1
|
CD33 isoforms in microglia and Alzheimer's disease: Friend and foe. Mol Aspects Med 2023; 90:101111. [PMID: 35940942 DOI: 10.1016/j.mam.2022.101111] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/18/2022] [Accepted: 07/27/2022] [Indexed: 02/08/2023]
Abstract
Alzheimer's disease (AD) is the most common form of neurodegenerative disease and is considered the main cause of dementia worldwide. Genome-wide association studies combined with integrated analysis of functional datasets support a critical role for microglia in AD pathogenesis, identifying them as important potential therapeutic targets. The ability of immunomodulatory receptors on microglia to control the response to pathogenic amyloid-β aggregates has gained significant interest. Siglec-3, also known as CD33, is one of these immunomodulatory receptors expressed on microglia that has been identified as an AD susceptibility factor. Here, we review recent advances made in understanding the multifaceted roles that CD33 plays in microglia with emphasis on two human-specific CD33 isoforms that differentially correlate with AD susceptibility. We also describe several different therapeutic approaches for targeting CD33 that have been advanced for the purpose of skewing microglial cell responses.
Collapse
|
2
|
Siddiqui SS. Non-canonical roles of Siglecs: Beyond sialic acid-binding and immune cell modulation. Mol Aspects Med 2023; 90:101145. [PMID: 36153172 DOI: 10.1016/j.mam.2022.101145] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 08/11/2022] [Accepted: 09/13/2022] [Indexed: 02/08/2023]
Abstract
Siglecs (Sialic acid-binding immunoglobulin-type lectins) are I-type lectins that bind with sialic acid ligands (Sia). Most are expressed on the surface of leukocytes and are involved in immune regulation and possess immune tyrosine-based inhibitory motif (ITIM) in the intracellular domain, thus leading to inhibition of the immune response. This signaling is instrumental in maintaining quiescence under physiological conditions and acts as a brake for inflammatory cascades. By contrast, activating Siglecs carry positively charged residues in the transmembrane domain and interact with immune tyrosine-based activating motif (ITAM)-containing proteins, a DNAX-activating protein of 10-12 kDa (DAP10/12), to activate immune cells. There are various characteristics of Siglecs that do not fit within the classification of Siglec receptors as being either inhibitory or activating in nature. This review focuses on elucidating the non-canonical functions and interactions of Siglec receptors, which include Sia-independent interactions such as protein-protein interactions and interactions with lipids or other sugars. This review also summarizes Siglec expression and function on non-immune cells, and non-classical signaling of the receptor. Thus, this review will be beneficial to researchers interested in the field of Siglecs and sialic acid biology.
Collapse
Affiliation(s)
- Shoib Sarwar Siddiqui
- School of Life and Medical Sciences, University of Hertfordshire, College Lane Campus, Hatfield, AL10 9AB, United Kingdom.
| |
Collapse
|
3
|
Siew JJ, Chern Y, Khoo KH, Angata T. Roles of Siglecs in neurodegenerative diseases. Mol Aspects Med 2023; 90:101141. [PMID: 36089405 DOI: 10.1016/j.mam.2022.101141] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 08/16/2022] [Accepted: 08/29/2022] [Indexed: 02/08/2023]
Abstract
Microglia are resident myeloid cells in the central nervous system (CNS) with a unique developmental origin, playing essential roles in developing and maintaining the CNS environment. Recent studies have revealed the involvement of microglia in neurodegenerative diseases, such as Alzheimer's disease, through the modulation of neuroinflammation. Several members of the Siglec family of sialic acid recognition proteins are expressed on microglia. Since the discovery of the genetic association between a polymorphism in the CD33 gene and late-onset Alzheimer's disease, significant efforts have been made to elucidate the molecular mechanism underlying the association between the polymorphism and Alzheimer's disease. Furthermore, recent studies have revealed additional potential associations between Siglecs and Alzheimer's disease, implying that the reduced signal from inhibitory Siglec may have an overall protective effect in lowering the disease risk. Evidences suggesting the involvement of Siglecs in other neurodegenerative diseases are also emerging. These findings could help us predict the roles of Siglecs in other neurodegenerative diseases. However, little is known about the functionally relevant Siglec ligands in the brain, which represents a new frontier. Understanding how microglial Siglecs and their ligands in CNS contribute to the regulation of CNS homeostasis and pathogenesis of neurodegenerative diseases may provide us with a new avenue for disease prevention and intervention.
