department of Radiation Oncology, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
4
|
Deacon S, Cahyani I, Holmes N, Fox G, Munro R, Wibowo S, Murray T, Mason H, Housley M, Martin D, Sharif A, Patel A, Goldspring R, Brandner S, Sahm F, Smith S, Paine S, Loose M. ROBIN: A unified nanopore-based assay integrating intraoperative methylome classification and next-day comprehensive profiling for ultra-rapid tumor diagnosis. Neuro Oncol 2025:noaf103. [PMID: 40392954 DOI: 10.1093/neuonc/noaf103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2025] Open
Abstract
BACKGROUND Advances in our technological capacity to interrogate CNS tumor biology have led to the ever increasing use of genomic sequencing in diagnostic decision making. Presently, CNS tumors are classified based on their epigenetic signatures, leading to a paradigm shift in diagnostic pathways. Such testing can be performed so rapidly using nanopore sequencing that results can be provided intraoperatively. This information greatly improves the fidelity of smear diagnosis and can help surgeons tailor their approach, balancing the risks of surgery with the likely benefit. Nevertheless, full integrated diagnosis may require subsequent additional assays to detect pathognomonic somatic mutations and structural variants, thereby delaying the time to final diagnosis. METHODS Here, we present ROBIN, a tool based on PromethION nanopore sequencing technology that can provide both real-time, intraoperative methylome classification and next-day comprehensive molecular profiling within a single assay. ROBIN utilizes 3 methylation classifiers to improve diagnostic performance in the intraoperative setting. RESULTS We demonstrate classifier performance on 50 prospective intraoperative cases, achieving a diagnostic turnaround time under 2 hours and generating robust tumor classifications within minutes of sequencing. Furthermore, ROBIN can detect single nucleotide variants, copy number variants, and structural variants in real time, and is able to inform a complete integrated diagnosis within 24 hours. Classifier performance demonstrated concordance with final integrated diagnosis in 90% of prospective cases. CONCLUSION Nanopore sequencing can greatly improve turnaround times for standard-of-care diagnostic testing and is furthermore able to reliably provide clinically actionable intraoperative tumor classification.
Collapse
Affiliation(s)
- Simon Deacon
- Nottingham University Hospitals NHS Trust, Nottingham, UK
- School of Medicine, University of Nottingham, Nottingham, UK
| | - Inswasti Cahyani
- School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Nadine Holmes
- School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Graeme Fox
- School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Rory Munro
- School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Satrio Wibowo
- School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Thomas Murray
- School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Hannah Mason
- Nottingham University Hospitals NHS Trust, Nottingham, UK
| | - Mark Housley
- Nottingham University Hospitals NHS Trust, Nottingham, UK
| | - Daniel Martin
- Nottingham University Hospitals NHS Trust, Nottingham, UK
| | - Abdi Sharif
- Nottingham University Hospitals NHS Trust, Nottingham, UK
| | - Areeba Patel
- Clinical Cooperation Unit Neuropathology, German Cancer Research Centre (DKFZ), Heidelberg, Germany
| | | | - Sebastian Brandner
- Division of Neuropathology, National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, London, UK
| | - Felix Sahm
- Department of Neuropathology, Heidelberg University Hospital, Heidelberg, Germany
- Clinical Cooperation Unit Neuropathology, German Cancer Research Centre (DKFZ), Heidelberg, Germany
| | - Stuart Smith
- Nottingham University Hospitals NHS Trust, Nottingham, UK
- School of Medicine, University of Nottingham, Nottingham, UK
| | - Simon Paine
- Nottingham University Hospitals NHS Trust, Nottingham, UK
- School of Medicine, University of Nottingham, Nottingham, UK
| | - Matthew Loose
- School of Life Sciences, University of Nottingham, Nottingham, UK
| |
Collapse
|
5
|
Lipatnikova A, Kling T, Dénes A, Carstam L, Corell A, Blomstrand M, Vega SF, Harba D, Bontell TO, Carén H, Jakola AS. CDKN2A/B status versus morphology in diagnosing WHO grade 4 IDH-mutated astrocytomas: what is the clinical relevance? J Neurooncol 2025:10.1007/s11060-025-05078-x. [PMID: 40392514 DOI: 10.1007/s11060-025-05078-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2025] [Accepted: 05/08/2025] [Indexed: 05/22/2025]
Abstract
PURPOSE In the 2021 WHO classification system for central nervous system tumors, the diffuse glioma subgroup IDH-mutated (IDHm) astrocytomas WHO grade 4 was introduced. The diagnosis can be based upon molecular or histopathological morphological criteria. Here we explore whether phenotype and survival of IDHm astrocytomas WHO grade 4 differed across the criteria used for diagnosis. METHODS Patients with IDHm astrocytoma, WHO grade 4, were included from Sahlgrenska University Hospital and TCGA database. We created three subgroups based upon the criteria for diagnosis of WHO grade 4; (1) homozygous CDKN2A/B deletion; (2) morphological (necrosis and/or microvascular proliferation); (3) combined subgroup with both homozygous CDKN2A/B deletion and morphological grade 4 criteria. RESULTS We included 90 patients (local cohort, n = 35, TCGA cohort, n = 55) with IDHm astrocytoma, WHO grade 4. The median survival was 4.1 years (95% CI 3.0-5.3). Survival was comparable when the diagnosis was based on homozygous CDKN2A/B deletion and on morphological WHO grade 4 criteria (5.2 vs. 5.3 years). However, in the combined subgroup, survival was significantly shorter (2.8 years, p = 0.006). CONCLUSION The different subgroups of IDHm astrocytoma WHO grade 4 share similar characteristics. Patients whose tumors exhibit combined criteria have worse prognosis.
Collapse
Affiliation(s)
- Anna Lipatnikova
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Blå stråket 7, Floor 3, Gothenburg, 413 45, Sweden.
| | - Teresia Kling
- Sahlgrenska Center for Cancer Research, Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Anna Dénes
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Blå stråket 7, Floor 3, Gothenburg, 413 45, Sweden
| | - Louise Carstam
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Blå stråket 7, Floor 3, Gothenburg, 413 45, Sweden
- Department of Neurosurgery, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Alba Corell
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Blå stråket 7, Floor 3, Gothenburg, 413 45, Sweden
- Department of Neurosurgery, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Malin Blomstrand
- Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Sandra Ferreyra Vega
- Sahlgrenska Center for Cancer Research, Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Dima Harba
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Blå stråket 7, Floor 3, Gothenburg, 413 45, Sweden
| | - Thomas Olsson Bontell
- Department of Physiology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Clinical Pathology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Helena Carén
- Sahlgrenska Center for Cancer Research, Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Asgeir S Jakola
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Blå stråket 7, Floor 3, Gothenburg, 413 45, Sweden
- Department of Neurosurgery, Sahlgrenska University Hospital, Gothenburg, Sweden
| |
Collapse
|
6
|
Ghosh HS, Patel RV, Claus EB, Gonzalez Castro LN, Wen PY, Ligon KL, Meredith DM, Bi WL. Canonical amplifications and CDKN2A/B loss refine IDH1/2-mutant astrocytoma prognosis. Neuro Oncol 2025; 27:993-1003. [PMID: 39584448 PMCID: PMC12083226 DOI: 10.1093/neuonc/noae258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Indexed: 11/26/2024] Open
Abstract
BACKGROUND Molecular features have been incorporated alongside histologic criteria to improve glioma diagnostics and prognostication. CDKN2A/B homozygous-loss associates with worse survival in IDH1/2-mutant astrocytomas (IDHmut-astrocytomas), the presence of which denotes a grade 4 tumor independent of histologic features. However, no molecular features distinguish survival amongst histologically defined grade 2 and 3 IDHmut-astrocytomas. METHODS We assembled a cohort of patients ≥19 years old diagnosed with an IDHmut-astrocytoma between 1989 and 2020 from public datasets and several academic medical centers. Multivariate modeling and unbiased clustering were used to stratify risk. RESULTS We identified 998 IDHmut-astrocytoma patients (41.5% female; 85.6% white). Tumor grade, CDKN2A/B loss, and/or ≥1 focal amplification were associated with reduced survival. Grade 2/3 patients with intact CDKN2A/B and no focal amplifications survived the longest (OS 205.7 months). Survival for grade 2/3 cases with either CDKN2A/B hemizygous-loss or focal amplifications (80.4, 88.7 months respectively) did not differ significantly from grade 4 cases with intact CDKN2A/B and no amplifications (91.5 months, P = .93). Grade 4 patients with either hemizygous or homozygous loss of CDKN2A/B had the shortest survival (OS 31.9, 32.5 months respectively), followed by grade 4 cases with intact CDKN2A/B and focal gene amplifications (OS 55.9 months). Integrating CDKN2A/B status and amplifications alongside histopathologic grade refined overall survival prediction. Unbiased clustering revealed 9 distinct molecular profiles, with differential survival. IDHmut-astrocytomas with any CDKN2A/B loss clustered together, regardless of grade, and exhibited the poorest outcomes. CONCLUSIONS Combining CDKN2A/B hemizygous-loss and focal gene amplifications reveals a group of IDHmut-astrocytoma patients with an intermediate prognosis, refining IDHmut-astrocytoma classification.
Collapse
Affiliation(s)
- Hia S Ghosh
- Department of Neurosurgery, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Ruchit V Patel
- Harvard Medical School, Boston, Massachusetts, USA
- Department of Neurosurgery, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Elizabeth B Claus
- Department of Biostatistics, Yale School of Public Health, New Haven, Connecticut, USA
- Department of Neurosurgery, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Luis Nicolas Gonzalez Castro
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Neurology, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Patrick Y Wen
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Keith L Ligon
- Department of Pathology, Brigham and Women’s Hospital, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - David M Meredith
- Department of Pathology, Brigham and Women’s Hospital, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Wenya Linda Bi
- Department of Neurosurgery, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| |
Collapse
|
7
|
Wang J, Lan Y, Qi HY, Wang LH, Wei S, Yuan Y, Ge J, Li AL, Yan ZX, Li L, Ming PY, Hu TR, Bian XW, Yao XH, Luo T. Comparison of Fluorescence In Situ Hybridization, Next-Generation Sequencing, and DNA Methylation Microarray for Copy Number Variation Assessment in Gliomas. J Transl Med 2025; 105:104168. [PMID: 40210170 DOI: 10.1016/j.labinv.2025.104168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Revised: 03/17/2025] [Accepted: 03/21/2025] [Indexed: 04/12/2025] Open
Abstract
Gene-level and chromosomal copy number variation (CNV) assessments are critical in the integrated diagnosis of gliomas. Whereas fluorescence in situ hybridization (FISH) has been traditionally employed for CNV detection, emerging technologies such as next-generation sequencing (NGS) and DNA methylation microarray (DMM) are available in clinical practice. Nevertheless, the comparative performance of these 3 assays and the concordance of them remain unclear. A retrospective cohort study comprising 104 patients diagnosed with gliomas was conducted at our hospital. We systematically compared FISH, NGS, and DMM for detecting the following 6 CNV-related diagnostic or prognostic parameters: epidermal growth factor receptor (EGFR), cyclin-dependent kinase inhibitor 2A/B (CDKN2A/B), 1p, 19q, chromosome 7, and chromosome 10. All the 3 methods showed high consistency in EGFR assessment; however, FISH demonstrated relatively low concordance with NGS/DMM in detecting other parameters. In contrast, NGS and DMM exhibited strong concordance in the assessment of all the 6 parameters. Notably, discordant cases were associated with high-grade gliomas (grade 3/4; P < .05) and a high fraction of genome altered (P < .01), indicating high malignancy and genomic instability of discordant cases. This study elucidated the discrepancies and limitations of conventional FISH compared with NGS/DMM in CNV assessments. The discrepancies were associated with high-grade gliomas and genomic instability. We propose a process with recommendations on methods, highlighting the importance of integrated multiplatform assays in accurate clinical diagnosis.
Collapse
Affiliation(s)
- Jiao Wang
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University) and Key Laboratory of Tumor Immunopathology, The Ministry of Education of China, Chongqing, China
| | - Yang Lan
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University) and Key Laboratory of Tumor Immunopathology, The Ministry of Education of China, Chongqing, China
| | - Hao-Yue Qi
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University) and Key Laboratory of Tumor Immunopathology, The Ministry of Education of China, Chongqing, China
| | - Li-Hong Wang
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University) and Key Laboratory of Tumor Immunopathology, The Ministry of Education of China, Chongqing, China
| | - Sen Wei
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University) and Key Laboratory of Tumor Immunopathology, The Ministry of Education of China, Chongqing, China
| | - Ye Yuan
- Department of Medical Oncology, Chongqing University Cancer Hospital, Chongqing, China
| | - Jia Ge
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University) and Key Laboratory of Tumor Immunopathology, The Ministry of Education of China, Chongqing, China
| | - Ai-Ling Li
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University) and Key Laboratory of Tumor Immunopathology, The Ministry of Education of China, Chongqing, China
| | - Ze-Xuan Yan
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University) and Key Laboratory of Tumor Immunopathology, The Ministry of Education of China, Chongqing, China
| | - Lei Li
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University) and Key Laboratory of Tumor Immunopathology, The Ministry of Education of China, Chongqing, China
| | - Peng-Yu Ming
- Department of Pathology, School of Basic Medical Science, Southern Medical University, Guangzhou, Guangdong, China
| | - Tian-Ran Hu
- Department of Pathology, School of Basic Medical Science, Bengbu Medical University, Bengbu, Anhui, China
| | - Xiu-Wu Bian
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University) and Key Laboratory of Tumor Immunopathology, The Ministry of Education of China, Chongqing, China.
| | - Xiao-Hong Yao
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University) and Key Laboratory of Tumor Immunopathology, The Ministry of Education of China, Chongqing, China.
| | - Tao Luo
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University) and Key Laboratory of Tumor Immunopathology, The Ministry of Education of China, Chongqing, China.
| |
Collapse
|
8
|
Hersh DS, Bulsara K, Becker K, Wu Q, Bulsara KR. Tumor genomics and clinical methylation. Neurol Res 2025:1-3. [PMID: 40170599 DOI: 10.1080/01616412.2025.2486521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2025] [Accepted: 03/24/2025] [Indexed: 04/03/2025]
Abstract
Next-generation sequencing and clinical methylation were explored as evolving necessities for personalized medicine to augment surgery. The routine integration of these technologies into patient care has heralded an age of precision tumor treatment. This personalization of treatment and precision of diagnosis afforded by it will likely to lead to improved outcomes.
Collapse
Affiliation(s)
- David S Hersh
- Department of Neurosurgery, University of Connecticut School of Medicine, Farmington, CT, USA
- Division of Neurosurgery, Connecticut Children's Hospital, Hartford, CT, USA
| | | | - Kevin Becker
- Department of Neurosurgery, University of Connecticut School of Medicine, Farmington, CT, USA
| | - Qian Wu
- Department of Pathology, University of Connecticut School of Medicine, Farmington, CT, USA
| | - Ketan R Bulsara
- Department of Neurosurgery, University of Connecticut School of Medicine, Farmington, CT, USA
| |
Collapse
|
9
|
Ippen FM, Hielscher T, Friedel D, Göbel K, Reuss D, Herold-Mende C, Krieg S, Deimling AV, Wick W, Sahm F, Suwala AK. The prognostic impact of CDKN2A/B hemizygous deletions in IDH-mutant glioma. Neuro Oncol 2025; 27:743-754. [PMID: 39530475 PMCID: PMC11889711 DOI: 10.1093/neuonc/noae238] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Homozygous deletions of CDKN2A/B are known to predict poor prognosis in gliomas, but the impact of hemizygous deletions is less clear. This study aimed to evaluate the prognostic significance of hemizygous CDKN2A/B deletions in IDH-mutant low-grade astrocytomas and oligodendrogliomas. METHODS Tissue samples diagnosed as astrocytoma, IDH-mutant and oligodendroglioma, IDH-mutant, 1p/19q co-deleted CNS WHO grade 2 and 3 were collected from the archives of the Institute of Neuropathology in Heidelberg. DNA methylation analysis was performed on formalin-fixed paraffin-embedded samples. Evaluation of the CDKN2A/B locus was performed by visual inspection of copy-number plots derived from methylation-array data for each case. Hemizygous and homozygous losses were assessed in relation to whole chromosomal or larger segmental losses and gains in the chromosomal profile. Survival probabilities were assessed using the Kaplan-Meier method. RESULTS A total of 334 low-grade glioma cases were identified, including 173 astrocytomas and 161 oligodendrogliomas. Hemizygous deletions in CDKN2A/B (37/173 in astrocytomas, 15/161 in oligodendrogliomas) did not confer significantly worse survival outcomes compared to CDKN2A/B wild-type cases in neither low-grade astrocytoma (log-rank P = .2556; HR 2.29, 95% CI [0.76; 6.40], P = .135) nor oligodendroglioma (log-rank P = .2760; HR 0.17; 95% CI [0.01; 5.05]; P = .305), regardless of CNS WHO grade, which was further demonstrated on a subgroup of astrocytoma, IDH mutant CNS WHO 4 cases (log-rank P = .1680; HR 4.55, 95% CI [0.88; 24.51], P = .0689). CONCLUSIONS Hemizygous CDKN2A/B deletions do not significantly worsen OS or progression-free survival in IDH-mutant astrocytomas and oligodendrogliomas, CNS WHO grades 2 and 3.
Collapse
Affiliation(s)
- Franziska M Ippen
- National Center for Tumor Diseases (NCT), NCT Heidelberg, A Partnership Between DKFZ and University Hospital Heidelberg, Heidelberg, Germany
- Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ), German Consortium for Translational Cancer Research (DKTK), Heidelberg, Germany
- Department of Neurology, University Hospital Heidelberg, Heidelberg, Germany
| | - Thomas Hielscher
- Department of Biostatistics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Dennis Friedel
- Faculty of Bioscience, Heidelberg University, Heidelberg, Germany
- Department of Neuropathology, University Hospital Heidelberg, Heidelberg, Germany
- Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ), German Consortium for Translational Cancer Research (DKTK), Heidelberg, Germany
| | - Kirsten Göbel
- Department of Neuropathology, University Hospital Heidelberg, Heidelberg, Germany
- Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ), German Consortium for Translational Cancer Research (DKTK), Heidelberg, Germany
| | - David Reuss
- Department of Neuropathology, University Hospital Heidelberg, Heidelberg, Germany
- Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ), German Consortium for Translational Cancer Research (DKTK), Heidelberg, Germany
| | - Christel Herold-Mende
- Department of Neurosurgery, University Hospital Heidelberg, Heidelberg, Germany
- Department of Neurosurgery, Division of Experimental Neurosurgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Sandro Krieg
- Department of Neurosurgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Andreas v Deimling
- Department of Neuropathology, University Hospital Heidelberg, Heidelberg, Germany
- Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ), German Consortium for Translational Cancer Research (DKTK), Heidelberg, Germany
| | - Wolfgang Wick
- Clinical Cooperation Unit Neurooncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Neurology, University Hospital Heidelberg, Heidelberg, Germany
| | - Felix Sahm
- Department of Neuropathology, University Hospital Heidelberg, Heidelberg, Germany
- Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ), German Consortium for Translational Cancer Research (DKTK), Heidelberg, Germany
| | - Abigail K Suwala
- Department of Neuropathology, University Hospital Heidelberg, Heidelberg, Germany
- Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ), German Consortium for Translational Cancer Research (DKTK), Heidelberg, Germany
| |
Collapse
|
10
|
Mandelberg N, Hodges TR, Wang TJC, McGranahan T, Olson JJ, Orringer DA. Congress of Neurological Surgeons systematic review and evidence based guideline on neuropathology for WHO grade II diffuse glioma: update. J Neurooncol 2025; 172:195-218. [PMID: 39747718 DOI: 10.1007/s11060-024-04898-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 11/22/2024] [Indexed: 01/04/2025]
Abstract
QUESTIONS AND RECOMMENDATIONS FROM THE PRIOR VERSION OF THESE GUIDELINES WITHOUT CHANGE: TARGET POPULATION: Adult patients (age ≥ 18 years) who have suspected low-grade diffuse glioma. QUESTION What are the optimal neuropathological techniques to diagnose low-grade diffuse glioma in the adult? RECOMMENDATION Level I Histopathological analysis of a representative surgical sample of the lesion should be used to provide the diagnosis of low-grade diffuse glioma. Level III Both frozen section and cytopathologic/smear evaluation should be used to aid the intra-operative assessment of low-grade diffuse glioma diagnosis. A resection specimen is preferred over a biopsy specimen, to minimize the potential for sampling error issues. TARGET POPULATION Patients with histologically-proven WHO grade II diffuse glioma. QUESTION In adult patients (age ≥ 18 years) with histologically-proven WHO grade II diffuse glioma, is testing for IDH1 mutation (R132H and/or others) warranted? If so, is there a preferred method? RECOMMENDATION Level II IDH gene mutation assessment, via IDH1 R132H antibody and/or IDH1/2 mutation hotspot sequencing, is highly-specific for low-grade diffuse glioma, and is recommended as an additional test for classification and prognosis. TARGET POPULATION Patients with histologically-proven WHO grade II diffuse glioma. QUESTION In adult patients (age ≥ 18 years) with histologically-proven WHO grade II diffuse glioma, is testing for 1p/19q loss warranted? If so, is there a preferred method? RECOMMENDATION Level III 1p/19q loss-of-heterozygosity testing, by FISH, array-CGH or PCR, is recommended as an additional test in oligodendroglial cases for prognosis and potential treatment planning. TARGET POPULATION Patients with histologically proven WHO grade II diffuse glioma. QUESTION In adult patients (age > 18 years) with histologically-proven WHO grade II diffuse glioma, is methyl-guanine methyl-transferase (MGMT) promoter methylation testing warranted? If so, is there a preferred method? RECOMMENDATION There is insufficient evidence to recommend MGMT promoter methylation testing as a routine for low-grade diffuse gliomas. It is recommended that patients be enrolled in properly designed clinical trials to assess the value of this and related markers for this target population. TARGET POPULATION Patients with histologically-proven WHO grade II diffuse glioma. QUESTION In adult patients (age ≥ 18 years) with histologically proven WHO grade II diffuse glioma, is Ki-67/MIB1 immunohistochemistry warranted? If so, is there a preferred method to quantitate results? RECOMMENDATION Level III Ki67/MIB1 immunohistochemistry is recommended as an option for prognostic assessment. NEW RECOMMENDATION TARGET POPULATION: Adult patients (age ≥ 18 years) who have suspected WHO grade II diffuse glioma. QUESTION Is testing for ATRX mutations helpful for predicting survival and making treatment recommendations? RECOMMENDATION There is insufficient evidence to recommend ATRX mutation testing as a means of predicting survival or making treatment recommendations. TARGET POPULATION Adult patients (age ≥ 18 years) who have suspected WHO grade II diffuse glioma. QUESTION Does the addition of intraoperative optical histologic methods provide accuracy beyond the use of conventional histologic methods in diagnosis and management? RECOMMENDATION There is insufficient evidence at this time to suggest that intraoperative optical histologic methods offer increased diagnostic accuracy when compared to conventional techniques.