Collapse
Affiliation(s)
- Jian Jing Siew
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Yijuang Chern
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Kay-Hooi Khoo
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan; Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan
| | - Takashi Angata
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan; Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
4
|
Dhar C. Does SIGLEC8 localize to the subcellular compartment like the Alzheimer's disease protective CD33 splice variant? Front Cell Neurosci 2023; 17:1124150. [PMID: 37124396 PMCID: PMC10133518 DOI: 10.3389/fncel.2023.1124150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 03/28/2023] [Indexed: 05/02/2023] Open
|
5
|
Saha S, Khan N, Comi T, Verhagen A, Sasmal A, Diaz S, Yu H, Chen X, Akey JM, Frank M, Gagneux P, Varki A. Evolution of Human-Specific Alleles Protecting Cognitive Function of Grandmothers. Mol Biol Evol 2022; 39:6637508. [PMID: 35809046 PMCID: PMC9356730 DOI: 10.1093/molbev/msac151] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
The myelomonocytic receptor CD33 (Siglec-3) inhibits innate immune reactivity by extracellular V-set domain recognition of sialic acid (Sia)-containing "self-associated molecular patterns" (SAMPs). We earlier showed that V-set domain-deficient CD33-variant allele, protective against late-onset Alzheimer's Disease (LOAD), is derived and specific to the hominin lineage. We now report multiple hominin-specific CD33 V-set domain mutations. Due to hominin-specific, fixed loss-of-function mutation in the CMAH gene, humans lack N-glycolylneuraminic acid (Neu5Gc), the preferred Sia-ligand of ancestral CD33. Mutational analysis and molecular dynamics (MD)-simulations indicate that fixed change in amino acid 21 of hominin V-set domain and conformational changes related to His45 corrected for Neu5Gc-loss by switching to N-acetylneuraminic acid (Neu5Ac)-recognition. We show that human-specific pathogens Neisseria gonorrhoeae and Group B Streptococcus selectively bind human CD33 (huCD33) as part of immune-evasive molecular mimicry of host SAMPs and that this binding is significantly impacted by amino acid 21 modification. In addition to LOAD-protective CD33 alleles, humans harbor derived, population-universal, cognition-protective variants at several other loci. Interestingly, 11 of 13 SNPs in these human genes (including CD33) are not shared by genomes of archaic hominins: Neanderthals and Denisovans. We present a plausible evolutionary scenario to compile, correlate, and comprehend existing knowledge about huCD33-evolution and suggest that grandmothering emerged in humans.
Collapse
Affiliation(s)
- Sudeshna Saha
- Departments of Medicine, Pathology, Anthropology and Cellular and Molecular Medicine, Center for Academic Research and Training in Anthropogeny and Glycobiology Research and Training Center, University of California San Diego, San Diego, CA 92093, USA
| | - Naazneen Khan
- Departments of Medicine, Pathology, Anthropology and Cellular and Molecular Medicine, Center for Academic Research and Training in Anthropogeny and Glycobiology Research and Training Center, University of California San Diego, San Diego, CA 92093, USA
| | - Troy Comi
- Department of Genetics, Princeton University, Princeton, NJ 08544, USA
| | - Andrea Verhagen
- Departments of Medicine, Pathology, Anthropology and Cellular and Molecular Medicine, Center for Academic Research and Training in Anthropogeny and Glycobiology Research and Training Center, University of California San Diego, San Diego, CA 92093, USA
| | - Aniruddha Sasmal
- Departments of Medicine, Pathology, Anthropology and Cellular and Molecular Medicine, Center for Academic Research and Training in Anthropogeny and Glycobiology Research and Training Center, University of California San Diego, San Diego, CA 92093, USA
| | - Sandra Diaz
- Departments of Medicine, Pathology, Anthropology and Cellular and Molecular Medicine, Center for Academic Research and Training in Anthropogeny and Glycobiology Research and Training Center, University of California San Diego, San Diego, CA 92093, USA
| | - Hai Yu
- Department of Chemistry, University of California Davis, Davis, CA 95616, USA