Collapse
Affiliation(s)
- Nataniel Mandelberg
- Department of Neurosurgery, NYU Langone Health and NYU Grossman School of Medicine, 530 1st Avenue, Skirball Suite 8R, New York, NY, 10016, USA
- Brain and Spine Tumor Center, Laura and Isaac Perlmutter Cancer Center, New York, NY, USA
| | - Tiffany R Hodges
- Department of Neurosurgery, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| | - Tony J C Wang
- Department of Radiation Oncology, Columbia University Medical Center, New York, NY, USA
| | - Tresa McGranahan
- Department of Neurology, University of Washington School of Medicine, Seattle, WA, USA
| | - Jeffrey J Olson
- Department of Neurological Surgery, Emory University School of Medicine, Atlanta, GA, USA
| | - Daniel A Orringer
- Department of Neurosurgery, NYU Langone Health and NYU Grossman School of Medicine, 530 1st Avenue, Skirball Suite 8R, New York, NY, 10016, USA.
- Brain and Spine Tumor Center, Laura and Isaac Perlmutter Cancer Center, New York, NY, USA.
| |
Collapse
|
11
|
Shi Z, Li KK, Kwan JS, Chung NY, Wong S, Chu AW, Chen H, Chan DT, Mao Y, Ng H. The molecular history of IDH-mutant astrocytomas without adjuvant treatment. Brain Pathol 2025; 35:e13300. [PMID: 39473241 PMCID: PMC11835445 DOI: 10.1111/bpa.13300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 08/05/2024] [Indexed: 02/20/2025] Open
Abstract
Hypermutation and malignant transformation are potential complications arising from temozolomide treatment of IDH-mutant gliomas. However, the natural history of IDH-mutant low-grade gliomas without temozolomide treatment is actually under-studied. We retrieved retrospectively from our hospitals paired tumors from 19 patients with IDH-mutant, 1p19q non-codeleted Grade 2 astrocytomas where no interim adjuvant treatment with either temozolomide or radiotherapy was given between primary resections and first recurrences. Tissues from multiple recurrences were available from two patients and radiotherapy but not temozolomide was given before the last specimens were resected. We studied the natural molecular history of these low-grade IDH-mutant astrocytomas without pressure of temozolomide with DNA methylation profiling and copy number variation (CNV) analyses, targeted DNA sequencing, TERTp sequencing, FISH for ALT and selected biomarkers. Recurrences were mostly higher grades (15/19 patients) and characterized by new CNVs not present in the primary tumors (17/19 cases). Few novel mutations were identified in recurrences. Tumors from 17/19 (89.5%) patients showed either CDKN2A homozygous deletion, MYC or PDGFRA focal and non-focal gains at recurrences. There was no case of hypermutation. Phylogenetic trees constructed for tumors for the two patients with multiple recurrences suggested a lack of subclone development in their evolution when under no pressure from temozolomide. In summary, our studies demonstrated, in contrast to the phenomenon of temozolomide-induced hypermutation, IDH-mutant, 1p19q non-codeleted Grade 2 astrocytomas which had not been treated by temozolomide, acquired new CNVs at tumor recurrences. These findings improve our understanding of the molecular life history of IDH-mutant astrocytomas.
Collapse
Affiliation(s)
- Zhi‐Feng Shi
- Department of NeurosurgeryHuashan Hospital, Fudan UniversityShanghaiChina
- Hong Kong and Shanghai Brain Consortium (HSBC)Hong KongChina
| | - Kay Ka‐Wai Li
- Department of Anatomical and Cellular PathologyThe Chinese University of Hong KongHong KongChina
| | - Johnny Sheung‐Him Kwan
- Department of Anatomical and Cellular PathologyThe Chinese University of Hong KongHong KongChina
- Hong Kong Genome InstituteHong Kong Science ParkShatin, Hong KongChina
| | - Nellie Yuk‐Fei Chung
- Department of Anatomical and Cellular PathologyThe Chinese University of Hong KongHong KongChina
| | - Sze‐Ching Wong
- Department of Anatomical and Cellular PathologyThe Chinese University of Hong KongHong KongChina
| | - Abby Wai‐Yan Chu
- Department of Anatomical and Cellular PathologyThe Chinese University of Hong KongHong KongChina
| | - Hong Chen
- Department of Pathology, Huashan HospitalFudan UniversityShanghaiChina
| | - Danny Tat‐Ming Chan
- Division of Neurosurgery, Department of SurgeryThe Chinese University of Hong KongShatin, Hong KongChina
| | - Ying Mao
- Department of NeurosurgeryHuashan Hospital, Fudan UniversityShanghaiChina
- Hong Kong and Shanghai Brain Consortium (HSBC)Hong KongChina
| | - Ho‐Keung Ng
- Hong Kong and Shanghai Brain Consortium (HSBC)Hong KongChina
- Department of Anatomical and Cellular PathologyThe Chinese University of Hong KongHong KongChina
| |
Collapse
|
12
|
Mair MJ, Leibetseder A, Heller G, Tomasich E, Müller L, Busse I, Wöhrer A, Kiesel B, Widhalm G, Eckert F, Weis S, Pichler J, Preusser M, Berghoff AS. Clinical characteristics, molecular reclassification trajectories and DNA methylation patterns of long- and short-term survivors of WHO grade II and III glioma. J Neurol 2025; 272:210. [PMID: 39954095 PMCID: PMC11829921 DOI: 10.1007/s00415-025-12923-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 01/20/2025] [Accepted: 01/22/2025] [Indexed: 02/17/2025]
Abstract
PURPOSE The prognosis of diffuse gliomas previously classified as "lower-grade" is heterogeneous and complicates clinical decisions. We aimed to investigate the molecular profile of clinical outliers to gain insight into biological drivers of long and short-term survivors. METHODS Here, patients aged ≥ 18 years and diagnosed with diffuse glioma, WHO grade II/2 or III/3 were included. Short-term survivors (STS) were defined as overall survival (OS) < 1 years, and long-term survivors (LTS) as OS > 10 years. DNA methylation profiling was performed using the Illumina EPIC 850k platform. RESULTS In total, 385 patients (294 LTS, 91 STS) were included. Median overall survival was 234 months (95%CI: 207-248) in LTS and 7.3 months (95%CI: 6.4-8.1) in STS. Compared to STS, LTS were younger, had higher Karnofsky Performance Status, more extensive resections, and lower symptomatic burden (p < 0.001, respectively). Molecular reclassification showed IDH-mutant gliomas in 240/246 (95.5%) LTS and 10/79 (12.7%) STS. Initial diagnosis (tumor type and/or grading) changed in 69/325 (21.2%) patients based on reclassification according to WHO 2016 and in 45/258 (17.4%) as per WHO 2021. DNA methylation analysis indicated two clusters, one with mainly STS (39/41, 95.1%) and heterogeneous IDH-wildtype tumors (cluster A) and one with mainly LTS (82/106, 77.4%) and IDH-mutant tumors (cluster B). Functional enrichment analysis of rare subtypes indicated altered Hippo/Notch and synaptic/neurotransmitter signaling pathway members. CONCLUSION LTS and STS show distinct clinical and molecular features, underscoring the importance of extended molecular workup for diagnosis. Further characterization of rare subtypes is needed to optimize treatment strategies and clinical trial planning.
Collapse
Affiliation(s)
- Maximilian J Mair
- Division of Oncology, Department of Medicine I, Medical University of Vienna, Waehringer Guertel 18-20, Vienna, Austria
| | - Annette Leibetseder
- Department of Neurology 1, Neuromed Campus, Kepler University Hospital, Johannes Kepler University Linz, and Clinical Research Institute for Neuroscience, Linz, Austria
| | - Gerwin Heller
- Division of Oncology, Department of Medicine I, Medical University of Vienna, Waehringer Guertel 18-20, Vienna, Austria
| | - Erwin Tomasich
- Division of Oncology, Department of Medicine I, Medical University of Vienna, Waehringer Guertel 18-20, Vienna, Austria
| | - Lisa Müller
- Division of Oncology, Department of Medicine I, Medical University of Vienna, Waehringer Guertel 18-20, Vienna, Austria
| | - Ilka Busse
- Division of Oncology, Department of Medicine I, Medical University of Vienna, Waehringer Guertel 18-20, Vienna, Austria
| | - Adelheid Wöhrer
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Barbara Kiesel
- Department of Neurosurgery, Medical University of Vienna, Vienna, Austria
| | - Georg Widhalm
- Department of Neurosurgery, Medical University of Vienna, Vienna, Austria
| | - Franziska Eckert
- Department of Radiation Oncology, Medical University of Vienna, Vienna, Austria
| | - Serge Weis
- Division of Neuropathology, Department of Pathology and Molecular Pathology, Neuromed Campus, Kepler University Hospital, and Clinical Research Institute for Neuroscience, Johannes Kepler University Linz, Linz, Austria
| | - Josef Pichler
- Department of Internal Medicine and Neurooncology, Neuromed Campus, Kepler University Hospital, Johannes Kepler University Linz, Linz, Austria
| | - Matthias Preusser
- Division of Oncology, Department of Medicine I, Medical University of Vienna, Waehringer Guertel 18-20, Vienna, Austria
| | - Anna S Berghoff
- Division of Oncology, Department of Medicine I, Medical University of Vienna, Waehringer Guertel 18-20, Vienna, Austria.
| |
Collapse
|
13
|
Ozeki Y, Honda-Kitahara M, Yanagisawa S, Takahashi M, Ohno M, Miyakita Y, Kikuchi M, Nakano T, Hosoya T, Sugino H, Satomi K, Yoshida A, Igaki H, Kubo Y, Ichimura K, Suzuki H, Masutomi K, Kondo A, Narita Y. Early progressive disease within 2 years in isocitrate dehydrogenase (IDH)-mutant astrocytoma may indicate radiation necrosis. Jpn J Clin Oncol 2025; 55:106-112. [PMID: 39660448 DOI: 10.1093/jjco/hyae151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 12/09/2024] [Indexed: 12/12/2024] Open
Abstract
BACKGROUND Isocitrate dehydrogenase-mutant astrocytoma without cyclin-dependent kinase inhibitor 2A/B (CDKN2A/B) homozygous deletion typically follows a slow clinical course. However, some cases show early progression on magnetic resonance imaging, and these characteristics remain under-reported. This study aimed to elucidate the characteristics of isocitrate dehydrogenase-mutant astrocytoma showing early progression on magnetic resonance imaging. METHODS This retrospective study included 52 cases of primary astrocytoma, isocitrate dehydrogenase-mutant, Central Nervous System (CNS) 5 World Health Organization grade 2-3 according to the World Health Organization 2021 classification. Patients underwent surgery followed by radiation therapy and/or chemotherapy at our institution from 2006 to 2019. Progression-free survival and overall survival were analyzed. RESULTS There were 24 and 28 grade 2 and grade 3 astrocytomas, respectively. The median patient age was 38 years. Forty-three patients underwent radiotherapy. Progression was diagnosed by magnetic resonance imaging in 22 patients with initial radiotherapy. Thirteen of the 22 patients underwent surgery, and seven of the 13 patients received surgery within 24 months of the initial radiotherapy. Histopathologically, radiation necrosis was confirmed in four of these seven patients (57.1%). The true progression-free survival rate, excluding radiation necrosis, at 2 years after surgery was 91.3% for grade 2 astrocytoma and 88.5% for grade 3 astrocytoma. The 5-year overall survival rate was 85.7% for grade 2 tumours and 76.4% for grade 3 tumours. CONCLUSIONS Radiation necrosis should be considered in cases showing early progression of isocitrate dehydrogenase-mutant astrocytoma, and a second surgery should be performed to confirm true recurrence or radiation necrosis. Astrocytomas with telomerase reverse-transcriptase promoter mutations may relapse relatively early and should be followed up with caution.
Collapse
Affiliation(s)
- Yukie Ozeki
- Course of Advanced Clinical Research of Cancer, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Department of Neurosurgery and Neuro-Oncology, National Cancer Center Hospital, Tokyo, Japan
- Department of Neurosurgery, Saitama Cancer Center, Saitama, Japan
| | - Mai Honda-Kitahara
- Department of Neurosurgery and Neuro-Oncology, National Cancer Center Hospital, Tokyo, Japan
- Division of Brain Tumor Translational Research, National Cancer Center Research Institute, Tokyo, Japan
| | - Shunsuke Yanagisawa
- Department of Neurosurgery and Neuro-Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Masamichi Takahashi
- Department of Neurosurgery and Neuro-Oncology, National Cancer Center Hospital, Tokyo, Japan
- Department of Neurosurgery, Tokai University School of Medicine, Isehara, Japan
| | - Makoto Ohno
- Department of Neurosurgery and Neuro-Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Yasuji Miyakita
- Department of Neurosurgery and Neuro-Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Miu Kikuchi
- Department of Neurosurgery and Neuro-Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Tomoyuki Nakano
- Department of Neurosurgery and Neuro-Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Tomohiro Hosoya
- Department of Neurosurgery and Neuro-Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Hirokazu Sugino
- Department of Diagnostic Pathology, National Cancer Center Hospital, Tokyo, Japan
| | - Kaishi Satomi
- Department of Pathology, Kyorin University Faculty of Medicine, Tokyo, Japan
| | - Akihiko Yoshida
- Department of Diagnostic Pathology, National Cancer Center Hospital, Tokyo, Japan
| | - Hiroshi Igaki
- Department of Radiation Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Yuko Kubo
- Department of Diagnostic Radiology, National Cancer Center Hospital, Tokyo, Japan
| | - Koichi Ichimura
- Department of Pathology, Kyorin University Faculty of Medicine, Tokyo, Japan
| | - Hiromichi Suzuki
- Division of Brain Tumor Translational Research, National Cancer Center Research Institute, Tokyo, Japan
| | - Kenkichi Masutomi
- Course of Advanced Clinical Research of Cancer, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Division of Cancer Stem Cell, National Cancer Center Research Institute, Tokyo, Japan
| | - Akihide Kondo
- Department of Neurosurgery, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Yoshitaka Narita
- Department of Neurosurgery and Neuro-Oncology, National Cancer Center Hospital, Tokyo, Japan
| |
Collapse
|
14
|
Jiang H, Wang X, Chen X, Zhang S, Ren Q, Li M, Li M, Ren X, Lin S, Cui Y. Unraveling the heterogeneity of WHO grade 4 gliomas: insights from clinical, imaging, and molecular characterization. Discov Oncol 2025; 16:111. [PMID: 39899184 PMCID: PMC11790548 DOI: 10.1007/s12672-025-01811-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Accepted: 01/13/2025] [Indexed: 02/04/2025] Open
Abstract
PURPOSE The 2021 WHO classification of central nervous system tumors introduced molecular criteria to stratify Grade 4 gliomas, which remain heterogeneous. This study aims to elucidate the clinical, radiological, and molecular characteristics of WHO Grade 4 gliomas, focusing on their prognostic implications and the development of a predictive model for astrocytoma IDH-mutant WHO Grade 4 (A4). METHODS A retrospective cohort of 223 patients from Beijing Tiantan Hospital was analyzed. Clinical, radiological, and histopathological data were combined with molecular profiling, focusing on IDH mutations, TERT promoter mutations, and MGMT methylation. A predictive model was developed using LASSO regression to distinguish A4 from glioblastomas and validated with an external dataset from UCSF. RESULTS The cohort included 201 glioblastomas (90.1%) and 22 A4 cases (9.9%). A4 tumors were associated with younger age, higher MGMT promoter methylation, lower rates of TERT mutations, and distinct radiological features, such as cortical non-enhancing tumor infiltration (CnCE). Patients with A4 demonstrated significantly better survival outcomes compared to glioblastoma patients (p < 0.001). The predictive model for A4, incorporating age, tumor margin, and CnCE, achieved an AUC of 0.890 in the training set and 0.951 in the validation set. CONCLUSION Integrating molecular and clinical criteria improves prognostication in Grade 4 gliomas. The predictive model developed in this study effectively identifies A4 tumors, facilitating more personalized therapeutic strategies.
Collapse
Affiliation(s)
- Haihui Jiang
- Department of Neurosurgery, Peking University Third Hospital, Peking University, Beijing, China
| | - Xijie Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xiaodong Chen
- Department of Neurosurgery, Peking University Third Hospital, Peking University, Beijing, China
| | - Shouzan Zhang
- Department of Neurosurgery, Peking University Third Hospital, Peking University, Beijing, China
| | - Qingsen Ren
- Department of Neurosurgery, Peking University Third Hospital, Peking University, Beijing, China
| | - Mingxiao Li
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Ming Li
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xiaohui Ren
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Song Lin
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
- National Clinical Research Center for Neurological Diseases, Center of Brain Tumor, Beijing Institute for Brain Disorders and Beijing Key Laboratory of Brain Tumor, Beijing, China.
| | - Yong Cui
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
- National Clinical Research Center for Neurological Diseases, Center of Brain Tumor, Beijing Institute for Brain Disorders and Beijing Key Laboratory of Brain Tumor, Beijing, China.
| |
Collapse
|
15
|
Hinz F, Friedel D, Korshunov A, Ippen FM, Bogumil H, Banan R, Brandner S, Hasselblatt M, Boldt HB, Dirse V, Dohmen H, Aronica E, Brodhun M, Broekman MLD, Capper D, Cherkezov A, Deng MY, van Dis V, Felsberg J, Frank S, French PJ, Gerlach R, Göbel K, Goold E, Hench J, Kantelhardt S, Kohlhof-Meinecke P, Krieg S, Mawrin C, Morrison G, Mühlebner A, Ozduman K, Pfister SM, Poliani PL, Prinz M, Reifenberger G, Riemenschneider MJ, Sankowski R, Schrimpf D, Sill M, Snuderl M, Verdijk RM, Voisin MR, Wesseling P, Wick W, Reuss DE, von Deimling A, Sahm F, Maas SLN, Suwala AK. IDH-mutant astrocytomas with primitive neuronal component have a distinct methylation profile and a higher risk of leptomeningeal spread. Acta Neuropathol 2025; 149:12. [PMID: 39899075 PMCID: PMC11790679 DOI: 10.1007/s00401-025-02849-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 01/13/2025] [Accepted: 01/14/2025] [Indexed: 02/04/2025]
Abstract
IDH-mutant astrocytomas are diffuse gliomas that are defined by characteristic mutations in IDH1 or IDH2 and do not have complete 1p/19q co-deletion. The established grading criteria include histological features of brisk mitotic activity (grade 3) and necrosis and/or microvascular proliferation (grade 4). In addition, homozygous deletion of the CDKN2A/B locus has recently been implemented as a molecular marker for grade 4 IDH-mutant astrocytomas. Here, we describe a subgroup of high-grade IDH-mutant astrocytomas characterised by a primitive neuronal component based on histology and a distinct DNA methylation profile (n = 51, ASTRO PNC). Misinterpretation as carcinoma metastasis was common, since GFAP expression was absent in the primitive neuronal component, whereas TTF-1 expression was detected in 15/19 cases (79%) based on immunohistochemistry. Apart from mutations in IDH1, TP53, and ATRX, we observed enrichment for alterations in RB1 (n = 19/51, 37%) and MYCN (n = 14/51, 27%). Homozygous CDKN2A/B deletion (n = 1/51, 2%) and CDK4 amplification (n = 3/51, 6%) were relatively rare events. Clinical (n = 31 patients) and survival data (n = 23 patients) indicate a clinical behaviour similar to other CNS WHO grade 4 IDH-mutant astrocytomas, however with an increased risk for leptomeningeal (n = 7) and extra-axial (n = 2) spread. Taken together, ASTRO PNC is defined by a distinct molecular and histological appearance that can mimic metastatic disease and typically follows an aggressive clinical course.