| | - Xi Chen
- Department of Chemistry, University of California Davis, Davis, CA 95616, USA
| | - Joshua M Akey
- Department of Genetics, Princeton University, Princeton, NJ 08544, USA
| | | | | | | |
Collapse
|
6
|
Abstract
PURPOSE OF REVIEW The aim of this study was to provide an update on the role of the innate immune system and neuroinflammation in the pathogenesis of Alzheimer's disease, with an emphasis on microglial receptors CD33 and TREM2. RECENT FINDINGS Genome-wide association studies (GWAS) have identified many Alzheimer's disease risk genes related to immune response and microglia including the phagocytic receptors CD33 and TREM2. Recent GWAS and pathway analyses emphasize the crucial role of the innate immune system and neuroinflammation in the pathogenesis of Alzheimer's disease. Disease-associated microglia have been characterized by TREM2-dependent upregulation of phagocytic and lipid metabolism genes. Impaired microglial phagocytosis results in amyloid beta (Aβ) accumulation leading to neuroinflammation that is the primary cause of neurodegeneration. CD33 and TREM2 modulate neuroinflammation in Alzheimer's disease and have emerged as therapeutic targets in Alzheimer's disease. Progress has been made to inhibit CD33 by gene therapy, small molecules or immunotherapy, and to increase TREM2 activity by immunotherapy. Finally, mAbs against CD33 and TREM2 have entered clinical trials and may reduce neuroinflammation in Alzheimer's disease brain. SUMMARY Targeting neuroinflammation via CD33 inhibition and/or TREM2 activation may have important implications for neurodegeneration in Alzheimer's disease and may be an addition to monoclonal anti-Aβ antibody treatments that remove plaques without reducing neuroinflammation.
Collapse
Affiliation(s)
- Ana Griciuc
- Genetics and Aging Research Unit, McCance Center for Brain Health, Mass General Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts, USA
| | | |
Collapse
|
7
|
Bhattacherjee A, Jung J, Zia S, Ho M, Eskandari-Sedighi G, St. Laurent CD, McCord KA, Bains A, Sidhu G, Sarkar S, Plemel JR, Macauley MS. The CD33 short isoform is a gain-of-function variant that enhances Aβ 1-42 phagocytosis in microglia. Mol Neurodegener 2021; 16:19. [PMID: 33766097 PMCID: PMC7992807 DOI: 10.1186/s13024-021-00443-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 03/12/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND CD33 is genetically linked to Alzheimer's disease (AD) susceptibility through differential expression of isoforms in microglia. The role of the human CD33 short isoform (hCD33m), preferentially encoded by an AD-protective CD33 allele (rs12459419T), is unknown. Here, we test whether hCD33m represents a loss-of-function or gain-of-function variant. METHODS We have developed two models to test the role of hCD33m. The first is a new strain of transgenic mice expressing hCD33m in the microglial cell lineage. The second is U937 cells where the CD33 gene was disrupted by CRISPR/Cas9 and complemented with different variants of hCD33. Primary microglia and U937 cells were tested in phagocytosis assays and single cell RNA sequencing (scRNAseq) was carried out on the primary microglia. Furthermore, a new monoclonal antibody was developed to detect hCD33m more efficiently. RESULTS In both primary microglia and U937 cells, we find that hCD33m enhances phagocytosis. This contrasts with the human CD33 long isoform (hCD33M) that represses phagocytosis, as previously demonstrated. As revealed by scRNAseq, hCD33m+ microglia are enriched in a cluster of cells defined by an upregulated expression and gene regulatory network of immediate early genes, which was further validated within microglia in situ. Using a new hCD33m-specific antibody enabled hCD33m expression to be examined, demonstrating a preference for an intracellular location. Moreover, this newly discovered gain-of-function role for hCD33m is dependent on its cytoplasmic signaling motifs, dominant over hCD33M, and not due to loss of glycan ligand binding. CONCLUSIONS These results provide strong support that hCD33m represents a gain-of-function isoform and offers insight into what it may take to therapeutically capture the AD-protective CD33 allele.