Collapse
Affiliation(s)
- Felix Hinz
- Department of Neuropathology, Institute of Pathology, University Hospital Heidelberg, Im Neuenheimer Feld 224, 69120, Heidelberg, Germany
- Clinical Cooperation Unit Neuropathology, German Consortium for Translational Cancer Research (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Dennis Friedel
- Department of Neuropathology, Institute of Pathology, University Hospital Heidelberg, Im Neuenheimer Feld 224, 69120, Heidelberg, Germany
- Clinical Cooperation Unit Neuropathology, German Consortium for Translational Cancer Research (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Andrey Korshunov
- Department of Neuropathology, Institute of Pathology, University Hospital Heidelberg, Im Neuenheimer Feld 224, 69120, Heidelberg, Germany
- Clinical Cooperation Unit Neuropathology, German Consortium for Translational Cancer Research (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
| | - Franziska M Ippen
- Clinical Cooperation Unit Neuropathology, German Consortium for Translational Cancer Research (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Neurology, Heidelberg University Hospital, Heidelberg, Germany
- National Center for Tumor Diseases (NCT), NCT Heidelberg, a Partnership Between DKFZ and Heidelberg University Hospital, Heidelberg, Germany
| | - Henri Bogumil
- Department of Neuropathology, Institute of Pathology, University Hospital Heidelberg, Im Neuenheimer Feld 224, 69120, Heidelberg, Germany
- Clinical Cooperation Unit Neuropathology, German Consortium for Translational Cancer Research (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Rouzbeh Banan
- Department of Neuropathology, Institute of Pathology, University Hospital Heidelberg, Im Neuenheimer Feld 224, 69120, Heidelberg, Germany
| | - Sebastian Brandner
- Division of Neuropathology, National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, Queen Square, London, UK
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, Queen Square, London, UK
| | - Martin Hasselblatt
- Institute of Neuropathology, University Hospital Münster, Münster, Germany
| | - Henning B Boldt
- Department of Pathology, Odense University Hospital, Odense, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Vaidas Dirse
- Hematology, Oncology and Transfusion Medicine Center, Vilnius University Hospital Santaros Klinikos, Vilnius, Lithuania
| | - Hildegard Dohmen
- Institute of Neuropathology, Justus-Liebig University Giessen, Giessen, Germany
| | - Eleonora Aronica
- Department of Pathology, Amsterdam University Medical Centers (UMC), University of Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Michael Brodhun
- Department of Neurosurgery, Helios Clinic Erfurt, Erfurt, Health and Medical University, Erfurt, Germany
- Department of Pathology and Neuropathology, Helios Clinic Erfurt, Erfurt, Health and Medical University, Erfurt, Germany
| | - Marike L D Broekman
- Department of Neurosurgery, Haaglanden Medical Center and Leiden University Medical Center, Leiden, The Netherlands
| | - David Capper
- Department of Neuropathology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- German Cancer Consortium (DKTK), Partner Site Berlin, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Asan Cherkezov
- Institute of Neuropathology, University Hospital Münster, Münster, Germany
| | - Maximilian Y Deng
- National Center for Tumor Diseases (NCT), NCT Heidelberg, a Partnership Between DKFZ and Heidelberg University Hospital, Heidelberg, Germany
- Translational Pediatric Radiation Oncology, Hopp Children's Cancer Center (KITZ), Heidelberg, Germany
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg University, Heidelberg, Germany
- Heidelberg Institute for Radiation Oncology (HIRO) and National Center for Radiation Research in Oncology (NCRO), Heidelberg, Germany
- Department of Radiation Oncology, Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg University Hospital, Heidelberg University, Heidelberg, Germany
| | - Vera van Dis
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
- Department of Pathology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Jörg Felsberg
- Institute of Neuropathology, Medical Faculty, and University Hospital Düsseldorf, Heinrich Heine University, and German Cancer Consortium (DKTK), Partner Site Essen/Düsseldorf, Düsseldorf, Germany
| | - Stephan Frank
- Institute of Pathology, Division of Neuropathology, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Pim J French
- Department of Neurology, Brain Tumor Center at ErasmusMC Cancer Institute, Rotterdam, The Netherlands
| | - Rüdiger Gerlach
- Department of Neurosurgery, Helios Clinic Erfurt, Erfurt, Health and Medical University, Erfurt, Germany
| | - Kirsten Göbel
- Department of Neuropathology, Institute of Pathology, University Hospital Heidelberg, Im Neuenheimer Feld 224, 69120, Heidelberg, Germany
- Clinical Cooperation Unit Neuropathology, German Consortium for Translational Cancer Research (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Eric Goold
- Institute for Experimental Pathology, ARUP Laboratories, Salt Lake City, UT, USA
- Department of Pathology, University of Utah and ARUP Laboratories, Salt Lake City, UT, USA
| | - Jürgen Hench
- Institute of Pathology, Division of Neuropathology, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Sven Kantelhardt
- Department of Neurosurgery, Vivantes Klinikum im Friedrichshain, Berlin, Germany
| | | | - Sandro Krieg
- Department of Neurosurgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Christian Mawrin
- Department of Neuropathology and Center for Behavioral Brain Sciences (CBBS), Otto-von-Guericke-University Magdeburg, and Center of Behavioral Brain Science, Magdeburg, Germany
| | - Gillian Morrison
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, UK
| | - Angelika Mühlebner
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Koray Ozduman
- Department of Neurosurgery, School of Medicine, Acibadem University, 34752, Istanbul, Turkey
| | - Stefan M Pfister
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), NCT Heidelberg, a Partnership Between DKFZ and Heidelberg University Hospital, Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Pediatric Hematology and Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - Pietro Luigi Poliani
- Pathology Unit, Department of Molecular and Translational Medicine, University of Brescia Medical School, Brescia, Italy
| | - Marco Prinz
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
- Institute of Neuropathology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Guido Reifenberger
- Institute of Neuropathology, Medical Faculty, and University Hospital Düsseldorf, Heinrich Heine University, and German Cancer Consortium (DKTK), Partner Site Essen/Düsseldorf, Düsseldorf, Germany
| | | | - Roman Sankowski
- Institute of Neuropathology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Daniel Schrimpf
- Department of Neuropathology, Institute of Pathology, University Hospital Heidelberg, Im Neuenheimer Feld 224, 69120, Heidelberg, Germany
- Clinical Cooperation Unit Neuropathology, German Consortium for Translational Cancer Research (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Martin Sill
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | | - Robert M Verdijk
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
- Department of Pathology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Mathew R Voisin
- Princess Margaret Cancer Centre, MacFeeters Hamilton Neuro-Oncology Program, University Health Network and University of Toronto, Toronto, ON, Canada
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, ON, Canada
| | - Pieter Wesseling
- Department of Pathology, Amsterdam University Medical Centers, Amsterdam and Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Wolfgang Wick
- Department of Neurology, Heidelberg University Hospital, Heidelberg, Germany
- National Center for Tumor Diseases (NCT), NCT Heidelberg, a Partnership Between DKFZ and Heidelberg University Hospital, Heidelberg, Germany
- Clinical Cooperation Unit Neurooncology, German Consortium for Translational Cancer Research (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - David E Reuss
- Department of Neuropathology, Institute of Pathology, University Hospital Heidelberg, Im Neuenheimer Feld 224, 69120, Heidelberg, Germany
- Clinical Cooperation Unit Neuropathology, German Consortium for Translational Cancer Research (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Andreas von Deimling
- Department of Neuropathology, Institute of Pathology, University Hospital Heidelberg, Im Neuenheimer Feld 224, 69120, Heidelberg, Germany
- Clinical Cooperation Unit Neuropathology, German Consortium for Translational Cancer Research (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
| | - Felix Sahm
- Department of Neuropathology, Institute of Pathology, University Hospital Heidelberg, Im Neuenheimer Feld 224, 69120, Heidelberg, Germany
- Clinical Cooperation Unit Neuropathology, German Consortium for Translational Cancer Research (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
| | - Sybren L N Maas
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
- Department of Pathology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Abigail K Suwala
- Department of Neuropathology, Institute of Pathology, University Hospital Heidelberg, Im Neuenheimer Feld 224, 69120, Heidelberg, Germany.
- Clinical Cooperation Unit Neuropathology, German Consortium for Translational Cancer Research (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
16
|
Weller J, de Dios E, Katzendobler S, Corell A, Dénes A, Schmutzer-Sondergeld M, Javanmardi N, Thon N, Tonn JC, Jakola AS. The T1/T2 Ratio is Associated With Resectability in Patients With Isocitrate Dehydrogenase-Mutant Astrocytomas Central Nervous System World Health Organization Grades 2 and 3. Neurosurgery 2025; 96:365-372. [PMID: 38920377 DOI: 10.1227/neu.0000000000003069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 05/09/2024] [Indexed: 06/27/2024] Open
Abstract
BACKGROUND AND OBJECTIVES Isocitrate dehydrogenase (IDH)-mutant astrocytomas central nervous system World Health Organization grade 2 and 3 show heterogeneous appearance on MRI. In the premolecular era, the discrepancy between T1 hypointense and T2 hyperintense tumor volume in absolute values has been proposed as a marker for diffuse tumor growth. We set out to investigate if a ratio of T1 to T2 tumor volume (T1/T2 ratio) is associated with resectability and overall survival (OS) in patients with IDH-mutant astrocytomas. METHODS Patient data from 2 centers (Sahlgrenska University Hospital, Center A; LMU University Hospital, Center B) were collected retrospectively. Inclusion criteria were as follows: pre and postoperative MRI scans available for volumetric analysis (I), diagnosis of an IDH-mutant astrocytoma between 2003 and 2021 (II), and tumor resection at initial diagnosis (III). Tumor volumes were manually segmented. The T1/T2 ratio was calculated and correlated with extent of resection, residual T2 tumor volume, and OS. RESULTS The study comprised 134 patients with 65 patients included from Center A and 69 patients from Center B. The median OS was 134 months and did not differ between the cohorts ( P = .29). Overall, the median T1/T2 ratio was 0.79 (range 0.15-1.0). Tumors displaying a T1/T2 ratio of 0.33 or lower showed significantly larger residual tumor volumes postoperatively (median 17.9 cm 3 vs 4.6 cm 3 , P = .03). The median extent of resection in these patients was 65% vs 90% ( P = .03). The ratio itself did not correlate with OS. In multivariable analyses, larger postoperative tumor volumes were associated with shorter survival times (hazard ratio 1.02, 95% CI 1.01-1.03, P < .01). CONCLUSION The T1/T2 ratio might be a good indicator for diffuse tumor growth on MRI and is associated with resectability in patients with IDH-mutant astrocytoma. This ratio might aid to identify patients in which an oncologically relevant tumor volume reduction cannot be safely achieved.
Collapse
Affiliation(s)
- Jonathan Weller
- Department of Neurosurgery, LMU University Hospital, LMU Munich, München , Germany
| | - Eddie de Dios
- Institute of Clinical Sciences, Sahlgrenska Academy, Gothenburg , Sweden
- Department of Radiology, Sahlgrenska University Hospital, Gothenburg , Sweden
| | - Sophie Katzendobler
- Department of Neurosurgery, LMU University Hospital, LMU Munich, München , Germany
| | - Alba Corell
- Department of Neurosurgery, Sahlgrenska University Hospital, Gothenburg , Sweden
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, Gothenburg , Sweden
| | - Anna Dénes
- Department of Neurosurgery, Sahlgrenska University Hospital, Gothenburg , Sweden
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, Gothenburg , Sweden
| | | | - Niloufar Javanmardi
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, Gothenburg , Sweden
| | - Niklas Thon
- Department of Neurosurgery, LMU University Hospital, LMU Munich, München , Germany
- German Consortium for Translational Cancer Research (DKTK), Partner site Munich, Heidelberg , Germany
| | - Joerg-Christian Tonn
- Department of Neurosurgery, LMU University Hospital, LMU Munich, München , Germany
- German Consortium for Translational Cancer Research (DKTK), Partner site Munich, Heidelberg , Germany
| | - Asgeir S Jakola
- Department of Neurosurgery, Sahlgrenska University Hospital, Gothenburg , Sweden
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, Gothenburg , Sweden
| |
Collapse
|
17
|
Masui K, Onizuka H, Muragaki Y, Kawamata T, Nagashima Y, Kurata A, Komori T. Integrated assessment of malignancy in IDH-mutant astrocytoma with p16 and methylthioadenosine phosphorylase immunohistochemistry. Neuropathology 2025; 45:66-75. [PMID: 39313445 DOI: 10.1111/neup.13005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/28/2024] [Accepted: 08/30/2024] [Indexed: 09/25/2024]
Abstract
In the fifth edition of the World Health Organization's (WHO) classification of tumors of the central nervous system (CNS), molecular analysis is required for not only determining each tumor type but assessing its prognosis based on malignancy (CNS WHO grade). A notable example is the loss of tumor suppressor gene cyclin-dependent kinase inhibitor 2A (CDKN2A), and CDKN2A homozygous deletion (HD) is a novel CNS WHO grade 4 marker in isocitrate dehydrogenase gene (IDH)-mutant astrocytoma. However, incorporating molecular workup into the "routine diagnostics" of each brain tumor type remains a major challenge, especially in resource-limited settings, including low- and middle-income countries. We herein validated the usefulness of p16 and methylthioadenosine phosphorylase (MTAP) immunohistochemistry (IHC) as potential surrogates for the assessment of CDKN2A status in 20 IDH-mutant astrocytoma cases. Of note, loss or retention of p16 and MTAP could accurately predict CDKN2A HD (p16: 87.5%, MTAP: 88.9%) or non-HD (p16: 100%, MTAP: 100%) with a single marker alone. Importantly, we revealed contributing factors to gray-zone IHC results (p16: 5-20%, MTAP: mosaic), including (1) hemizygous deletion of CDKN2A, (2) degenerative findings, and (3) intratumoral CDKN2A HD heterogeneity, the detailed histologic and molecular assessment of which would be a key to achieving integrated assessment of malignancy in IDH-mutant astrocytoma. We characterized the pitfalls of each method and provided for the first time a practical flowchart of astrocytoma grading, contributing to a normalization of WHO2021-based molecular diagnostics in resource-limited settings.
Collapse
Affiliation(s)
- Kenta Masui
- Department of Pathology, Tokyo Women's Medical University, Tokyo, Japan
| | - Hiromi Onizuka
- Department of Pathology, Kyorin University, Tokyo, Japan
| | - Yoshihiro Muragaki
- Center for Advanced Medical Engineering Research and Development, Kobe University, Kobe, Japan
- Department of Neurosurgery, Tokyo Women's Medical University Hospital, Tokyo, Japan
| | - Takakazu Kawamata
- Department of Neurosurgery, Tokyo Women's Medical University Hospital, Tokyo, Japan
| | - Yoji Nagashima
- Department of Surgical Pathology, Tokyo Women's Medical University Hospital, Tokyo, Japan
| | - Atsushi Kurata
- Department of Pathology, Tokyo Women's Medical University, Tokyo, Japan
| | - Takashi Komori
- Department of Laboratory Medicine and Pathology, Tokyo Metropolitan Neurological Hospital, Tokyo, Japan
| |
Collapse
|
18
|
Walbert T, Avila EK, Boele FW, Hertler C, Lu-Emerson C, van der Meer PB, Peters KB, Rooney AG, Templer JW, Koekkoek JAF. Symptom management in isocitrate dehydrogenase mutant glioma. Neurooncol Pract 2025; 12:i38-i48. [PMID: 39776527 PMCID: PMC11703367 DOI: 10.1093/nop/npae088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025] Open
Abstract
According to the 2021 World Health Organization classification of CNS tumors, gliomas harboring a mutation in isocitrate dehydrogenase (mIDH) are considered a distinct disease entity, typically presenting in adult patients before the age of 50 years. Given their multiyear survival, patients with mIDH glioma are affected by tumor and treatment-related symptoms that can have a large impact on the daily life of both patients and their caregivers for an extended period of time. Selective oral inhibitors of mIDH enzymes have recently joined existing anticancer treatments, including resection, radiotherapy, and chemotherapy, as an additional targeted treatment modality. With new treatments that improve progression-free and possibly overall survival, preventing and addressing daily symptoms becomes even more clinically relevant. In this review we discuss the management of the most prevalent symptoms, including tumor-related epilepsy, cognitive dysfunction, mood disorders, and fatigue, in patients with mIDH glioma, and issues regarding patient's health-related quality of life and caregiver needs in the era of mIDH inhibitors. We provide recommendations for practicing healthcare professionals caring for patients who are eligible for treatment with mIDH inhibitors.
Collapse
Affiliation(s)
- Tobias Walbert
- Department of Neurology and Neurosurgery, Henry Ford Health, Wayne State and Michigan State University, Detroit, Michigan, USA
| | - Edward K Avila
- Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Florien W Boele
- Academic Unit of Health Economics, Leeds Institute of Health Sciences, Faculty of Medicine and Health, University of Leeds, Leeds, UK
- Patient Centred Outcomes Research, Leeds Institute of Medical Research at St. James’s, St. James’s University Hospital, University of Leeds, Leeds, UK
| | - Caroline Hertler
- Competence Center for Palliative Care, Department of Radiation Oncology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Christine Lu-Emerson
- Department of Neurology, Maine Health/Maine Medical Center, Scarborough, Maine, USA
| | - Pim B van der Meer
- Department of Psychiatry, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Katherine B Peters
- The Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, North Carolina, USA
| | - Alasdair G Rooney
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Jessica W Templer
- Department of Neurology, Northwestern University, Chicago, Illinois, USA
| | - Johan A F Koekkoek
- Department of Neurology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
19
|
Emiliani FE, Ismail AAO, Hughes EG, Tsongalis GJ, Zanazzi GJ, Lin CC. Nanopore-based random genomic sampling for intraoperative molecular diagnosis. Genome Med 2025; 17:6. [PMID: 39833913 PMCID: PMC11744943 DOI: 10.1186/s13073-025-01427-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 01/02/2025] [Indexed: 01/22/2025] Open
Abstract
BACKGROUND Central nervous system tumors are among the most lethal types of cancer. A critical factor for tailored neurosurgical resection strategies depends on specific tumor types. However, it is uncommon to have a preoperative tumor diagnosis, and intraoperative morphology-based diagnosis remains challenging. Despite recent advances in intraoperative methylation classifications of brain tumors, accuracy may be compromised by low tumor purity. Copy number variations (CNVs), which are almost ubiquitous in cancer, offer highly sensitive molecular biomarkers for diagnosis. These quantitative genomic alterations provide insight into dysregulated oncogenic pathways and can reveal potential targets for molecular therapies. METHODS We develop iSCORED, a one-step random genomic DNA reconstruction method that enables efficient, unbiased quantification of genome-wide CNVs. By concatenating multiple genomic fragments into long reads, the method leverages low-pass sequencing to generate approximately 1-2 million genomic fragments within 1 h. This approach allows for ultrafast high-resolution CNV analysis at a genomic resolution of 50 kb. In addition, concurrent methylation profiling enables brain tumor methylation classification and identifies promoter methylation in amplified oncogenes, providing an integrated diagnostic approach. RESULTS In our retrospective cohort of 26 malignant brain tumors, iSCORED demonstrated 100% concordance in CNV detection, including chromosomal alterations and oncogene amplifications, when compared to clinically validated assays such as Next-Generation Sequencing and Chromosomal Microarray. Furthermore, we validated iSCORED's real-time applicability in 15 diagnostically challenging primary brain tumors, achieving 100% concordance in detecting aberrant CNV detection, including diagnostic chromosomal gains/losses and oncogene amplifications (10/10). Of these, 14 out of 15 brain tumor methylation classifications aligned with final pathological diagnoses. This streamlined workflow-from tissue arrival to automatic generation of CNV and methylation reports-can be completed within 105 min. CONCLUSIONS The iSCORED pipeline represents the first method capable of high-resolution CNV detection within the intraoperative timeframe. By combining CNV detection and methylation classification, iSCORED provides a rapid and comprehensive molecular diagnostic tool that can inform rapid clinical decision. The integrated approach not only enhances the accuracy of tumor diagnosis but also optimizes surgical planning and identifies potential molecular therapies, all within the critical intraoperative timeframe.
Collapse
Affiliation(s)
- Francesco E Emiliani
- Department of Pathology and Laboratory Medicine, Dartmouth-Hitchcock Medical Center, Lebanon, NH, 03756, USA
- Geisel School of Medicine, Dartmouth College, Hanover, NH, 03755, USA
| | - Abdol Aziz Ould Ismail
- Department of Pathology and Laboratory Medicine, Dartmouth-Hitchcock Medical Center, Lebanon, NH, 03756, USA
| | - Edward G Hughes
- Department of Pathology and Laboratory Medicine, Dartmouth-Hitchcock Medical Center, Lebanon, NH, 03756, USA
| | - Gregory J Tsongalis
- Department of Pathology and Laboratory Medicine, Dartmouth-Hitchcock Medical Center, Lebanon, NH, 03756, USA
- Dartmouth Cancer Center, Lebanon, NH, 03756, USA
- Geisel School of Medicine, Dartmouth College, Hanover, NH, 03755, USA
| | - George J Zanazzi
- Department of Pathology and Laboratory Medicine, Dartmouth-Hitchcock Medical Center, Lebanon, NH, 03756, USA
- Dartmouth Cancer Center, Lebanon, NH, 03756, USA
- Geisel School of Medicine, Dartmouth College, Hanover, NH, 03755, USA
| | - Chun-Chieh Lin
- Department of Pathology and Laboratory Medicine, Dartmouth-Hitchcock Medical Center, Lebanon, NH, 03756, USA.
- Dartmouth Cancer Center, Lebanon, NH, 03756, USA.
- Geisel School of Medicine, Dartmouth College, Hanover, NH, 03755, USA.
| |
Collapse
|
20
|
Himstead AS, Chen JW, Chu E, Perez-Rosendahl MA, Zheng M, Mathew S, Yuen CA. Expanded Use of Vorasidenib in Non-Enhancing Recurrent CNS WHO Grade 3 Oligodendroglioma. Biomedicines 2025; 13:201. [PMID: 39857783 PMCID: PMC11762706 DOI: 10.3390/biomedicines13010201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 12/31/2024] [Accepted: 01/13/2025] [Indexed: 01/27/2025] Open
Abstract
Background/Objectives: Anaplastic oligodendrogliomas (AOs) are central nervous system (CNS) World Health Organization (WHO) grade 3 gliomas characterized by isocitrate dehydrogenase (IDH) mutation (m)IDH and 1p/19q codeletion. AOs are typically treated with surgery and chemoradiation. However, chemoradiation can cause detrimental late neurocognitive morbidities and an accelerated disease course. The recently regulatory-approved vorasidenib, a brain-penetrating oral inhibitor of IDH1/2, has altered the treatment paradigm for recurrent/residual non-enhancing surgically resected CNS WHO grade 2 mIDH gliomas. Though vorasidenib can delay the time to chemoradiation for grade 2 gliomas, the implications for vorasidenib in non-grade 2 mIDH gliomas are not well understood. Results: We present a case of a 71-year-old male with a grade 3 non-enhancing oligodendroglioma successfully treated with vorasidenib with an 11% reduction in residual tumor volume. Vorasidenib was well tolerated in our patient with a mild elevation in his liver transaminases that resolved following a brief interruption in treatment. Conclusions: Our case suggests that vorasidenib may impart therapeutic benefits in this setting. This case illustrates the need for further investigation into these less commonly addressed scenarios and treatment strategies that extend beyond current guidelines.
Collapse
Affiliation(s)
- Alexander S. Himstead
- Department of Neurological Surgery, University of California, Irvine, CA 92697, USA; (A.S.H.); (J.W.C.)
| | - Jefferson W. Chen
- Department of Neurological Surgery, University of California, Irvine, CA 92697, USA; (A.S.H.); (J.W.C.)
| | - Eleanor Chu
- Department of Radiological Sciences, University of California, Irvine, CA 92697, USA;
| | - Mari A. Perez-Rosendahl
- Department of Pathology & Laboratory Medicine, University of California, Irvine, CA 92697, USA;
| | - Michelle Zheng
- UC Irvine Charlie Dunlop School of Biological Sciences, University of California, Irvine, CA 92697, USA
| | - Sherin Mathew
- Department of Research, University of California, Irvine, CA 92697, USA
| | - Carlen A. Yuen
- Department of Neurology, Division of Neuro-Oncology, University of California, Irvine, CA 92697, USA
| |
Collapse
|
21
|
Ghosh HS, Patel RV, Woodward E, Greenwald NF, Bhave VM, Maury EA, Cello G, Hoffman SE, Li Y, Gupta H, Youssef G, Spurr LF, Vogelzang J, Touat M, Dubois F, Cherniack AD, Guo X, Tavakol S, Cioffi G, Lindeman NI, Ligon AH, Chiocca EA, Reardon DA, Wen PY, Meredith DM, Santagata S, Barnholtz-Sloan JS, Ligon KL, Beroukhim R, Bi WL. Contemporary prognostic signatures and refined risk stratification of gliomas: An analysis of 4400 tumors. Neuro Oncol 2025; 27:195-208. [PMID: 39164213 PMCID: PMC11726335 DOI: 10.1093/neuonc/noae164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Indexed: 08/22/2024] Open
Abstract
BACKGROUND With the significant shift in the classification, risk stratification, and standards of care for gliomas, we sought to understand how the overall survival of patients with these tumors is impacted by molecular features, clinical metrics, and treatment received. METHODS We assembled a cohort of patients with histopathologically diagnosed glioma from The Cancer Genome Atlas (TCGA), Project Genomics Evidence Neoplasia Information Exchange, and Dana-Farber Cancer Institute/Brigham and Women's Hospital. This incorporated retrospective clinical, histological, and molecular data alongside a prospective assessment of patient survival. RESULTS Of 4400 gliomas were identified: 2195 glioblastomas, 1198 IDH1/2-mutant astrocytomas, 531 oligodendrogliomas, 271 other IDH1/2-wild-type gliomas, and 205 pediatric-type glioma. Molecular classification updated 27.2% of gliomas from their original histopathologic diagnosis. Examining the distribution of molecular alterations across glioma subtypes revealed mutually exclusive alterations within tumorigenic pathways. Non-TCGA patients had significantly improved overall survival compared to TCGA patients, with 26.7%, 55.6%, and 127.8% longer survival for glioblastoma, IDH1/2-mutant astrocytoma, and oligodendroglioma, respectively (all P < .01). Several prognostic features were characterized, including NF1 alteration and 21q loss in glioblastoma, and EGFR amplification and 22q loss in IDH1/2-mutant astrocytoma. Leveraging the size of this cohort, nomograms were generated to assess the probability of overall survival based on patient age, the molecular features of a tumor, and the treatment received. CONCLUSIONS By applying modern molecular criteria, we characterize the genomic diversity across glioma subtypes, identify clinically applicable prognostic features, and provide a contemporary update on patient survival to serve as a reference for ongoing investigations.
Collapse
Affiliation(s)
- Hia S Ghosh
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Ruchit V Patel
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Eleanor Woodward
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Noah F Greenwald
- School of Medicine, Stanford University, Palo Alto, California, USA
| | - Varun M Bhave
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Eduardo A Maury
- Harvard/MIT MD-PhD Program, Harvard Medical School, Boston, Massachusetts, USA
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Gregory Cello
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Samantha E Hoffman
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Yvonne Li
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA
| | - Hersh Gupta
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA
| | - Gilbert Youssef
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Liam F Spurr
- Department of Radiation and Cellular Oncology, University of Chicago Pritzker School of Medicine, Chicago, Illinois, USA
| | - Jayne Vogelzang
- Department of Pathology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Mehdi Touat
- Sorbonne Université, Inserm, CNRS, UMR S 1127, Institut du Cerveau, ICM, AP-HP, Hôpitaux Universitaires La Pitié Salpêtrière - Charles Foix, Service de Neurologie 2-Mazarin, Paris, France
- Department of Neurology, Brigham and Women’s Hospital, Boston, Massachusetts, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Frank Dubois
- Division of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA
| | - Andrew D Cherniack
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA
| | - Xiaopeng Guo
- Department of Neurosurgery, Peking Union Medical College Hospital, Beijing, China
| | - Sherwin Tavakol
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
- Department of Pathology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Gino Cioffi
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland, USA
| | - Neal I Lindeman
- Department of Pathology, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Azra H Ligon
- Department of Pathology, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - E Antonio Chiocca
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - David A Reardon
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Patrick Y Wen
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - David M Meredith
- Department of Pathology, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Sandro Santagata
- Department of Pathology, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Jill S Barnholtz-Sloan
- Center for Biomedical Informatics and Information Technology, National Cancer Institute, Bethesda, Maryland
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland, USA
| | - Keith L Ligon
- Department of Pathology, Brigham and Women’s Hospital, Boston, Massachusetts, USA
- Department of Pathology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA
| | - Rameen Beroukhim
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA
| | - Wenya Linda Bi
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
22
|
Wetzel EA, Nohman AI, Hsieh AL, Reuss D, Unterberg AW, Eyüpoglu IY, Hua L, Youssef G, Wen PY, Cahill DP, Jungk C, Juratli TA, Miller JJ. A multi-center, clinical analysis of IDH-mutant gliomas, WHO Grade 4: implications for prognosis and clinical trial design. J Neurooncol 2025; 171:373-381. [PMID: 39432026 PMCID: PMC11695381 DOI: 10.1007/s11060-024-04852-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 10/03/2024] [Indexed: 10/22/2024]
Abstract
PURPOSE Mutations in the Isocitrate Dehydrogenase (IDH) genes, IDH1 or IDH2, define a group of adult diffuse gliomas associated with a younger age at diagnosis and better prognosis than IDH wild-type glioblastoma. Within IDH mutant gliomas, a small fraction of astrocytic tumors present with grade 4 histologic features and poor prognosis. In molecular studies, homozygous deletion of CDKN2A/B is independently predictive of poor prognosis and short survival. As a consequence, 2021 WHO classification now also recognizes this molecular feature, CDKN2A/B deletion, as sufficient for classifying an astrocytoma as IDH-mutant, WHO Grade 4, regardless of histological grading. Here, we investigate outcomes of patients with WHO Grade 4 IDH-mutant astrocytoma both with and without CDKN2A/B deletion, to compare these groups and evaluate clinical and radiographic factors that contribute to survival. METHODS We retrospectively identified 79 patients with IDH-mutant astrocytoma with CDKN2A/B deletion detected at initial diagnosis across five international institutions as well as a comparison group of 51 patients with IDH-mutant, astrocytoma, histologically Grade 4 without detectable CDKN2A/B deletion. We assembled clinical and radiographic features for all patients. RESULTS We find that CDKN2A/B deletion was associated with significantly worse overall survival (OS; p = 0.0004) and progression-free survival (PFS; p = 0.0026), with median OS of 5.0 years and PFS of 3.0 years, compared to 10.1 and 5.0 years for tumors with a grade 4 designation based only on histologic criteria. Multivariate analysis confirmed CDKN2A/B deletion as a strong negative prognosticator for both OS (HR = 3.51, p < 0.0001) and PFS (HR = 2.35, p = 0.00095). In addition, in tumors with CDKN2A/B deletion, preoperative contrast enhancement is a significant predictor of worse OS (HR 2.19, 95% CI 1.22-3.93, p = 0.0090) and PFS (HR = 1.74, 95% CI = 1.02-2.97, p = 0.0420). CONCLUSIONS These findings underscore the severe prognostic impact of CDKN2A/B deletion in IDH-mutant astrocytomas and highlight the need for further refinement of tumor prognostic categorization. Our results provide a key benchmark of baseline patient outcomes for therapeutic trials, underscoring the importance of CDKN2A/B status assessment, in addition to histologic grading, in clinical trial design and therapeutic decision-making for IDH-mutant astrocytoma patients.
Collapse
Affiliation(s)
- Ethan A Wetzel
- Translational Neuro-Oncology Laboratory, Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Amin I Nohman
- Department of Neurosurgery, University Hospital Heidelberg, Heidelberg, Germany
- Department of Neurosurgery, Medical Faculty, Heidelberg University, Heidelberg, Germany
| | - Annie L Hsieh
- Pappas Center for Neuro-Oncology, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - David Reuss
- Department of Neuropathology, Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
- Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ), German Consortium for Translational Cancer Research (DKTK), Heidelberg, Germany
| | - Andreas W Unterberg
- Department of Neurosurgery, University Hospital Heidelberg, Heidelberg, Germany
- Department of Neurosurgery, Medical Faculty, Heidelberg University, Heidelberg, Germany
| | - Ilker Y Eyüpoglu
- Faculty of Medicine, Department of Neurosurgery, TU Dresden, Dresden, Germany
| | - Lingyang Hua
- Hospital of Huashan, Fudan University, Shanghai, China
| | - Gilbert Youssef
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Patrick Y Wen
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Daniel P Cahill
- Translational Neuro-Oncology Laboratory, Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Christine Jungk
- Department of Neurosurgery, University Hospital Heidelberg, Heidelberg, Germany
- Department of Neurosurgery, Medical Faculty, Heidelberg University, Heidelberg, Germany
| | - Tareq A Juratli
- Translational Neuro-Oncology Laboratory, Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Faculty of Medicine, Department of Neurosurgery, TU Dresden, Dresden, Germany
| | - Julie J Miller
- Translational Neuro-Oncology Laboratory, Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
- Pappas Center for Neuro-Oncology, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
23
|
Fleming JL, Chakravarti A. Recent Advancements and Future Perspectives on Molecular Biomarkers in Adult Lower-Grade Gliomas. Cancer J 2025; 31:e0758. [PMID: 39841423 DOI: 10.1097/ppo.0000000000000758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2025]
Abstract
ABSTRACT There has been a significant paradigm shift in the clinical management of lower-grade glioma patients given the recent updates to the 2021 World Health Organization classification along with long-term results from randomized phase III clinical trials. As a result, we are now better able to diagnose and assign patients to the most appropriate treatment course. This review provides a comprehensive summary of the most robust and reliable molecular biomarkers for adult lower-grade gliomas and discusses current challenges facing this patient population that future correlative biology studies combined with advancements in technologies could help overcome.
Collapse
Affiliation(s)
- Jessica L Fleming
- From the Department of Radiation Oncology, Ohio State University Comprehensive Cancer Center, Columbus, OH
| | | |
Collapse
|
24
|
Darlix A, Bady P, Deverdun J, Lefort K, Rigau V, Le Bars E, Meriadec J, Carrière M, Coget A, Santarius T, Matys T, Duffau H, Hegi ME. Clinical value of the MGMT promoter methylation score in IDHmt low-grade glioma for predicting benefit from temozolomide treatment. Neurooncol Adv 2025; 7:vdae224. [PMID: 40041202 PMCID: PMC11877643 DOI: 10.1093/noajnl/vdae224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2025] Open
Abstract
Background Diffuse IDH mutant low-grade gliomas (IDHmt LGG) (World Health Organization grade 2) typically affect young adults. The outcome is variable, with survival ranging from 5 to over 20 years. The timing and choice of initial treatments after surgery remain controversial. In particular, radiotherapy is associated with early and late cognitive toxicity. Over 90% of IDHmt LGG exhibit some degree of promoter methylation of the repair gene O(6)-methylguanine-DNA methytransferase (MGMTp) that when expressed blunts the effect of alkylating agent chemotherapy, for example, temozolomide (TMZ). However, the clinical value of MGMTp methylation predicting benefit from TMZ in IDHmt LGG is unclear. Methods Patients treated in the EORTC-22033 phase III trial comparing TMZ versus radiotherapy served as training set to establish a cutoff based on the MGMT-STP27 methylation score. A validation cohort was established with patients treated in a single-center first-line with TMZ after surgery/surgeries. Results The MGMT-STP27 methylation score was associated with better progression-free survival (PFS) in the training cohort treated with TMZ, but not radiotherapy. In the validation cohort, an association with next treatment-free survival (P = .045) after TMZ was observed, and a trend using RANO criteria (P = .07). A cutoff value set above the 95% confidence interval of being methylated was significantly associated with PFS in the TMZ-treated training cohort, but not in the radiotherapy arm. However, this cutoff could not be confirmed in the test cohort. Conclusions While the MGMTp methylation score was associated with better outcomes in TMZ-treated IDHmt LGG, a cutoff could not be established to guide treatment decisions.
Collapse
Affiliation(s)
- Amélie Darlix
- Institute of Functional Genomics IGF, University of Montpellier, CNRS, INSERM, Montpellier, France
- Department of Medical Oncology, Institut Régional du Cancer de Montpellier, University of Montpellier, Montpellier, France
| | - Pierre Bady
- SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
- Translational Data Science & Biomedical Data Science Center, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
- Neuroscience Research Center and Service of Neurosurgery, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Jérémy Deverdun
- Department of Neuroradiology, Gui de Chauliac Hospital, Montpellier University Medical Center, Montpellier, France
- Department of Neuroradiology, I2FH, Institut d’Imagerie Fonctionnelle Humaine, Montpellier University Medical Center, Montpellier, France
| | - Karine Lefort
- Department of Laboratory Medicine and Pathology, Institute of Pathology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Valérie Rigau
- Department of Neuropathology, Gui de Chauliac Hospital, Montpellier University Medical Center, Montpellier, France
- Institute of Functional Genomics IGF, University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Emmanuelle Le Bars
- Department of Neuroradiology, Gui de Chauliac Hospital, Montpellier University Medical Center, Montpellier, France
- Department of Neuroradiology, I2FH, Institut d’Imagerie Fonctionnelle Humaine, Montpellier University Medical Center, Montpellier, France
| | - Justine Meriadec
- Department of Neuroradiology, Gui de Chauliac Hospital, Montpellier University Medical Center, Montpellier, France
| | - Mathilde Carrière
- Department of Neuroradiology, Gui de Chauliac Hospital, Montpellier University Medical Center, Montpellier, France
| | - Arthur Coget
- Department of Neuroradiology, Gui de Chauliac Hospital, Montpellier University Medical Center, Montpellier, France
| | - Thomas Santarius
- Department of Neurosurgery, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Tomasz Matys
- Department of Radiology, University of Cambridge and Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Hugues Duffau
- Department of Neurosurgery, Gui de Chauliac Hospital, Montpellier University Medical Center, Montpellier, France
- Institute of Functional Genomics IGF, University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Monika E Hegi
- Departments of Oncology and Clinical Neurosciences, L. Lundin and Family Brain Tumor Research Center, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
- Neuroscience Research Center and Service of Neurosurgery, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
25
|
Rodriguez Almaraz E, Guerra GA, Al-Adli NN, Young JS, Dada A, Quintana D, Taylor JW, Oberheim Bush NA, Clarke JL, Butowski NA, de Groot J, Pekmezci M, Perry A, Bollen AW, Scheffler AW, Glidden DV, Phillips JJ, Costello JF, Chang EF, Hervey-Jumper S, Berger MS, Francis SS, Chang SM, Solomon DA. Longitudinal profiling of IDH-mutant astrocytomas reveals acquired RAS-MAPK pathway mutations associated with inferior survival. Neurooncol Adv 2025; 7:vdaf024. [PMID: 40051658 PMCID: PMC11883348 DOI: 10.1093/noajnl/vdaf024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2025] Open
Abstract
Background Isocitrate dehydrogenase (IDH)-mutant astrocytomas represent the most frequent primary intraparenchymal brain tumor in young adults, which typically arise as low-grade neoplasms that often progress and transform to higher grade despite current therapeutic approaches. However, the genetic alterations underlying high-grade transformation and disease progression of IDH-mutant astrocytomas remain inadequately defined. Methods Genomic profiling was performed on 205 IDH-mutant astrocytomas from 172 patients from both initial treatment-naive and recurrent post-treatment tumor specimens. Molecular findings were integrated with clinical outcomes and pathologic features to define the associations of novel genetic alterations in the RAS-MAPK signaling pathway. Results Likely oncogenic alterations within the RAS-MAPK mitogenic signaling pathway were identified in 13% of IDH-mutant astrocytomas, which involved the KRAS, NRAS, BRAF, NF1, SPRED1, and LZTR1 genes. These included focal amplifications and known activating mutations in oncogenic components (e.g. KRAS, BRAF), as well as deletions and truncating mutations in negative regulatory components (e.g. NF1, SPRED1). These RAS-MAPK pathway alterations were enriched in recurrent tumors and occurred nearly always in high-grade tumors, often co-occurring with CDKN2A homozygous deletion. Patients whose IDH-mutant astrocytomas harbored these oncogenic RAS-MAPK pathway alterations had inferior survival compared to those with RAS-MAPK wild-type tumors. Conclusions These findings highlight novel genetic perturbations in the RAS-MAPK pathway as a likely mechanism contributing to the high-grade transformation and treatment resistance of IDH-mutant astrocytomas that may be a potential therapeutic target for affected patients and used for future risk stratification.
Collapse
Affiliation(s)
- Eduardo Rodriguez Almaraz
- Department of Epidemiology and Biostatistics, University of California, San Francisco, California, USA
- Division of Neuro-Oncology, Department of Neurological Surgery, University of California, San Francisco, California, USA
- UCSF Brain Tumor Center, University of California, San Francisco, California, USA
| | - Geno A Guerra
- Department of Epidemiology and Biostatistics, University of California, San Francisco, California, USA
- UCSF Brain Tumor Center, University of California, San Francisco, California, USA
| | - Nadeem N Al-Adli
- Department of Neurological Surgery, University of California, San Francisco, California, USA
- UCSF Brain Tumor Center, University of California, San Francisco, California, USA
| | - Jacob S Young
- Department of Neurological Surgery, University of California, San Francisco, California, USA
- UCSF Brain Tumor Center, University of California, San Francisco, California, USA
| | - Abraham Dada
- Department of Neurological Surgery, University of California, San Francisco, California, USA
- UCSF Brain Tumor Center, University of California, San Francisco, California, USA
| | - Daniel Quintana
- Department of Neurological Surgery, University of California, San Francisco, California, USA
- UCSF Brain Tumor Center, University of California, San Francisco, California, USA
| | - Jennie W Taylor
- Department of Neurology, University of California, San Francisco, California, USA
- Division of Neuro-Oncology, Department of Neurological Surgery, University of California, San Francisco, California, USA
- UCSF Brain Tumor Center, University of California, San Francisco, California, USA
| | - Nancy Ann Oberheim Bush
- Department of Neurology, University of California, San Francisco, California, USA
- Division of Neuro-Oncology, Department of Neurological Surgery, University of California, San Francisco, California, USA
- UCSF Brain Tumor Center, University of California, San Francisco, California, USA
| | - Jennifer L Clarke
- Department of Neurology, University of California, San Francisco, California, USA
- Division of Neuro-Oncology, Department of Neurological Surgery, University of California, San Francisco, California, USA
- UCSF Brain Tumor Center, University of California, San Francisco, California, USA
| | - Nicholas A Butowski
- Division of Neuro-Oncology, Department of Neurological Surgery, University of California, San Francisco, California, USA
- UCSF Brain Tumor Center, University of California, San Francisco, California, USA
| | - John de Groot
- Division of Neuro-Oncology, Department of Neurological Surgery, University of California, San Francisco, California, USA
- UCSF Brain Tumor Center, University of California, San Francisco, California, USA
| | - Melike Pekmezci
- Department of Pathology, University of California, San Francisco, California, USA
- UCSF Brain Tumor Center, University of California, San Francisco, California, USA
| | - Arie Perry
- Department of Pathology, University of California, San Francisco, California, USA
- Department of Neurological Surgery, University of California, San Francisco, California, USA
- UCSF Brain Tumor Center, University of California, San Francisco, California, USA
| | - Andrew W Bollen
- Department of Pathology, University of California, San Francisco, California, USA
- UCSF Brain Tumor Center, University of California, San Francisco, California, USA
| | - Aaron W Scheffler
- Department of Epidemiology and Biostatistics, University of California, San Francisco, California, USA
| | - David V Glidden
- Department of Epidemiology and Biostatistics, University of California, San Francisco, California, USA
| | - Joanna J Phillips
- Department of Pathology, University of California, San Francisco, California, USA
- Department of Neurological Surgery, University of California, San Francisco, California, USA
- UCSF Brain Tumor Center, University of California, San Francisco, California, USA
| | - Joseph F Costello
- Department of Neurological Surgery, University of California, San Francisco, California, USA
- UCSF Brain Tumor Center, University of California, San Francisco, California, USA
| | - Edward F Chang
- Department of Neurological Surgery, University of California, San Francisco, California, USA
- UCSF Brain Tumor Center, University of California, San Francisco, California, USA
| | - Shawn Hervey-Jumper
- Department of Neurological Surgery, University of California, San Francisco, California, USA
- UCSF Brain Tumor Center, University of California, San Francisco, California, USA
| | - Mitchel S Berger
- Department of Neurological Surgery, University of California, San Francisco, California, USA
- UCSF Brain Tumor Center, University of California, San Francisco, California, USA
| | - Stephen S Francis
- Department of Neurological Surgery, University of California, San Francisco, California, USA
- UCSF Brain Tumor Center, University of California, San Francisco, California, USA
| | - Susan M Chang
- Division of Neuro-Oncology, Department of Neurological Surgery, University of California, San Francisco, California, USA
- UCSF Brain Tumor Center, University of California, San Francisco, California, USA
| | - David A Solomon
- Department of Pathology, University of California, San Francisco, California, USA
- UCSF Brain Tumor Center, University of California, San Francisco, California, USA
| |
Collapse
|
26
|
Lim-Fat MJ, Cotter JA, Touat M, Vogelzang J, Sousa C, Pisano W, Geduldig J, Bhave V, Driver J, Kao PC, McGovern A, Ma C, Margol AS, Cole K, Smith A, Goldman S, Kaneva K, Truong A, Nazemi KJ, Wood MD, Wright KD, London WB, Warren KE, Wen PY, Bi WL, Alexandrescu S, Reardon DA, Ligon KL, Yeo KK. A comparative analysis of IDH-mutant glioma in pediatric, young adult, and older adult patients. Neuro Oncol 2024; 26:2364-2376. [PMID: 39082676 PMCID: PMC11630535 DOI: 10.1093/neuonc/noae142] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2024] Open
Abstract
BACKGROUND The frequency and significance of IDH mutations in glioma across age groups are incompletely understood. We performed a multi-center retrospective age-stratified comparison of patients with IDH-mutant gliomas to identify age-specific differences in clinico-genomic features, treatments, and outcomes. METHODS Clinical, histologic, and sequencing data from patients with IDH-mutant, grades 2-4 gliomas, were collected from collaborating institutions between 2013 and 2019. Patients were categorized as pediatric (<19 years), young adult (YA; 19-39 years), or older adult (≥40 years). Clinical presentation, treatment, histologic, and molecular features were compared across age categories using Fisher's exact test or analysis-of-variance. Cox proportional-hazards regression was used to determine the association of age and other covariates with overall (OS) and progression-free survival (PFS). RESULTS We identified a cohort of 379 patients (204 YA) with IDH-mutant glioma with clinical data. There were 155 (41%) oligodendrogliomas and 224 (59%) astrocytomas. YA showed significantly shorter PFS and shorter median time-to-malignant transformation (MT) compared to pediatric and adult groups, but no significant OS difference. Adjusting for pathology type, extent of resection, and upfront therapy in multivariable analysis, the YA group was independently prognostic of shorter PFS than pediatric and adult groups. Among astrocytomas, CDK4/6 copy number amplifications were associated with both shorter PFS and shorter OS. Among oligodendrogliomas, PIK3CA and CDKN2A/2B alterations were associated with shorter OS. CONCLUSIONS IDH-mutant glioma YA patients had significantly shorter PFS and time to MT but did not differ in OS compared to pediatric and adult groups. Treatment approaches varied significantly by patient age and warrant further study as addressable age-associated outcome drivers.
Collapse
Affiliation(s)
- Mary Jane Lim-Fat
- Division of Neurology, Department of Medicine, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada (M.J.L.-F.)
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Jennifer A Cotter
- Department of Pathology and Laboratory Medicine, Children’s Hospital Los Angeles, Los Angeles, California, USA
| | - Mehdi Touat
- Department of Pathology, Brigham and Women’s Hospital, Boston, Massachusetts, USA
- Sorbonne Université, Inserm, CNRS, UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, AP-HP, Hôpitaux Universitaires La Pitié Salpêtrière - Charles Foix, Service de Neurologie 2-Mazarin, Paris, France
| | - Jayne Vogelzang
- Department of Pathology, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Cecilia Sousa
- Department of Pathology, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Will Pisano
- Department of Pathology, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Jack Geduldig
- Department of Pathology, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Varun Bhave
- Department of Neurosurgery, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Joseph Driver
- Department of Neurosurgery, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Pei-Chi Kao
- Department of Pediatric Oncology, Dana-Farber Cancer Institute/Boston Children’s Hospital, Boston, Massachusetts, USA
| | - Alana McGovern
- Department of Pediatric Oncology, Dana-Farber Cancer Institute/Boston Children’s Hospital, Boston, Massachusetts, USA
| | - Clement Ma
- Division of Biostatistics, Dalla Lana School of Public Health, Toronto, Ontario, Canada
- Department of Pediatric Oncology, Dana-Farber Cancer Institute/Boston Children’s Hospital, Boston, Massachusetts, USA
| | - Ashley S Margol
- Department of Pediatrics, Children’s Hospital Los Angeles, Los Angeles, California, USA
| | - Kristina Cole
- Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Amy Smith
- Department of Pediatrics, Orlando Health Arnold Palmer Hospital for Children, Orlando, Florida, USA
| | - Stewart Goldman
- Department of Child Health Phoenix Children’s & University of Arizona Medical School-Phoenix AZ, USA
- Department of Pediatrics, Ann & Robert H. Lurie Children’s Hospital of Chicago (S.G.*, K.K.*)
| | - Kristiyana Kaneva
- Tempus Labs, Inc., Chicago, Illinois, USA
- Department of Pediatrics, Ann & Robert H. Lurie Children’s Hospital of Chicago
| | - AiLien Truong
- Department of Pediatrics, OHSU Doernbecher Children’s Hospital, Portland, Oregon, USA
| | - Kellie J Nazemi
- Department of Pediatrics, OHSU Doernbecher Children’s Hospital, Portland, Oregon, USA
| | - Matthew D Wood
- Department of Pathology and Laboratory Medicine, Oregon Health & Science University, Portland, Oregon, USA
| | - Karen D Wright
- Department of Pediatric Oncology, Dana-Farber Cancer Institute/Boston Children’s Hospital, Boston, Massachusetts, USA
| | - Wendy B London
- Department of Pediatric Oncology, Dana-Farber Cancer Institute/Boston Children’s Hospital, Boston, Massachusetts, USA
| | - Katherine E Warren
- Department of Pediatric Oncology, Dana-Farber Cancer Institute/Boston Children’s Hospital, Boston, Massachusetts, USA
| | - Patrick Y Wen
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Wenya Linda Bi
- Department of Neurosurgery, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Sanda Alexandrescu
- Department of Pathology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Pathology, Boston Children’s Hospital, Boston Massachusetts, USA
| | - David A Reardon
- Adolescent and Young Adult Neuro-Oncology Program, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Keith L Ligon
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Department of Pathology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Pathology, Boston Children’s Hospital, Boston Massachusetts, USA
- Department of Pathology, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Kee Kiat Yeo
- Adolescent and Young Adult Neuro-Oncology Program, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute/Boston Children’s Hospital, Boston, Massachusetts, USA
| |
Collapse
|
27
|
Katzendobler S, Niedermeyer S, Blobner J, Trumm C, Harter PN, von Baumgarten L, Stoecklein VM, Tonn JC, Weller M, Thon N, Weller J. Determinants of long-term survival in patients with IDH-mutant gliomas. J Neurooncol 2024; 170:655-664. [PMID: 39316316 PMCID: PMC11614945 DOI: 10.1007/s11060-024-04826-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 09/10/2024] [Indexed: 09/25/2024]
Abstract
BACKGROUND Survival times of patients with IDH-mutant gliomas are variable and can extend to decades. Many studies provide progression-free rather than overall survival times and prognostic factors remain ill-defined. Here we explored characteristics of short- and long-term survivors within a cohort of patients with extended follow-up. METHODS This single-center, case-control study included 86 patients diagnosed between 1998 and 2023 who either died within 6 years after diagnosis or survived at least 15 years. Patient characteristics and prognostic factors were stratified by short- (< 6 years) versus long-term (≥ 15 years) survival. RESULTS Forty-seven patients (55%) diagnosed with astrocytoma and 39 patients (45%) with oligodendroglioma were included retrospectively. Median follow-up of the survivors was 16.6 years (range 15-28.9). Thirty-four deaths (40%) had been reported at database closure. Long-term survival was associated with CNS WHO grade 2 (p < 0.01), smaller tumor volumes (p = 0.01), lack of contrast enhancement (p < 0.01), wait-and-scan strategies (p < 0.01) and female sex (p = 0.04). In multivariate analyses for oligodendroglioma, larger T2 tumor volumes were associated with shorter survival (HR 1.02; 95% CI 1.01-1.05; p = 0.04). In patients with astrocytoma, lack of contrast enhancement (HR 0.38; 95% CI 0.15-0.94; p = 0.04) and wait-and-scan strategies (HR 5.75; 95% CI 1.66-26.61; p = 0.01) were associated with longer survival. CONCLUSION Large T2 tumor volume and contrast enhancement may be important risk factors for shorter survival, while age might be of lesser importance. Wait-and-scan strategies may yield excellent long-term survival in some patients with astrocytoma.
Collapse
Affiliation(s)
- Sophie Katzendobler
- Department of Neurosurgery, LMU University Hospital, LMU Munich, Marchioninistrasse 15, 81377, Munich, Germany
| | - Sebastian Niedermeyer
- Department of Neurosurgery, LMU University Hospital, LMU Munich, Marchioninistrasse 15, 81377, Munich, Germany
| | - Jens Blobner
- Department of Neurosurgery, LMU University Hospital, LMU Munich, Marchioninistrasse 15, 81377, Munich, Germany
| | - Christoph Trumm
- Department of Neuroradiology, LMU University Hospital, LMU Munich, Germany
| | - Patrick N Harter
- Center for Neuropathology and Prion Research, LMU University Hospital, LMU Munich, Munich, Germany
| | - Louisa von Baumgarten
- Department of Neurosurgery, LMU University Hospital, LMU Munich, Marchioninistrasse 15, 81377, Munich, Germany
- German Consortium for Translational Cancer Research (DKTK), Partner Site Munich, Heidelberg, Germany
| | - Veit M Stoecklein
- Department of Neurosurgery, LMU University Hospital, LMU Munich, Marchioninistrasse 15, 81377, Munich, Germany
- German Consortium for Translational Cancer Research (DKTK), Partner Site Munich, Heidelberg, Germany
| | - Joerg-Christian Tonn
- Department of Neurosurgery, LMU University Hospital, LMU Munich, Marchioninistrasse 15, 81377, Munich, Germany
- German Consortium for Translational Cancer Research (DKTK), Partner Site Munich, Heidelberg, Germany
| | - Michael Weller
- Department of Neurology, University Hospital and University of Zurich, Zurich, Switzerland
| | - Niklas Thon
- Department of Neurosurgery, LMU University Hospital, LMU Munich, Marchioninistrasse 15, 81377, Munich, Germany
- German Consortium for Translational Cancer Research (DKTK), Partner Site Munich, Heidelberg, Germany
| | - Jonathan Weller
- Department of Neurosurgery, LMU University Hospital, LMU Munich, Marchioninistrasse 15, 81377, Munich, Germany.
| |
Collapse
|
28
|
Noack D, Wach J, Barrantes-Freer A, Nicolay NH, Güresir E, Seidel C. Homozygous CDKN2A/B deletions in low- and high-grade glioma: a meta-analysis of individual patient data and predictive values of p16 immunohistochemistry testing. Acta Neuropathol Commun 2024; 12:180. [PMID: 39593128 PMCID: PMC11590270 DOI: 10.1186/s40478-024-01889-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 11/10/2024] [Indexed: 11/28/2024] Open
Abstract
CDKN2A/B deletions are prognostically relevant in low- and high-grade gliomas. Data on this is derived from heterogeneous series, an accurate estimation of survival risk from homozygous CDKN2A/B deletion is missing. Besides genetic testing, p16-immunohistochemistry (IHC) as a less cost intensive means for indirect detection of CDKN2A/B alterations is possible but not validated in larger datasets. The present meta-analysis aimed to (1) reconstruct individual patient data (IPD) and estimate overall survival (OS) stratified by CDKN2A/B status from all literature and to (2) determine accuracy of p16 testing for CDKNA2/B detection from published studies. For survival analysis according to CDKN2A/B status 460 records were screened, four articles with 714 participants were included. In IDH-wildtype (IDH-wt) gliomas, 57.07% harbored the deletion compared to 9.76% in IDH-mutant (IDH-mut) gliomas. Median OS of patients with IDH-wt gliomas and homozygous CDKN2A/B deletion was 13.0 months compared to 18.0 months with non-deleted CDKN2A/B (p = 0.014, Log-Rank). With homozygous deletion of CDKN2A/B the risk of death was increased by 1.5 (95%-CI 1.1-2.1). Median OS in patients with IDH-mut gliomas without CDKN2A/B deletion was 92.0 months compared to 40.0 months with CDKN2A/B deletion (p < 0.001, Log-Rank). CDKN2A/B deletions were associated with a significantly shorter OS (HR = 3.2; 95%-CI 2.2-5.5). For p16 IHC analysis, 10 eligible studies with 1087 examined samples were included. The cut-off for retention differed between the studies. In 588/662 p16 retained cases CDKN2A/B deletions was not detected, implying a negative predictive value (NPV) of p16 staining of 88.8%. Conversely, 279/425 p16 absent cases showed a CDKN2A/B deletion resulting in a positive predictive value (PPV) of 65.6%. Sensitivity of p16 staining for CDKN2A/B detection was 79.0%, specificity 80.1%. Highest diagnostic accuracy of p16 IHC was reached with a cut-off of > 5% and within IDH-mut glioma.
Collapse
Affiliation(s)
- Darius Noack
- Department of Radiation Oncology, University Leipzig Medical Center, Stephanstraße 9a, 04103, Leipzig, Germany
- Comprehensive Cancer Center Central Germany (CCCG), 04103, Leipzig, Germany
| | - Johannes Wach
- Department of Neurosurgery, University Leipzig Medical Center, 04103, Leipzig, Germany
| | - Alonso Barrantes-Freer
- Paul-Flechsig Institute of Neuropathology, University Leipzig Medical Center, 04103, Leipzig, Germany
| | - Nils H Nicolay
- Department of Radiation Oncology, University Leipzig Medical Center, Stephanstraße 9a, 04103, Leipzig, Germany
- Comprehensive Cancer Center Central Germany (CCCG), 04103, Leipzig, Germany
| | - Erdem Güresir
- Department of Neurosurgery, University Leipzig Medical Center, 04103, Leipzig, Germany
| | - Clemens Seidel
- Department of Radiation Oncology, University Leipzig Medical Center, Stephanstraße 9a, 04103, Leipzig, Germany.
- Comprehensive Cancer Center Central Germany (CCCG), 04103, Leipzig, Germany.
| |
Collapse
|
29
|
Zhang J, Sun R, Lyu Y, Liu C, Liu Y, Feng Y, Fu M, Wong PJC, Du Z, Qiu T, Zhang Y, Zhuang D, Qin Z, Yao Y, Zhu W, Guo T, Hua W, Yang H, Mao Y. Proteomic profiling of gliomas unveils immune and metabolism-driven subtypes with implications for anti-nucleotide metabolism therapy. Nat Commun 2024; 15:10005. [PMID: 39562821 PMCID: PMC11577044 DOI: 10.1038/s41467-024-54352-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 11/08/2024] [Indexed: 11/21/2024] Open
Abstract
Gliomas exhibit high heterogeneity and poor prognosis. Despite substantial progress has been made at the genomic and transcriptomic levels, comprehensive proteomic characterization and its implications remain largely unexplored. In this study, we perform proteomic profiling of gliomas using 343 formalin-fixed and paraffin-embedded tumor samples and 53 normal-appearing brain samples from 188 patients, integrating these data with genomic panel information and clinical outcomes. The proteomic analysis uncovers two distinct subgroups: Subgroup 1, the metabolic neural subgroup, enriched in metabolic enzymes and neurotransmitter receptor proteins, and Subgroup 2, the immune subgroup, marked by upregulation of immune and inflammatory proteins. These proteomic subgroups show significant differences in prognosis, tumorigenesis, microenvironment dysregulation, and potential therapeutics, highlighting the critical roles of metabolic and immune processes in glioma biology and patient outcomes. Through a detailed investigation of metabolic pathways guided by our proteomic findings, dihydropyrimidine dehydrogenase (DPYD) and thymidine phosphorylase (TYMP) emerge as potential prognostic biomarkers linked to the reprogramming of nucleotide metabolism. Functional validation in patient-derived glioma stem cells and animal models highlights nucleotide metabolism as a promising therapy target for gliomas. This integrated multi-omics analysis introduces a proteomic classification for gliomas and identifies DPYD and TYMP as key metabolic biomarkers, offering insights into glioma pathogenesis and potential treatment strategies.
Collapse
Affiliation(s)
- Jinsen Zhang
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
- National Center for Neurological Disorders, Shanghai, China
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai, China
- Neurosurgical Institute of Fudan University, Shanghai, China
- Shanghai Clinical Medical Center of Neurosurgery, Shanghai, China
| | - Rui Sun
- Affiliated Hangzhou First People's Hospital, State Key Laboratory of Medical Proteomics, School of Medicine, Westlake University, Hangzhou, Zhejiang, China
- Westlake Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Research Center for Industries of the Future, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
| | - Yingying Lyu
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
- National Center for Neurological Disorders, Shanghai, China
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai, China
- Neurosurgical Institute of Fudan University, Shanghai, China
- Shanghai Clinical Medical Center of Neurosurgery, Shanghai, China
| | - Chaxian Liu
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
- National Center for Neurological Disorders, Shanghai, China
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai, China
- Neurosurgical Institute of Fudan University, Shanghai, China
- Shanghai Clinical Medical Center of Neurosurgery, Shanghai, China
| | - Ying Liu
- Department of Pathology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yuan Feng
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
- National Center for Neurological Disorders, Shanghai, China
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai, China
- Neurosurgical Institute of Fudan University, Shanghai, China
- Shanghai Clinical Medical Center of Neurosurgery, Shanghai, China
| | - Minjie Fu
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
- National Center for Neurological Disorders, Shanghai, China
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai, China
- Neurosurgical Institute of Fudan University, Shanghai, China
- Shanghai Clinical Medical Center of Neurosurgery, Shanghai, China
| | - Peter Jih Cheng Wong
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
- National Center for Neurological Disorders, Shanghai, China
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai, China
- Neurosurgical Institute of Fudan University, Shanghai, China
- Shanghai Clinical Medical Center of Neurosurgery, Shanghai, China
| | - Zunguo Du
- Department of Pathology, Huashan Hospital, Fudan University, Shanghai, China
| | - Tianming Qiu
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
- National Center for Neurological Disorders, Shanghai, China
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai, China
- Neurosurgical Institute of Fudan University, Shanghai, China
- Shanghai Clinical Medical Center of Neurosurgery, Shanghai, China
| | - Yi Zhang
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
- National Center for Neurological Disorders, Shanghai, China
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai, China
- Neurosurgical Institute of Fudan University, Shanghai, China
- Shanghai Clinical Medical Center of Neurosurgery, Shanghai, China
| | - Dongxiao Zhuang
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
- National Center for Neurological Disorders, Shanghai, China
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai, China
- Neurosurgical Institute of Fudan University, Shanghai, China
- Shanghai Clinical Medical Center of Neurosurgery, Shanghai, China
| | - Zhiyong Qin
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
- National Center for Neurological Disorders, Shanghai, China
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai, China
- Neurosurgical Institute of Fudan University, Shanghai, China
- Shanghai Clinical Medical Center of Neurosurgery, Shanghai, China
| | - Yu Yao
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
- National Center for Neurological Disorders, Shanghai, China
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai, China
- Neurosurgical Institute of Fudan University, Shanghai, China
- Shanghai Clinical Medical Center of Neurosurgery, Shanghai, China
| | - Wei Zhu
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
- National Center for Neurological Disorders, Shanghai, China
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai, China
- Neurosurgical Institute of Fudan University, Shanghai, China
- Shanghai Clinical Medical Center of Neurosurgery, Shanghai, China
| | - Tiannan Guo
- Affiliated Hangzhou First People's Hospital, State Key Laboratory of Medical Proteomics, School of Medicine, Westlake University, Hangzhou, Zhejiang, China
- Westlake Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Research Center for Industries of the Future, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
| | - Wei Hua
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China.
- National Center for Neurological Disorders, Shanghai, China.
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai, China.
- Neurosurgical Institute of Fudan University, Shanghai, China.
- Shanghai Clinical Medical Center of Neurosurgery, Shanghai, China.
| | - Hui Yang
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China.
- National Center for Neurological Disorders, Shanghai, China.
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai, China.
- Neurosurgical Institute of Fudan University, Shanghai, China.
- Shanghai Clinical Medical Center of Neurosurgery, Shanghai, China.
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institute for Translational Brain Research, Shanghai Medical College, Fudan University, Shanghai, China.
| | - Ying Mao
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China.
- National Center for Neurological Disorders, Shanghai, China.
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai, China.
- Neurosurgical Institute of Fudan University, Shanghai, China.
- Shanghai Clinical Medical Center of Neurosurgery, Shanghai, China.
| |
Collapse
|
30
|
Wu S, Ma C, Cai J, Yang C, Liu X, Luo C, Yang J, Xiong Z, Cao D, Chen H. A clinically feasible algorithm for the parallel detection of glioma-associated copy number variation markers based on shallow whole genome sequencing. J Pathol Clin Res 2024; 10:e70005. [PMID: 39375998 PMCID: PMC11458885 DOI: 10.1002/2056-4538.70005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 09/06/2024] [Accepted: 09/16/2024] [Indexed: 10/09/2024]
Abstract
Molecular features are incorporated into the integrated diagnostic system for adult diffuse gliomas. Of these, copy number variation (CNV) markers, including both arm-level (1p/19q codeletion, +7/-10 signature) and gene-level (EGFR gene amplification, CDKN2A/B homozygous deletion) changes, have revolutionized the diagnostic paradigm by updating the subtyping and grading schemes. Shallow whole genome sequencing (sWGS) has been widely used for CNV detection due to its cost-effectiveness and versatility. However, the parallel detection of glioma-associated CNV markers using sWGS has not been optimized in a clinical setting. Herein, we established a model-based approach to classify the CNV status of glioma-associated diagnostic markers with a single test. To enhance its clinical utility, we carried out hypothesis testing model-based analysis through the estimation of copy ratio fluctuation level, which was implemented individually and independently and, thus, avoided the necessity for normal controls. Besides, the customization of required minimal tumor fraction (TF) was evaluated and recommended for each glioma-associated marker to ensure robust classification. As a result, with 1× sequencing depth and 0.05 TF, arm-level CNVs could be reliably detected with at least 99.5% sensitivity and specificity. For EGFR gene amplification and CDKN2A/B homozygous deletion, the corresponding TF limits were 0.15 and 0.45 to ensure the evaluation metrics were both higher than 97%. Furthermore, we applied the algorithm to an independent glioma cohort and observed the expected sample distribution and prognostic stratification patterns. In conclusion, we provide a clinically applicable algorithm to classify the CNV status of glioma-associated markers in parallel.
Collapse
Affiliation(s)
- Shuai Wu
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical CollegeFudan UniversityShanghaiPR China
- National Center for Neurological DisordersShanghaiPR China
- Neurosurgical Institute of Fudan UniversityShanghaiPR China
| | - Chenyu Ma
- Genetron Health (Beijing) Co. LtdBeijingPR China
| | - Jiawei Cai
- Department of Neurosurgery, Neurosurgery Research Institute, The First Affiliated HospitalFujian Medical UniversityFuzhouPR China
| | | | - Xiaojia Liu
- Department of Pathology, Huashan Hospital, Shanghai Medical CollegeFudan UniversityShanghaiPR China
| | - Chen Luo
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical CollegeFudan UniversityShanghaiPR China
- National Center for Neurological DisordersShanghaiPR China
- Neurosurgical Institute of Fudan UniversityShanghaiPR China
| | - Jingyi Yang
- Genetron Health (Beijing) Co. LtdBeijingPR China
| | - Zhang Xiong
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical CollegeFudan UniversityShanghaiPR China
- National Center for Neurological DisordersShanghaiPR China
- Neurosurgical Institute of Fudan UniversityShanghaiPR China
| | - Dandan Cao
- Genetron Health (Beijing) Co. LtdBeijingPR China
| | - Hong Chen
- Department of Pathology, Huashan Hospital, Shanghai Medical CollegeFudan UniversityShanghaiPR China
| |
Collapse
|
31
|
Chen Q, Wang C, Geng Y, Zheng W, Chen Z, Jiang R, Hu X. Siglec-15 expression in diffuse gliomas and its correlation with MRI morphologic features and apparent diffusion coefficient. Acta Radiol 2024; 65:1401-1410. [PMID: 39434541 DOI: 10.1177/02841851241286109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
BACKGROUND Sialic acid-binding immunoglobulin-like lectin 15 (Siglec-15) enhances tumor immune escape and leads to tumor growth. PURPOSE To investigate the expression of Siglec-15 in diffuse gliomas and its correlation with tumor magnetic resonance imaging (MRI) features. MATERIAL AND METHODS This study included 57 patients with gliomas. Morphological MRI features, including the largest tumor diameter, enhancement category, location, calcification, cysts, and hemorrhage, were visually rated. Apparent diffusion coefficient (ADC) values were calculated in tumor region. MRI morphologic features and ADC were compared between patients with positive and negative Siglec-15 expression. Receiver operating characteristic (ROC) curves were further constructed to assess the diagnostic performance. RESULTS Siglec-15 was expressed in immunocytes, such as macrophages in the peritumoral area. Siglec-15 expression was positive in 20/57 (35.09%) patients, with higher expression in patients with IDH-mutant gliomas and lower grade gliomas. The tumor diameter was significantly smaller in patients with positive Siglec-15 expression than in those with negative expression for all patients (P = 0.017) and for patients with IDH-mutant gliomas (P = 0.020). Moreover, ADC values of the tumor were significantly higher in patients with positive Siglec-15 expression than in those with negative expression for all patients (P = 0.027). The areas under the ROC curve (AUCs) of the diameter and ADC were 0.702 and 0.686, respectively. A combination of these two parameters generated an improved AUC of 0.762. CONCLUSION Siglec-15 was expressed in immunocytes such as macrophages in the peritumoral area, with a positive rate of 35.09%. Positive Siglec-15 expression in diffuse gliomas was correlated with smaller tumor size and higher ADC values.
Collapse
Affiliation(s)
- Quan Chen
- Department of Neurosurgery, Fujian Medical University Union Hospital, Fuzhou, PR China
| | - Chunhua Wang
- Department of Neurosurgery, Fujian Medical University Union Hospital, Fuzhou, PR China
| | - Yingqian Geng
- Department of Radiology, Fujian Medical University Union Hospital, Fuzhou, PR China
| | - Wanyi Zheng
- Department of Radiology, Fujian Medical University Union Hospital, Fuzhou, PR China
| | - Zhen Chen
- Department of Neurosurgery, Fujian Medical University Union Hospital, Fuzhou, PR China
| | - Rifeng Jiang
- Department of Radiology, Fujian Medical University Union Hospital, Fuzhou, PR China
| | - Xiaomei Hu
- Department of Pathology, Fujian Medical University Union Hospital, Fuzhou, PR China
| |
Collapse
|
32
|
Choate KA, Pratt EPS, Jennings MJ, Winn RJ, Mann PB. IDH Mutations in Glioma: Molecular, Cellular, Diagnostic, and Clinical Implications. BIOLOGY 2024; 13:885. [PMID: 39596840 PMCID: PMC11592129 DOI: 10.3390/biology13110885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 10/21/2024] [Accepted: 10/28/2024] [Indexed: 11/29/2024]
Abstract
In 2021, the World Health Organization classified isocitrate dehydrogenase (IDH) mutant gliomas as a distinct subgroup of tumors with genetic changes sufficient to enable a complete diagnosis. Patients with an IDH mutant glioma have improved survival which has been further enhanced by the advent of targeted therapies. IDH enzymes contribute to cellular metabolism, and mutations to specific catalytic residues result in the neomorphic production of D-2-hydroxyglutarate (D-2-HG). The accumulation of D-2-HG results in epigenetic alterations, oncogenesis and impacts the tumor microenvironment via immunological modulations. Here, we summarize the molecular, cellular, and clinical implications of IDH mutations in gliomas as well as current diagnostic techniques.
Collapse
Affiliation(s)
- Kristian A. Choate
- Upper Michigan Brain Tumor Center, Northern Michigan University, Marquette, MI 49855, USA; (K.A.C.); (E.P.S.P.); (M.J.J.); (R.J.W.)
| | - Evan P. S. Pratt
- Upper Michigan Brain Tumor Center, Northern Michigan University, Marquette, MI 49855, USA; (K.A.C.); (E.P.S.P.); (M.J.J.); (R.J.W.)
- Department of Chemistry, Northern Michigan University, Marquette, MI 49855, USA
| | - Matthew J. Jennings
- Upper Michigan Brain Tumor Center, Northern Michigan University, Marquette, MI 49855, USA; (K.A.C.); (E.P.S.P.); (M.J.J.); (R.J.W.)
- School of Clinical Sciences, Northern Michigan University, Marquette, MI 49855, USA
| | - Robert J. Winn
- Upper Michigan Brain Tumor Center, Northern Michigan University, Marquette, MI 49855, USA; (K.A.C.); (E.P.S.P.); (M.J.J.); (R.J.W.)
- Department of Biology, Northern Michigan University, Marquette, MI 49855, USA
| | - Paul B. Mann
- Upper Michigan Brain Tumor Center, Northern Michigan University, Marquette, MI 49855, USA; (K.A.C.); (E.P.S.P.); (M.J.J.); (R.J.W.)
- School of Clinical Sciences, Northern Michigan University, Marquette, MI 49855, USA
| |
Collapse
|
33
|
Yamaguchi J, Ohka F, Seki M, Motomura K, Deguchi S, Shiba Y, Okumura Y, Kibe Y, Shimizu H, Maeda S, Takido Y, Yamamoto R, Nakamura A, Karube K, Saito R. Dual phenotypes in recurrent astrocytoma, IDH-mutant; coexistence of IDH-mutant and IDH-wildtype components: a case report with genetic and epigenetic analysis. Acta Neuropathol Commun 2024; 12:169. [PMID: 39456052 PMCID: PMC11515116 DOI: 10.1186/s40478-024-01879-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 10/19/2024] [Indexed: 10/28/2024] Open
Abstract
Mutations in the isocitrate dehydrogenase (IDH) gene are recognized as the key drivers in the oncogenesis of astrocytoma and oligodendroglioma. However, the significance of IDH mutation in tumor maintenance and malignant transformation has not been elucidated. We encountered a unique case of IDH-mutant astrocytoma that, upon malignant transformation, presented two distinct intratumoral components: one IDH-wildtype and one IDH-mutant. The IDH-wild-type component exhibited histological findings similar to those of small cell-type glioblastoma with a higher Ki-67 index than the IDH-mutant component. Despite their genetic divergence, both components exhibited similar comprehensive methylation profiles within the CpG island and were classified into methylation class of "Astrocytoma, IDH-mutant; High Grade" by the German Cancer Center (DKFZ) classifier v11.4. Phylogenetic analysis demonstrated that the IDH-wildtype component emerged as a subclonal component of the primary tumor. Detailed molecular analyses revealed that the loss of the IDH mutation was induced by the hemizygous loss of the entire arm of chromosome 2, on which IDH1 gene is located. Notably, the IDH-wild-type subclones uniquely acquired CDKN2A/B homozygous deletion and PDGFRA amplification, which is a marker of the aggressive phenotype of astrocytoma, IDH-mutant. Because these genetic abnormalities can drive oncogenic pathways, such as the PI3K/AKT/mTOR and RB signaling pathway, IDH-mutant gliomas that acquired these mutations were no longer dependent on the initial driver mutation, the IDH mutation. Molecular analysis of this unique case provides insight that in a subset of astrocytoma, IDH-mutant that acquired these genetic abnormalities, IDH mutation may not play a pivotal role in tumor growth and acquisition of these genetic abnormalities may contribute to the acquisition of resistance to IDH inhibitors.
Collapse
Affiliation(s)
- Junya Yamaguchi
- Department of Neurosurgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa- ku, Nagoya, 466-8550, Japan
| | - Fumiharu Ohka
- Department of Neurosurgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa- ku, Nagoya, 466-8550, Japan.
| | - Masafumi Seki
- Department of Pathology and Laboratory Medicine, Graduate School of Medicine, Nagoya University, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Kazuya Motomura
- Department of Neurosurgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa- ku, Nagoya, 466-8550, Japan
| | - Shoichi Deguchi
- Department of Neurosurgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa- ku, Nagoya, 466-8550, Japan
| | - Yoshiki Shiba
- Department of Neurosurgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa- ku, Nagoya, 466-8550, Japan
| | - Yuka Okumura
- Department of Pathology and Laboratory Medicine, Graduate School of Medicine, Nagoya University, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Yuji Kibe
- Department of Neurosurgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa- ku, Nagoya, 466-8550, Japan
| | - Hiroki Shimizu
- Department of Neurosurgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa- ku, Nagoya, 466-8550, Japan
| | - Sachi Maeda
- Department of Neurosurgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa- ku, Nagoya, 466-8550, Japan
| | - Yuhei Takido
- Department of Neurosurgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa- ku, Nagoya, 466-8550, Japan
| | - Ryo Yamamoto
- Department of Neurosurgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa- ku, Nagoya, 466-8550, Japan
| | - Akihiro Nakamura
- Department of Neurosurgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa- ku, Nagoya, 466-8550, Japan
| | - Kennosuke Karube
- Department of Pathology and Laboratory Medicine, Graduate School of Medicine, Nagoya University, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Ryuta Saito
- Department of Neurosurgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa- ku, Nagoya, 466-8550, Japan
| |
Collapse
|
34
|
Ghisai SA, van Hijfte L, Vallentgoed WR, Tesileanu CMS, de Heer I, Kros JM, Sanson M, Gorlia T, Wick W, Vogelbaum MA, Brandes AA, Franceschi E, Clement PM, Nowak AK, Golfinopoulos V, van den Bent MJ, French PJ, Hoogstrate Y. Epigenetic landscape reorganisation and reactivation of embryonic development genes are associated with malignancy in IDH-mutant astrocytoma. Acta Neuropathol 2024; 148:50. [PMID: 39382765 PMCID: PMC11464554 DOI: 10.1007/s00401-024-02811-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 09/17/2024] [Accepted: 09/30/2024] [Indexed: 10/10/2024]
Abstract
Accurate grading of IDH-mutant gliomas defines patient prognosis and guides the treatment path. Histological grading is challenging, and aside from CDKN2A/B homozygous deletions in IDH-mutant astrocytomas, there are no other objective molecular markers used for grading. RNA-sequencing was conducted on primary IDH-mutant astrocytomas (n = 138) included in the prospective CATNON trial, which was performed to assess the prognostic effect of adjuvant and concurrent temozolomide. We integrated the RNA-sequencing data with matched DNA-methylation and NGS data. We also used multi-omics data from IDH-mutant astrocytomas included in the TCGA dataset and validated results on matched primary and recurrent samples from the GLASS-NL study. Since discrete classes do not adequately capture grading of these tumours, we utilised DNA-methylation profiles to generate a Continuous Grading Coefficient (CGC) based on classification scores from a CNS-tumour classifier. CGC was an independent predictor of survival outperforming current WHO-CNS5 and methylation-based classification. Our RNA-sequencing analysis revealed four distinct transcription clusters that were associated with (i) upregulation of cell cycling genes; (ii) downregulation of glial differentiation genes; (iii) upregulation of embryonic development genes (e.g. HOX, PAX, and TBX) and (iv) upregulation of extracellular matrix genes. The upregulation of embryonic development genes was associated with a specific increase of CpG island methylation near these genes. Higher grade IDH-mutant astrocytomas have DNA-methylation signatures that, on the RNA level, are associated with increased cell cycling, tumour cell de-differentiation and extracellular matrix remodelling. These combined molecular signatures can serve as an objective marker for grading of IDH-mutant astrocytomas.
Collapse
Affiliation(s)
- Santoesha A Ghisai
- Department of Neurology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Levi van Hijfte
- Department of Neurology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
- Department of Tumour Immunology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Wies R Vallentgoed
- Department of Neurology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | | | - Iris de Heer
- Department of Neurology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Johan M Kros
- Department of Pathology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Marc Sanson
- ICM Institute for Brain and Spinal Cords, Sorbonne University, Paris, France
| | | | - Wolfgang Wick
- Neurology Department, University Clinic Heidelberg, Heidelberg University & German Center, Heidelberg, Germany
| | | | - Alba A Brandes
- Nervous System Medical Oncology Department, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Enrico Franceschi
- Nervous System Medical Oncology Department, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Paul M Clement
- Department of Oncology, Leuven Cancer Institute, KU Leuven, Leuven, Belgium
| | - Anna K Nowak
- Medical School, The University of Western Australia, Crawley, WA, Australia
| | | | | | - Pim J French
- Department of Neurology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands.
| | - Youri Hoogstrate
- Department of Neurology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| |
Collapse
|
35
|
Gao L, Li Y, Zhu H, Liu Y, Li S, Li L, Zhang J, Shen N, Zhu W. Application of preoperative advanced diffusion magnetic resonance imaging in evaluating the postoperative recurrence of lower grade gliomas. Cancer Imaging 2024; 24:134. [PMID: 39385297 PMCID: PMC11462830 DOI: 10.1186/s40644-024-00782-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 09/30/2024] [Indexed: 10/12/2024] Open
Abstract
BACKGROUND Recurrence of lower grade glioma (LrGG) appeared to be unavoidable despite considerable research performed in last decades. Thus, we evaluated the postoperative recurrence within two years after the surgery in patients with LrGG by preoperative advanced diffusion magnetic resonance imaging (dMRI). MATERIALS AND METHODS 48 patients with lower-grade gliomas (23 recurrence, 25 nonrecurrence) were recruited into this study. Different models of dMRI were reconstructed, including apparent fiber density (AFD), white matter tract integrity (WMTI), diffusion tensor imaging (DTI), diffusion kurtosis imaging (DKI), neurite orientation dispersion and density imaging (NODDI), Bingham NODDI and standard model imaging (SMI). Orthogonal Partial Least Squares-Discriminant Analysis (OPLS-DA) was used to construct a multiparametric prediction model for the diagnosis of postoperative recurrence. RESULTS The parameters derived from each dMRI model, including AFD, axon water fraction (AWF), mean diffusivity (MD), mean kurtosis (MK), fractional anisotropy (FA), intracellular volume fraction (ICVF), extra-axonal perpendicular diffusivity (De⊥), extra-axonal parallel diffusivity (De∥) and free water fraction (fw), showed significant differences between nonrecurrence group and recurrence group. The extra-axonal perpendicular diffusivity (De⊥) had the highest area under curve (AUC = 0.885), which was significantly higher than others. The variable importance for the projection (VIP) value of De⊥ was also the highest. The AUC value of the multiparametric prediction model merging AFD, WMTI, DTI, DKI, NODDI, Bingham NODDI and SMI was up to 0.96. CONCLUSION Preoperative advanced dMRI showed great efficacy in evaluating postoperative recurrence of LrGG and De⊥ of SMI might be a valuable marker.
Collapse
Affiliation(s)
- Luyue Gao
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, PR China
- Department of Radiology, Qianjiang Central Hospital, 22 Zhanghua Middle Road, Qianjiang, 433100, PR China
| | - Yuanhao Li
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, PR China
| | - Hongquan Zhu
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, PR China
| | - Yufei Liu
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, PR China
| | - Shihui Li
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, PR China
| | - Li Li
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, PR China
| | - Jiaxuan Zhang
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, PR China
| | - Nanxi Shen
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, PR China.
| | - Wenzhen Zhu
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, PR China.
| |
Collapse
|
36
|
Lee SH, Kim TG, Ryu KH, Kim SH, Kim YZ. CDKN2A Homozygous Deletion Is a Stronger Predictor of Outcome than IDH1/2-Mutation in CNS WHO Grade 4 Gliomas. Biomedicines 2024; 12:2256. [PMID: 39457569 PMCID: PMC11505494 DOI: 10.3390/biomedicines12102256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 09/29/2024] [Accepted: 10/01/2024] [Indexed: 10/28/2024] Open
Abstract
Background: We primarily investigated the prognostic role of CDKN2A homozygous deletion in CNS WHO grade 4 gliomas. Additionally, we plan to examine traditional prognostic factors for grade 4 gliomas and validate the findings. Materials: We conducted a retrospective analysis of the glioma cohorts at our institute. We reviewed medical records spanning a 15-year period and examined pathological slides for an updated diagnosis according to the 2021 WHO classification of CNS tumors. We examined the IDH1/2 mutation and CDKN2A deletion using NGS analysis with ONCOaccuPanel®. Further, we examined traditional prognostic factors, including age, WHO performance status, extent of resection, and MGMT promoter methylation status. Results: The mean follow-up duration was 27.5 months (range: 4.1-43.5 months) and mean overall survival (OS) was 20.7 months (SD, ±1.759). After the exclusion of six patients with a poor status of pathologic samples, a total of 136 glioblastoma cases diagnosed by previous WHO classification criteria were newly classified into 29 (21.3%) astrocytoma, IDH-mutant, and CNS WHO grade 4 cases, and 107 (78.7%) glioblastoma, IDH-wildtype, and CNS WHO grade 4 cases. Among them, 61 (56.0%) had CDKN2A deletions. The high-risk group with CDKN2A deletion regardless of IDH1/2 mutation had a mean OS of 16.65 months (SD, ±1.554), the intermediate-risk group without CDKN2A deletion and with IDH1/2 mutation had a mean OS of 21.85 months (SD, ±2.082), and the low-risk group without CDKN2A deletion and with IDH1/2 mutation had a mean OS of 33.38 months (SD, ±2.946). Multifactor analysis showed that age (≥50 years vs. <50 years; HR 4.645), WHO performance (0, 1 vs. 2; HR 5.002), extent of resection (gross total resection vs. others; HR 5.528), MGMT promoter methylation, (methylated vs. unmethylated; HR 5.078), IDH1/2 mutation (mutant vs. wildtype; HR 6.352), and CDKN2A deletion (absence vs. presence; HR 13.454) were associated with OS independently. Conclusions: The present study suggests that CDKN2A deletion plays a powerful prognostic role in CNS WHO grade 4 gliomas. Even if CNS WHO grade 4 gliomas have mutant IDH1/2, they may have poor clinical outcomes because of CDKN2A deletion.
Collapse
Affiliation(s)
- Sang Hyuk Lee
- Division of Neuro Oncology and Department of Neurosurgery, Samsung Changwon Hospital, Sungkyunkwan University School of Medicine, Changwon 51353, Republic of Korea;
| | - Tae Gyu Kim
- Department of Radiation Oncology, Samsung Changwon Hospital, Sungkyunkwan University School of Medicine, Changwon 51353, Republic of Korea;
| | - Kyeong Hwa Ryu
- Department of Radiology, Samsung Changwon Hospital, Sungkyunkwan University School of Medicine, Changwon 51353, Republic of Korea;
| | - Seok Hyun Kim
- Division of Hematology and Medical Oncology, Department of Internal Medicine, Samsung Changwon Hospital, Sungkyunkwan University School of Medicine, Changwon 51353, Republic of Korea;
| | - Young Zoon Kim
- Division of Neuro Oncology and Department of Neurosurgery, Samsung Changwon Hospital, Sungkyunkwan University School of Medicine, Changwon 51353, Republic of Korea;
| |
Collapse
|
37
|
van den Bent MJ, French PJ, Brat D, Tonn JC, Touat M, Ellingson BM, Young RJ, Pallud J, von Deimling A, Sahm F, Figarella Branger D, Huang RY, Weller M, Mellinghoff IK, Cloughsey TF, Huse JT, Aldape K, Reifenberger G, Youssef G, Karschnia P, Noushmehr H, Peters KB, Ducray F, Preusser M, Wen PY. The biological significance of tumor grade, age, enhancement, and extent of resection in IDH-mutant gliomas: How should they inform treatment decisions in the era of IDH inhibitors? Neuro Oncol 2024; 26:1805-1822. [PMID: 38912846 PMCID: PMC11449017 DOI: 10.1093/neuonc/noae107] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Indexed: 06/25/2024] Open
Abstract
The 2016 and 2021 World Health Organization 2021 Classification of central nervous system tumors have resulted in a major improvement in the classification of isocitrate dehydrogenase (IDH)-mutant gliomas. With more effective treatments many patients experience prolonged survival. However, treatment guidelines are often still based on information from historical series comprising both patients with IDH wild-type and IDH-mutant tumors. They provide recommendations for radiotherapy and chemotherapy for so-called high-risk patients, usually based on residual tumor after surgery and age over 40. More up-to-date studies give a better insight into clinical, radiological, and molecular factors associated with the outcome of patients with IDH-mutant glioma. These insights should be used today for risk stratification and for treatment decisions. In many patients with IDH-mutant grades 2 and 3 glioma, if carefully monitored postponing radiotherapy and chemotherapy is safe, and will not jeopardize the overall outcome of patients. With the INDIGO trial showing patient benefit from the IDH inhibitor vorasidenib, there is a sizable population in which it seems reasonable to try this class of agents before recommending radio-chemotherapy with its delayed adverse event profile affecting quality of survival. Ongoing trials should help to further identify the patients that are benefiting from this treatment.
Collapse
Affiliation(s)
| | - Pim J French
- Brain Tumor Center at Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Daniel Brat
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Joerg C Tonn
- Department of Neurosurgery, Ludwig-Maximilians-University, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, Germany
| | - Mehdi Touat
- Department of Neurology, Brigham and Women’s Hospital, Boston, Massachusetts, USA
- Sorbonne Université, Inserm, CNRS, UMR S 1127, Institut du Cerveau, Paris Brain Institute, ICM, AP-HP, Hôpitaux Universitaires La Pitié Salpêtrière - Charles Foix, Service de Neurologie 2-Mazarin, Paris, France
| | - Benjamin M Ellingson
- UCLA Brain Tumor Imaging Laboratory, Department of Radiological Sciences, David Geffen School of Medicine at UCLA, Los Angeles, USA
| | - Robert J Young
- Neuroradiology Service, Department of Radiology, Memorial Sloan Kettering Cancer, New York, New York, USA
| | - Johan Pallud
- Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, IMA-Brain, Université Paris Cité, Paris, France
- Service de Neurochirurgie, GHU-Paris Psychiatrie et Neurosciences, Site Sainte Anne, Paris, France
| | - Andreas von Deimling
- Department of Neuropathology, University Hospital Medicine and CCU Neuropathology, German Consortium for Translational Cancer Research (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Felix Sahm
- Department of Neuropathology, University Hospital Medicine and CCU Neuropathology, German Consortium for Translational Cancer Research (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Dominique Figarella Branger
- DFB Aix-Marseille Univ, APHM, CNRS, INP, Inst Neurophysiopathol, CHU Timone, Service d’Anatomie Pathologique et de Neuropathologie, Marseille, France
| | - Raymond Y Huang
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Michael Weller
- Department of Neurology & Brain Tumor Center, University Hospital Zurich & University of Zurich, Zurich, Switzerland
| | - Ingo K Mellinghoff
- Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Tim F Cloughsey
- Department of Neurology, TC David Geffen School of Medicine at UCLA, Los Angeles, USA
| | - Jason T Huse
- Departments of Pathology and Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Kenneth Aldape
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Guido Reifenberger
- Institute of Neuropathology, Medical Faculty, Heinrich Heine University and University Hospital Düsseldorf, and German Cancer Consortium (DKTK), Partner Site Essen/Düsseldorf, Düsseldorf, Germany
| | - Gilbert Youssef
- Center For Neuro-Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts, USA
| | - Philipp Karschnia
- German Cancer Consortium (DKTK), Partner Site Munich, Germany
- Department of Neurosurgery, Ludwig-Maximilians-University, Munich, Germany
| | - Houtan Noushmehr
- Department of Neurosurgery, Henry Ford Hospital+Michigan State University, Detroit, Michigan, USA
| | - Katherine B Peters
- Department of Neurosurgery, Preston Robert Tisch Brain Tumor Center, Duke University, Durham, North Carolina, USA
| | - Francois Ducray
- Inserm U1052, CNRS UMR5286, Université Claude Bernard Lyon, Lyon, France
- Hospices Civils de Lyon, Service de neuro-oncologie, LabEx Dev2CAN, Centre de Recherche en Cancérologie de Lyon, France
| | - Matthias Preusser
- Department of Medicine I, Division of Oncology, Medical University of Vienna, Vienna, Austria
| | - Patrick Y Wen
- Center For Neuro-Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
38
|
Hata N, Fujioka Y, Otsuji R, Kuga D, Hatae R, Sangatsuda Y, Amemiya T, Noguchi N, Sako A, Fujiki M, Mizoguchi M, Yoshimoto K. In-house molecular diagnosis of diffuse glioma updating the revised WHO classification by a platform of the advanced medical care system, Senshin-Iryo. Neuropathology 2024; 44:344-350. [PMID: 38477051 DOI: 10.1111/neup.12970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 02/13/2024] [Accepted: 02/15/2024] [Indexed: 03/14/2024]
Abstract
Since the World Health Organization (WHO) 2016 revision, the number of molecular markers required for diffuse gliomas has increased, placing a burden on clinical practice. We have established an in-house, molecular diagnostic platform using Senshin-Iryo, a feature of Japan's unique healthcare system, and partially modified the analysis method in accordance with the WHO 2021 revision. Herein, we review over a total 5 years of achievements using this platform. Analyses of IDH, BRAF, and H3 point mutations, loss of heterozygosity (LOH) on 1p/19q and chromosomes 10 and 17, and MGMT methylation were combined into a set that was submitted to Senshin-Iryo as "Drug resistance gene testing for anticancer chemotherapy" and was approved in August 2018. Subsequently, in October 2021, Sanger sequencing for the TERT promoter mutation was added to the set, and LOH analysis was replaced with multiplex ligation-dependent probe amplification (MLPA) to analyze 1p/19q codeletion and newly required genetic markers, such as EGFR, PTEN, and CDKN2A from WHO 2021. Among the over 200 cases included, 54 were analyzed after the WHO 2021 revision. The laboratory has maintained a diagnostic platform where molecular diagnoses are confirmed within 2 weeks. Initial expenditures exceeded the income from patient copayments; however, it has gradually been reduced to running costs alone and is approaching profitability. After the WHO 2021 revision, diagnoses were confirmed using molecular markers obtained from Senshin-Iryo in 38 of 54 cases (70.1%). Among the remaining 16 patients, only four (7.4%) were diagnosed with diffuse glioma, not elsewhere classified, which was excluded in 12 cases where glioblastoma was confirmed by histopathological diagnosis. Our Senshin-Iryo trial functioned as a salvage system to overcome the transition period between continued revisions of WHO classification that has caused a clinical dilemma in the Japanese healthcare system.
Collapse
Affiliation(s)
- Nobuhiro Hata
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
- Department of Neurosurgery, Oita University Faculty of Medicine, Yufu, Japan
| | - Yutaka Fujioka
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Ryosuke Otsuji
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Daisuke Kuga
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Ryusuke Hatae
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yuhei Sangatsuda
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Takeo Amemiya
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
- Department of Neurosurgery, National Hospital Organization Kyushu Medical Center, Clinical Research Institute, Fukuoka, Japan
| | - Naoki Noguchi
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Aki Sako
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Minoru Fujiki
- Department of Neurosurgery, Oita University Faculty of Medicine, Yufu, Japan
| | - Masahiro Mizoguchi
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
- Department of Neurosurgery, National Hospital Organization Kyushu Medical Center, Clinical Research Institute, Fukuoka, Japan
| | - Koji Yoshimoto
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
39
|
van der Vaart T, Wijnenga MMJ, van Garderen K, Dubbink HJ, French PJ, Smits M, Dirven CMF, Kros JM, Vincent AJPE, van den Bent MJ. Differences in the Prognostic Role of Age, Extent of Resection, and Tumor Grade between Astrocytoma IDHmt and Oligodendroglioma: A Single-Center Cohort Study. Clin Cancer Res 2024; 30:3837-3844. [PMID: 38990096 DOI: 10.1158/1078-0432.ccr-24-0901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/14/2024] [Accepted: 07/09/2024] [Indexed: 07/12/2024]
Abstract
PURPOSE IDH-mutant glioma is classified as oligodendroglioma or astrocytoma based on 1p19q-codeletion. Whether prognostic factors are similar between these tumor types is not well understood. EXPERIMENTAL DESIGN Retrospective cohort study. Molecular characterization was performed with targeted next-generation sequencing. Tumor volumes were calculated using semiautomatic 3D segmentation on all pre- and post-operative MRI scans. Overall survival was assessed with the Cox-proportional hazards model. RESULTS A total of 383 patients with newly diagnosed IDH-mutant glioma were followed up for a median of 7.2 years. Grades 3 and 4 patients had significantly lower Karnofsky performance, with tumors having more contrast enhancement. Patients also received more aggressive postsurgery treatment. Postoperative tumor volume is significantly and independently associated with survival (HR, per cm3 1.19; 95% CI, 1.03-1.39) in IDH-mutant glioma. A separate analysis of oligodendroglioma and astrocytoma showed a significant association of postoperative tumor volume in astrocytoma but not in oligodendroglioma. Higher age and histologic tumor grade were associated with worse survival in patients with oligodendroglioma but not with astrocytoma. CONCLUSIONS Our data support an initial strategy of extensive resection in patients with oligodendroglioma and astrocytoma. Other important prognostic factors differ between these tumor types, urging researchers and clinicians to keep treating these tumors as separate entities.
Collapse
Affiliation(s)
- Thijs van der Vaart
- Department of Neurology, Brain Tumor Center, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, the Netherlands
- Department of Neurology, Haaglanden Medical Center, The Hague, the Netherlands
| | - Maarten M J Wijnenga
- Department of Neurology, Brain Tumor Center, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Karin van Garderen
- Department of Radiology and Nuclear Medicine, Erasmus MC University Medical Center, Rotterdam, the Netherlands
- Medical Delta, Delft, the Netherlands
| | - Hendrikus J Dubbink
- Department of Pathology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Pim J French
- Department of Neurology, Brain Tumor Center, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Marion Smits
- Department of Radiology and Nuclear Medicine, Erasmus MC University Medical Center, Rotterdam, the Netherlands
- Medical Delta, Delft, the Netherlands
| | - Clemens M F Dirven
- Department of Neurosurgery, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Johan M Kros
- Department of Pathology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Arnaud J P E Vincent
- Department of Neurosurgery, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Martin J van den Bent
- Department of Neurology, Brain Tumor Center, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, the Netherlands
| |
Collapse
|
40
|
Kling T, Ferreyra Vega S, Suman M, Dénes A, Lipatnikova A, Lagerström S, Olsson Bontell T, Jakola AS, Carén H. Refinement of prognostication for IDH-mutant astrocytomas using DNA methylation-based classification. Brain Pathol 2024; 34:e13233. [PMID: 38168467 PMCID: PMC11328339 DOI: 10.1111/bpa.13233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 12/18/2023] [Indexed: 01/05/2024] Open
Abstract
The 2021 World Health Organization (WHO) grading system of isocitrate dehydrogenase (IDH)-mutant astrocytomas relies on histological features and the presence of homozygous deletion of the cyclin-dependent kinase inhibitor 2A and 2B (CDKN2A/B). DNA methylation profiling has become highly relevant in the diagnosis of central nervous system (CNS) tumors including gliomas, and it has been incorporated into routine clinical diagnostics in some countries. In this study, we, therefore, examined the value of DNA methylation-based classification for prognostication of patients with IDH-mutant astrocytomas. We analyzed histopathological diagnoses, genome-wide DNA methylation array data, and chromosomal copy number alteration profiles from a cohort of 385 adult-type IDH-mutant astrocytomas, including a local cohort of 127 cases and 258 cases from public repositories. Prognosis based on WHO 2021 CNS criteria (histological grade and CDKN2A/B homozygous deletion status), other relevant chromosomal/gene alterations in IDH-mutant astrocytomas and DNA methylation-based subclassification according to the molecular neuropathology classifier were assessed. We demonstrate that DNA methylation-based classification of IDH-mutant astrocytomas can be used to predict outcome of the patients equally well as WHO 2021 CNS criteria. In addition, methylation-based subclassification enabled the identification of IDH-mutant astrocytoma patients with poor survival among patients with grade 3 tumors and patients with grade 4 tumors with a more favorable outcome. In conclusion, DNA methylation-based subclassification adds prognostic information for IDH-mutant astrocytomas that can further refine the current WHO 2021 grading scheme for these patients.
Collapse
Affiliation(s)
- Teresia Kling
- Sahlgrenska Center for Cancer Research, Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Sandra Ferreyra Vega
- Sahlgrenska Center for Cancer Research, Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Medha Suman
- Sahlgrenska Center for Cancer Research, Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Anna Dénes
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Anna Lipatnikova
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Stina Lagerström
- Sahlgrenska Center for Cancer Research, Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Thomas Olsson Bontell
- Department of Physiology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Clinical Pathology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Asgeir Store Jakola
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Neurosurgery, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Helena Carén
- Sahlgrenska Center for Cancer Research, Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
41
|
Lee MD, Jain R, Galbraith K, Chen A, Lieberman E, Patel SH, Placantonakis DG, Zagzag D, Barbaro M, Eibl MDGP, Golfinos J, Orringer D, Snuderl M. T2-FLAIR Mismatch Sign Predicts DNA Methylation Subclass and CDKN2A/B Status in IDH-Mutant Astrocytomas. Clin Cancer Res 2024; 30:3512-3519. [PMID: 38829583 PMCID: PMC11326959 DOI: 10.1158/1078-0432.ccr-24-0311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/08/2024] [Accepted: 05/30/2024] [Indexed: 06/05/2024]
Abstract
PURPOSE DNA methylation profiling stratifies isocitrate dehydrogenase (IDH)-mutant astrocytomas into methylation low- and high-grade groups. We investigated the utility of the T2-fluid-attenuated inversion recovery (T2-FLAIR) mismatch sign for predicting DNA methylation grade and cyclin-dependent kinase inhibitor 2A/B (CDKN2A/B) homozygous deletion, a molecular biomarker for grade 4 IDH-mutant astrocytomas, according to the 2021 World Health Organization classification. EXPERIMENTAL DESIGN Preoperative MRI scans of IDH-mutant astrocytomas subclassified by DNA methylation profiling (n = 71) were independently evaluated by two radiologists for the T2-FLAIR mismatch sign. The diagnostic utility of T2-FLAIR mismatch in predicting methylation grade, CDKN2A/B status, copy number variation, and survival was analyzed. RESULTS The T2-FLAIR mismatch sign was present in 21 of 45 (46.7%) methylation low-grade and 1 of 26 (3.9%) methylation high-grade cases (P < 0.001), resulting in 96.2% specificity, 95.5% positive predictive value, and 51.0% negative predictive value for predicting low methylation grade. The T2-FLAIR mismatch sign was also significantly associated with intact CDKN2A/B status (P = 0.028) with 87.5% specificity, 86.4% positive predictive value, and 42.9% negative predictive value. Overall multivariable Cox analysis showed that retained CDKN2A/B status remained significant for progression-free survival (P = 0.01). Multivariable Cox analysis of the histologic grade 3 subset, which was nearly evenly divided by CDKN2A/B status, copy number variation, and methylation grade, showed trends toward significance for DNA methylation grade with overall survival (P = 0.045) and CDKN2A/B status with progression-free survival (P = 0.052). CONCLUSIONS The T2-FLAIR mismatch sign is highly specific for low methylation grade and intact CDKN2A/B in IDH-mutant astrocytomas.
Collapse
Affiliation(s)
- Matthew D. Lee
- Department of Radiology, NYU Grossman School of Medicine
| | - Rajan Jain
- Department of Radiology, NYU Grossman School of Medicine
- Department of Neurosurgery, NYU Grossman School of Medicine
| | | | - Anna Chen
- Department of Radiology, NYU Grossman School of Medicine
| | - Evan Lieberman
- Department of Radiology, NYU Grossman School of Medicine
| | - Sohil H. Patel
- Department of Radiology, University of Virginia School of Medicine
| | | | - David Zagzag
- Department of Neurosurgery, NYU Grossman School of Medicine
- Department of Pathology, NYU Grossman School of Medicine
| | | | | | - John Golfinos
- Department of Neurosurgery, NYU Grossman School of Medicine
| | - Daniel Orringer
- Department of Neurosurgery, NYU Grossman School of Medicine
- Department of Pathology, NYU Grossman School of Medicine
| | - Matija Snuderl
- Department of Pathology, NYU Grossman School of Medicine
| |
Collapse
|
42
|
Onishi S, Kojima M, Yamasaki F, Amatya VJ, Yonezawa U, Taguchi A, Ozono I, Go Y, Takeshima Y, Hiyama E, Horie N. T2-FLAIR mismatch sign, an imaging biomarker for CDKN2A-intact in non-enhancing astrocytoma, IDH-mutant. Neurosurg Rev 2024; 47:412. [PMID: 39117984 PMCID: PMC11310237 DOI: 10.1007/s10143-024-02632-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 07/09/2024] [Accepted: 07/29/2024] [Indexed: 08/10/2024]
Abstract
INTRODUCTION The WHO classification of central nervous system tumors (5th edition) classified astrocytoma, IDH-mutant accompanied with CDKN2A/B homozygous deletion as WHO grade 4. Loss of immunohistochemical (IHC) staining for methylthioadenosine phosphorylase (MTAP) was developed as a surrogate marker for CDKN2A-HD. Identification of imaging biomarkers for CDKN2A status is of immense clinical relevance. In this study, we explored the association between radiological characteristics of non-enhancing astrocytoma, IDH-mutant to the CDKN2A/B status. METHODS Thirty-one cases of astrocytoma, IDH-mutant with MTAP results by IHC were included in this study. The status of CDKN2A was diagnosed by IHC staining for MTAP in all cases, which was further confirmed by comprehensive genomic analysis in 12 cases. The T2-FLAIR mismatch sign, cystic component, calcification, and intratumoral microbleeding were evaluated. The relationship between the radiological features and molecular pathological diagnosis was analyzed. RESULTS Twenty-six cases were identified as CDKN2A-intact while 5 cases were CDKN2A-HD. The presence of > 33% and > 50% T2-FLAIR mismatch was observed in 23 cases (74.2%) and 14 cases (45.2%), respectively, and was associated with CDKN2A-intact astrocytoma (p = 0.0001, 0.0482). None of the astrocytoma, IDH-mutant with CDKN2A-HD showed T2-FLAIR mismatch sign. Cystic component, calcification, and intratumoral microbleeding were not associated with CDKN2A status. CONCLUSION In patients with non-enhancing astrocytoma, IDH-mutant, the T2-FLAIR mismatch sign is a potential imaging biomarker for the CDKN2A-intact subtype. This imaging biomarker may enable preoperative prediction of CDKN2A status among astrocytoma, IDH-mutant.
Collapse
Affiliation(s)
- Shumpei Onishi
- Department of Neurosurgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima City, 734-8551, Hiroshima, Japan
| | - Masato Kojima
- Department of Pediatric Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
- Natural Science Center for Basic Research and Development, Hiroshima University, Hiroshima, Japan
| | - Fumiyuki Yamasaki
- Department of Neurosurgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima City, 734-8551, Hiroshima, Japan.
| | - Vishwa Jeet Amatya
- Department of Pathology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Ushio Yonezawa
- Department of Neurosurgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima City, 734-8551, Hiroshima, Japan
| | - Akira Taguchi
- Department of Neurosurgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima City, 734-8551, Hiroshima, Japan
| | - Iori Ozono
- Department of Neurosurgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima City, 734-8551, Hiroshima, Japan
| | - Yukari Go
- Medical Division Technical Center, Hiroshima University, Hiroshima, Japan
| | - Yukio Takeshima
- Department of Pathology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Eiso Hiyama
- Department of Pediatric Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
- Natural Science Center for Basic Research and Development, Hiroshima University, Hiroshima, Japan
| | - Nobutaka Horie
- Department of Neurosurgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima City, 734-8551, Hiroshima, Japan
| |
Collapse
|
43
|
Dagher SA, Lochner RH, Ozkara BB, Schomer DF, Wintermark M, Fuller GN, Ucisik FE. The T2-FLAIR mismatch sign in oncologic neuroradiology: History, current use, emerging data, and future directions. Neuroradiol J 2024; 37:441-453. [PMID: 37924213 PMCID: PMC11366202 DOI: 10.1177/19714009231212375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2023] Open
Abstract
The T2-Fluid-Attenuated Inversion Recovery (T2-FLAIR) mismatch sign is a radiogenomic marker that is easily discernible on preoperative conventional MR imaging. Application of strict criteria (adult population, cerebral hemisphere location, and classic imaging morphology) permits the noninvasive preoperative diagnosis of isocitrate dehydrogenase (IDH)-mutant 1p/19q-non-codeleted diffuse astrocytoma with near-perfect specificity, albeit with variably low sensitivity. This leads to improved preoperative planning and patient counseling. More recent research has shown that the application of less strict criteria compromises the near-perfect specificity of the sign but remains adequate for ruling out IDH-wildtype (glioblastoma) phenotype, which bears a far grimmer prognosis compared to IDH-mutant diffuse astrocytic disease. In this review, we elaborate on the various definitions of the T2-FLAIR mismatch sign present in the literature, illustrate these with images obtained at a comprehensive cancer center, discuss the potential of the mismatch sign for application to certain pediatric-type brain tumors, namely dysembryoplastic neuroepithelial tumor and diffuse midline glioma, and elaborate upon the clinical, histologic, and molecular associations of the T2-FLAIR mismatch sign as recognized to date. Finally, the sign's correlates in diffusion- and perfusion-weighted imaging are presented, and opportunities to further maximize the diagnostic and prognostic applications of the sign in the context of the 2021 revision of the WHO Classification of Central Nervous System Tumors are discussed.
Collapse
Affiliation(s)
- Samir A Dagher
- Department of Neuroradiology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Riley Hideo Lochner
- Section of Neuropathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Burak Berksu Ozkara
- Department of Neuroradiology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Donald F Schomer
- Department of Neuroradiology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Max Wintermark
- Department of Neuroradiology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Gregory N Fuller
- Department of Neuroradiology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Section of Neuropathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - F Eymen Ucisik
- Department of Neuroradiology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
44
|
Richardson TE, Walker JM, Hambardzumyan D, Brem S, Hatanpaa KJ, Viapiano MS, Pai B, Umphlett M, Becher OJ, Snuderl M, McBrayer SK, Abdullah KG, Tsankova NM. Genetic and epigenetic instability as an underlying driver of progression and aggressive behavior in IDH-mutant astrocytoma. Acta Neuropathol 2024; 148:5. [PMID: 39012509 PMCID: PMC11252228 DOI: 10.1007/s00401-024-02761-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/28/2024] [Accepted: 06/29/2024] [Indexed: 07/17/2024]
Abstract
In recent years, the classification of adult-type diffuse gliomas has undergone a revolution, wherein specific molecular features now represent defining diagnostic criteria of IDH-wild-type glioblastomas, IDH-mutant astrocytomas, and IDH-mutant 1p/19q-codeleted oligodendrogliomas. With the introduction of the 2021 WHO CNS classification, additional molecular alterations are now integrated into the grading of these tumors, given equal weight to traditional histologic features. However, there remains a great deal of heterogeneity in patient outcome even within these established tumor subclassifications that is unexplained by currently codified molecular alterations, particularly in the IDH-mutant astrocytoma category. There is also significant intercellular genetic and epigenetic heterogeneity and plasticity with resulting phenotypic heterogeneity, making these tumors remarkably adaptable and robust, and presenting a significant barrier to the design of effective therapeutics. Herein, we review the mechanisms and consequences of genetic and epigenetic instability, including chromosomal instability (CIN), microsatellite instability (MSI)/mismatch repair (MMR) deficits, and epigenetic instability, in the underlying biology, tumorigenesis, and progression of IDH-mutant astrocytomas. We also discuss the contribution of recent high-resolution transcriptomics studies toward defining tumor heterogeneity with single-cell resolution. While intratumoral heterogeneity is a well-known feature of diffuse gliomas, the contribution of these various processes has only recently been considered as a potential driver of tumor aggressiveness. CIN has an independent, adverse effect on patient survival, similar to the effect of histologic grade and homozygous CDKN2A deletion, while MMR mutation is only associated with poor overall survival in univariate analysis but is highly correlated with higher histologic/molecular grade and other aggressive features. These forms of genomic instability, which may significantly affect the natural progression of these tumors, response to therapy, and ultimately clinical outcome for patients, are potentially measurable features which could aid in diagnosis, grading, prognosis, and development of personalized therapeutics.
Collapse
Affiliation(s)
- Timothy E Richardson
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, 1468 Madison Avenue, Annenberg Building, 15.238, New York, NY, 10029, USA.
| | - Jamie M Walker
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, 1468 Madison Avenue, Annenberg Building, 15.238, New York, NY, 10029, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Dolores Hambardzumyan
- Department of Oncological Sciences, The Tisch Cancer Institute, Mount Sinai Icahn School of Medicine, New York, NY, 10029, USA
- Department of Neurosurgery, Mount Sinai Icahn School of Medicine, New York, NY, 10029, USA
| | - Steven Brem
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Glioblastoma Translational Center of Excellence, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Kimmo J Hatanpaa
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Mariano S Viapiano
- Department of Neuroscience and Physiology, State University of New York, Upstate Medical University, Syracuse, NY, 13210, USA
- Department of Neurosurgery, State University of New York, Upstate Medical University, Syracuse, NY, 13210, USA
| | - Balagopal Pai
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, 1468 Madison Avenue, Annenberg Building, 15.238, New York, NY, 10029, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Melissa Umphlett
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, 1468 Madison Avenue, Annenberg Building, 15.238, New York, NY, 10029, USA
| | - Oren J Becher
- Department of Oncological Sciences, The Tisch Cancer Institute, Mount Sinai Icahn School of Medicine, New York, NY, 10029, USA
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Matija Snuderl
- Department of Pathology, New York University Langone Health, New York, NY, 10016, USA
| | - Samuel K McBrayer
- Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Kalil G Abdullah
- Department of Neurosurgery, University of Pittsburgh School of Medicine, 200 Lothrop St, Pittsburgh, PA, 15213, USA
- Hillman Comprehensive Cancer Center, University of Pittsburgh Medical Center, 5115 Centre Ave, Pittsburgh, PA, 15232, USA
| | - Nadejda M Tsankova
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, 1468 Madison Avenue, Annenberg Building, 15.238, New York, NY, 10029, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| |
Collapse
|
45
|
Nasser AM, Melamed L, Wetzel EA, Chang JCC, Nagashima H, Kitagawa Y, Muzyka L, Wakimoto H, Cahill DP, Miller JJ. CDKN2A/B Homozygous Deletion Sensitizes IDH-Mutant Glioma to CDK4/6 Inhibition. Clin Cancer Res 2024; 30:2996-3005. [PMID: 38718141 PMCID: PMC11250907 DOI: 10.1158/1078-0432.ccr-24-0562] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/10/2024] [Accepted: 05/06/2024] [Indexed: 07/16/2024]
Abstract
PURPOSE Treatment paradigms for isocitrate dehydrogenase (IDH)-mutant gliomas are rapidly evolving. Although typically indolent and responsive to initial treatment, these tumors invariably recur at a higher grade and require salvage treatment. Homozygous deletion of the tumor suppressor gene CDKN2A/B frequently emerges at recurrence in these tumors, driving poor patient outcomes. We investigated the effect of CDK-Rb pathway blockade on IDH-mutant glioma growth in vitro and in vivo using CDK4/6 inhibitors (CDKi). EXPERIMENTAL DESIGN Cell viability, proliferation assays, and flow cytometry were used to examine the pharmacologic effect of two distinct CDKi, palbociclib and abemaciclib, in multiple patient-derived IDH-mutant glioma lines. Isogenic models were used to directly investigate the influence of CDKN2A/B status on CDKi sensitivity. Orthotopic xenograft tumor models were used to examine the efficacy and tolerability of CDKi in vivo. RESULTS CDKi treatment leads to decreased cell viability and proliferative capacity in patient-derived IDH-mutant glioma lines, coupled with enrichment of cells in the G1 phase. CDKN2A inactivation sensitizes IDH-mutant glioma to CDKi in both endogenous and isogenic models with engineered CDKN2A deletion. CDK4/6 inhibitor administration improves survival in orthotopically implanted IDH-mutant glioma models. CONCLUSIONS IDH-mutant gliomas with deletion of CDKN2A/B are sensitized to CDK4/6 inhibitors. These results support the investigation of the use of these agents in a clinical setting.
Collapse
Affiliation(s)
- Ali M. Nasser
- Translational Neuro-Oncology Laboratory, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Lisa Melamed
- Translational Neuro-Oncology Laboratory, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Ethan A. Wetzel
- Translational Neuro-Oncology Laboratory, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Jenny Chia-Chen Chang
- Translational Neuro-Oncology Laboratory, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Hiroaki Nagashima
- Translational Neuro-Oncology Laboratory, Massachusetts General Hospital, Harvard Medical School, Boston, MA
- Kobe University Graduate School of Medicine, Kobe, Japan
| | - Yosuke Kitagawa
- Translational Neuro-Oncology Laboratory, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Logan Muzyka
- Translational Neuro-Oncology Laboratory, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Hiroaki Wakimoto
- Translational Neuro-Oncology Laboratory, Massachusetts General Hospital, Harvard Medical School, Boston, MA
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Daniel P. Cahill
- Translational Neuro-Oncology Laboratory, Massachusetts General Hospital, Harvard Medical School, Boston, MA
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Julie J. Miller
- Translational Neuro-Oncology Laboratory, Massachusetts General Hospital, Harvard Medical School, Boston, MA
- Stephen E. and Catherine Pappas Center for Neuro-Oncology, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| |
Collapse
|
46
|
Ono Y, Shirasawa H, Takahashi K, Goto M, Ono T, Sakaguchi T, Okabe M, Hirakawa T, Iwasawa T, Fujishima A, Sugawara T, Makino K, Miura H, Fukunaga N, Asada Y, Kumazawa Y, Terada Y. Shape of the first mitotic spindles impacts multinucleation in human embryos. Nat Commun 2024; 15:5381. [PMID: 38918406 PMCID: PMC11199590 DOI: 10.1038/s41467-024-49815-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 06/18/2024] [Indexed: 06/27/2024] Open
Abstract
During human embryonic development, early cleavage-stage embryos are more susceptible to errors. Studies have shown that many problems occur during the first mitosis, such as direct cleavage, chromosome segregation errors, and multinucleation. However, the mechanisms whereby these errors occur during the first mitosis in human embryos remain unknown. To clarify this aspect, in the present study, we image discarded living human two-pronuclear stage zygotes using fluorescent labeling and confocal microscopy without microinjection of DNA or mRNA and investigate the association between spindle shape and nuclear abnormality during the first mitosis. We observe that the first mitotic spindles vary, and low-aspect-ratio-shaped spindles tend to lead to the formation of multiple nuclei at the 2-cell stage. Moreover, we observe defocusing poles in many of the first mitotic spindles, which are strongly associated with multinucleation. Additionally, we show that differences in the positions of the centrosomes cause spindle abnormality in the first mitosis. Furthermore, many multinuclei are modified to form mononuclei after the second mitosis because the occurrence of pole defocusing is firmly reduced. Our study will contribute markedly to research on the occurrence of mitotic errors during the early cleavage of human embryos.
Collapse
Affiliation(s)
- Yuki Ono
- Department of Obstetrics and Gynecology, Akita University Graduate School of Medicine, Akita, Japan.
| | - Hiromitsu Shirasawa
- Department of Obstetrics and Gynecology, Akita University Graduate School of Medicine, Akita, Japan
| | - Kazumasa Takahashi
- Department of Obstetrics and Gynecology, Akita University Graduate School of Medicine, Akita, Japan
| | - Mayumi Goto
- Department of Obstetrics and Gynecology, Akita University Graduate School of Medicine, Akita, Japan
| | - Takahiro Ono
- Department of Neurosurgery, Akita University Graduate School of Medicine, Akita, Japan
| | - Taichi Sakaguchi
- Department of Obstetrics and Gynecology, Akita University Graduate School of Medicine, Akita, Japan
| | - Motonari Okabe
- Department of Obstetrics and Gynecology, Akita University Graduate School of Medicine, Akita, Japan
| | - Takeo Hirakawa
- Department of Obstetrics and Gynecology, Akita University Graduate School of Medicine, Akita, Japan
| | - Takuya Iwasawa
- Department of Obstetrics and Gynecology, Akita University Graduate School of Medicine, Akita, Japan
| | - Akiko Fujishima
- Department of Obstetrics and Gynecology, Akita University Graduate School of Medicine, Akita, Japan
| | - Tae Sugawara
- Department of Obstetrics and Gynecology, Akita University Graduate School of Medicine, Akita, Japan
| | - Kenichi Makino
- Department of Obstetrics and Gynecology, Akita University Graduate School of Medicine, Akita, Japan
| | - Hiroshi Miura
- Department of Obstetrics and Gynecology, Akita University Graduate School of Medicine, Akita, Japan
| | - Noritaka Fukunaga
- Asada Institute for Reproductive Medicine, Asada Ladies Clinic, Nagoya, Aichi, Japan
| | - Yoshimasa Asada
- Asada Institute for Reproductive Medicine, Asada Ladies Clinic, Nagoya, Aichi, Japan
| | - Yukiyo Kumazawa
- Department of Obstetrics and Gynecology, Akita University Graduate School of Medicine, Akita, Japan
| | - Yukihiro Terada
- Department of Obstetrics and Gynecology, Akita University Graduate School of Medicine, Akita, Japan
| |
Collapse
|
47
|
Shelton WJ, Zandpazandi S, Nix JS, Gokden M, Bauer M, Ryan KR, Wardell CP, Vaske OM, Rodriguez A. Long-read sequencing for brain tumors. Front Oncol 2024; 14:1395985. [PMID: 38915364 PMCID: PMC11194609 DOI: 10.3389/fonc.2024.1395985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 05/27/2024] [Indexed: 06/26/2024] Open
Abstract
Brain tumors and genomics have a long-standing history given that glioblastoma was the first cancer studied by the cancer genome atlas. The numerous and continuous advances through the decades in sequencing technologies have aided in the advanced molecular characterization of brain tumors for diagnosis, prognosis, and treatment. Since the implementation of molecular biomarkers by the WHO CNS in 2016, the genomics of brain tumors has been integrated into diagnostic criteria. Long-read sequencing, also known as third generation sequencing, is an emerging technique that allows for the sequencing of longer DNA segments leading to improved detection of structural variants and epigenetics. These capabilities are opening a way for better characterization of brain tumors. Here, we present a comprehensive summary of the state of the art of third-generation sequencing in the application for brain tumor diagnosis, prognosis, and treatment. We discuss the advantages and potential new implementations of long-read sequencing into clinical paradigms for neuro-oncology patients.
Collapse
Affiliation(s)
- William J Shelton
- Department of Neurosurgery, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Sara Zandpazandi
- Department of Neurosurgery, Medical University of South Carolina, Charleston, SC, United States
| | - J Stephen Nix
- Department of Pathology, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Murat Gokden
- Department of Pathology, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Michael Bauer
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Katie Rose Ryan
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Christopher P Wardell
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Olena Morozova Vaske
- Department of Molecular, Cell and Developmental Biology, University of California Santa Cruz, Santa Cruz, CA, United States
| | - Analiz Rodriguez
- Department of Neurosurgery, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| |
Collapse
|
48
|
McCord M, Jamshidi P. Targeting the cell cycle to enhance chemotherapy efficacy in glioblastoma. Neuro Oncol 2024; 26:1097-1098. [PMID: 38517031 PMCID: PMC11145455 DOI: 10.1093/neuonc/noae062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Indexed: 03/23/2024] Open
Affiliation(s)
- Matthew McCord
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Pouya Jamshidi
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| |
Collapse
|
49
|
Galbraith K, Garcia M, Wei S, Chen A, Schroff C, Serrano J, Pacione D, Placantonakis DG, William CM, Faustin A, Zagzag D, Barbaro M, Eibl MDPGP, Shirahata M, Reuss D, Tran QT, Alom Z, von Deimling A, Orr BA, Sulman EP, Golfinos JG, Orringer DA, Jain R, Lieberman E, Feng Y, Snuderl M. Prognostic value of DNA methylation subclassification, aneuploidy, and CDKN2A/B homozygous deletion in predicting clinical outcome of IDH mutant astrocytomas. Neuro Oncol 2024; 26:1042-1051. [PMID: 38243818 PMCID: PMC11145445 DOI: 10.1093/neuonc/noae009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Indexed: 01/22/2024] Open
Abstract
BACKGROUND Isocitrate dehydrogenase (IDH) mutant astrocytoma grading, until recently, has been entirely based on morphology. The 5th edition of the Central Nervous System World Health Organization (WHO) introduces CDKN2A/B homozygous deletion as a biomarker of grade 4. We sought to investigate the prognostic impact of DNA methylation-derived molecular biomarkers for IDH mutant astrocytoma. METHODS We analyzed 98 IDH mutant astrocytomas diagnosed at NYU Langone Health between 2014 and 2022. We reviewed DNA methylation subclass, CDKN2A/B homozygous deletion, and ploidy and correlated molecular biomarkers with histological grade, progression free (PFS), and overall (OS) survival. Findings were confirmed using 2 independent validation cohorts. RESULTS There was no significant difference in OS or PFS when stratified by histologic WHO grade alone, copy number complexity, or extent of resection. OS was significantly different when patients were stratified either by CDKN2A/B homozygous deletion or by DNA methylation subclass (P value = .0286 and .0016, respectively). None of the molecular biomarkers were associated with significantly better PFS, although DNA methylation classification showed a trend (P value = .0534). CONCLUSIONS The current WHO recognized grading criteria for IDH mutant astrocytomas show limited prognostic value. Stratification based on DNA methylation shows superior prognostic value for OS.
Collapse
Affiliation(s)
- Kristyn Galbraith
- Department of Pathology, NYU Langone Health and NYU Grossman School of Medicine, New York, New York, USA
| | - Mekka Garcia
- Department of Neurology, NYU Langone Health and NYU Grossman School of Medicine, New York, New York, USA
| | - Siyu Wei
- Department of Biostatistics, NYU School of Global Public Health, New York, New York, USA
| | - Anna Chen
- Department of Radiology, NYU Langone Health and NYU Grossman School of Medicine, New York, New York, USA
| | - Chanel Schroff
- Department of Pathology, NYU Langone Health and NYU Grossman School of Medicine, New York, New York, USA
| | - Jonathan Serrano
- Department of Pathology, NYU Langone Health and NYU Grossman School of Medicine, New York, New York, USA
| | - Donato Pacione
- Department of Neurosurgery, NYU Langone Health and NYU Grossman School of Medicine, New York, New York, USA
| | - Dimitris G Placantonakis
- Department of Neurosurgery, NYU Langone Health and NYU Grossman School of Medicine, New York, New York, USA
| | - Christopher M William
- Department of Pathology, NYU Langone Health and NYU Grossman School of Medicine, New York, New York, USA
| | - Arline Faustin
- Department of Pathology, NYU Langone Health and NYU Grossman School of Medicine, New York, New York, USA
| | - David Zagzag
- Department of Pathology, NYU Langone Health and NYU Grossman School of Medicine, New York, New York, USA
| | - Marissa Barbaro
- Department of Neuro-oncology, NYU Langone Health and NYU Grossman School of Medicine, New York, New York, USA
| | | | - Mitsuaki Shirahata
- Department of Pathology, NYU Langone Health and NYU Grossman School of Medicine, New York, New York, USA
| | - David Reuss
- Department of Neuropathology, Ruprecht-Karls-University, Heidelberg, Germany
- CCU Neuropathology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Quynh T Tran
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Zahangir Alom
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Andreas von Deimling
- Department of Neuropathology, Ruprecht-Karls-University, Heidelberg, Germany
- CCU Neuropathology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Brent A Orr
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Erik P Sulman
- Department of Radiation Oncology, NYU Langone Health and NYU Grossman School of Medicine, New York, New York, USA
- Brain and Spine Tumor Center, Laura and Isaac Perlmutter Cancer Center, New York, New York, USA
| | - John G Golfinos
- Department of Neurosurgery, NYU Langone Health and NYU Grossman School of Medicine, New York, New York, USA
| | - Daniel A Orringer
- Department of Neurosurgery, NYU Langone Health and NYU Grossman School of Medicine, New York, New York, USA
| | - Rajan Jain
- Department of Neurosurgery, NYU Langone Health and NYU Grossman School of Medicine, New York, New York, USA
| | - Evan Lieberman
- Department of Radiology, NYU Langone Health and NYU Grossman School of Medicine, New York, New York, USA
| | - Yang Feng
- Department of Biostatistics, NYU School of Global Public Health, New York, New York, USA
| | - Matija Snuderl
- Department of Pathology, NYU Langone Health and NYU Grossman School of Medicine, New York, New York, USA
- Brain and Spine Tumor Center, Laura and Isaac Perlmutter Cancer Center, New York, New York, USA
| |
Collapse
|
50
|
Yamamura T, Tamura K, Kobayashi D, Inaji M, Toyama Y, Wakimoto H, Kiyokawa J, Hara S, Tanaka Y, Nariai T, Shimizu K, Ishii K, Maehara T. Loss of methylthioadenosine phosphorylase immunoreactivity correlates with poor prognosis and elevated uptake of 11C-methionine in IDH-mutant astrocytoma. J Neurooncol 2024; 168:355-365. [PMID: 38557927 DOI: 10.1007/s11060-024-04661-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 03/25/2024] [Indexed: 04/04/2024]
Abstract
PURPOSE The proximate localization of MTAP, which encodes methylthioadenosine phosphorylase, and CDKN2A/B on Chromosome 9q21 has allowed the loss of MTAP expression as a surrogate for homozygous deletion of CDKN2A/B. This study aimed to determine whether MTAP status correlates with clinical outcomes and 11C-methionine uptake in astrocytomas with IDH mutations. METHODS We conducted immunohistochemistry for MTAP in 30 patients with astrocytoma, IDH-mutant who underwent 11C-methionine positron emission tomography scans prior to surgical resection. The tumor-to-normal (T/N) ratio of 11C-methionine uptake was calculated using the mean standardized uptake value (SUV) for tumor and normal brain tissues. Cox regression analysis was used for multivariate survival analysis. RESULTS Among IDH-mutant astrocytomas, 26.7% (8/30) exhibited the loss of cytoplasmic MTAP expression, whereas 73.3% (22/30) tumors retained MTAP expression. The median progression-free survival (PFS) was significantly shorter in patients with MTAP loss than those with MTAP retention (1.88 years vs. 6.80 years, p = 0.003). The median overall survival (OS) was also shorter in patients with MTAP loss than in MTAP-retaining counterparts (5.23 years vs. 10.69 years, p = 0.019). Multivariate analysis identified MTAP status (hazard ratio (HR), 0.081) and extent of resection (HR, 0.104) as independent prognostic factors for PFS. Astrocytomas lacking cytoplasmic MTAP expression showed a significantly higher median T/N ratio for 11C-methionine uptake than tumors retaining MTAP (2.12 vs. 1.65, p = 0.012). CONCLUSION Our study revealed that the loss of MTAP expression correlates with poor prognosis and an elevated T/N ratio of 11C-methionine uptake in astrocytoma, IDH-mutant.
Collapse
Affiliation(s)
- Toshihiro Yamamura
- Department of Neurosurgery, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-Ku, Tokyo, 113-8510, Japan
| | - Kaoru Tamura
- Department of Neurosurgery, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-Ku, Tokyo, 113-8510, Japan.
| | - Daisuke Kobayashi
- Department of Human Pathology, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-Ku, Tokyo, 113-8510, Japan
| | - Motoki Inaji
- Department of Neurosurgery, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-Ku, Tokyo, 113-8510, Japan
- Research Team for Neuroimaging, Tokyo Metropolitan Institute for Geriatrics and Gerontology, 35-2 Sakaecho, Itabashi-Ku, Tokyo, 173-0015, Japan
| | - Yuka Toyama
- Department of Human Pathology, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-Ku, Tokyo, 113-8510, Japan
| | - Hiroaki Wakimoto
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, 185 Cambridge St, Boston, MA, 02114, USA
| | - Juri Kiyokawa
- Department of Neurosurgery, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-Ku, Tokyo, 113-8510, Japan
| | - Shoko Hara
- Department of Neurosurgery, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-Ku, Tokyo, 113-8510, Japan
- Research Team for Neuroimaging, Tokyo Metropolitan Institute for Geriatrics and Gerontology, 35-2 Sakaecho, Itabashi-Ku, Tokyo, 173-0015, Japan
| | - Yoji Tanaka
- Department of Neurosurgery, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-Ku, Tokyo, 113-8510, Japan
| | - Tadashi Nariai
- Department of Neurosurgery, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-Ku, Tokyo, 113-8510, Japan
- Research Team for Neuroimaging, Tokyo Metropolitan Institute for Geriatrics and Gerontology, 35-2 Sakaecho, Itabashi-Ku, Tokyo, 173-0015, Japan
| | - Kazuhide Shimizu
- Department of Neurosurgery, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-Ku, Tokyo, 113-8510, Japan
| | - Kenji Ishii
- Research Team for Neuroimaging, Tokyo Metropolitan Institute for Geriatrics and Gerontology, 35-2 Sakaecho, Itabashi-Ku, Tokyo, 173-0015, Japan
| | - Taketoshi Maehara
- Department of Neurosurgery, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-Ku, Tokyo, 113-8510, Japan
| |
Collapse
|