Collapse
Affiliation(s)
- Abhishek Bhattacherjee
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Dr., Gunning Lemieux Chemistry Centre E5-18A, Edmonton, T6G 2G2 Canada
| | - Jaesoo Jung
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Dr., Gunning Lemieux Chemistry Centre E5-18A, Edmonton, T6G 2G2 Canada
| | - Sameera Zia
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, T6G 2E1 Canada
| | - Madelene Ho
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, T6G 2E1 Canada
| | - Ghazaleh Eskandari-Sedighi
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Dr., Gunning Lemieux Chemistry Centre E5-18A, Edmonton, T6G 2G2 Canada
| | - Chris D. St. Laurent
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Dr., Gunning Lemieux Chemistry Centre E5-18A, Edmonton, T6G 2G2 Canada
| | - Kelli A. McCord
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Dr., Gunning Lemieux Chemistry Centre E5-18A, Edmonton, T6G 2G2 Canada
| | - Arjun Bains
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Dr., Gunning Lemieux Chemistry Centre E5-18A, Edmonton, T6G 2G2 Canada
| | - Gaurav Sidhu
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Dr., Gunning Lemieux Chemistry Centre E5-18A, Edmonton, T6G 2G2 Canada
| | - Susmita Sarkar
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Dr., Gunning Lemieux Chemistry Centre E5-18A, Edmonton, T6G 2G2 Canada
| | - Jason R. Plemel
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, T6G 2E1 Canada
- Department of Medicine, Division of Neurology, University of Alberta, Edmonton, T6G 2E1 Canada
| | - Matthew S. Macauley
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Dr., Gunning Lemieux Chemistry Centre E5-18A, Edmonton, T6G 2G2 Canada
- Department of Medical Microbiology and Immunology, Edmonton, T6G 2E1 Canada
| |
Collapse
|
8
|
Gbadamosi MO, Shastri VM, Hylkema T, Papageorgiou I, Pardo L, Cogle CR, Doty A, Loken MR, Meshinchi S, Lamba JK. Novel CD33 antibodies unravel localization, biology and therapeutic implications of CD33 isoforms. Future Oncol 2021; 17:263-277. [PMID: 33356566 PMCID: PMC10621775 DOI: 10.2217/fon-2020-0746] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 09/22/2020] [Indexed: 02/03/2023] Open
Abstract
The aim of this study was to establish the therapeutic relevance of the CD33D2 isoform by developing novel antibodies targeting the IgC domain of CD33. Two novel IgC-targeting antibodies, HL2541 and 5C11-2, were developed, and CD33 isoforms were assessed using multiple assays in cells overexpressing either CD33FL or CD33D2 isoforms, unmodified acute myeloid leukemia (AML) cell lines and primary AML specimens representing different genotypes for the CD33 splicing single nucleotide polymorphism. CD33D2 was recognized on cells overexpressing CD33D2 and unmodified AML cell lines; however, minimal/no cell surface detection of CD33D2 was observed in primary AML specimens. Both isoforms were detected intracellularly using novel antibodies. Minimal cell surface expression of CD33D2 on primary AML/progenitor cells warrants further studies on anti-CD33D2 immunotherapeutics.
Collapse
MESH Headings
- Adolescent
- Animals
- Antibodies, Monoclonal/immunology
- Antibodies, Monoclonal/therapeutic use
- Bone Marrow Cells/metabolism
- Bone Marrow Cells/pathology
- Cell Line, Tumor
- Child
- Child, Preschool
- Female
- Genotype
- Humans
- Immunoglobulin Domains/immunology
- Infant
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/pathology
- Male
- Mice
- Protein Isoforms
- Sialic Acid Binding Ig-like Lectin 3/chemistry
- Sialic Acid Binding Ig-like Lectin 3/genetics
- Sialic Acid Binding Ig-like Lectin 3/immunology
- Sialic Acid Binding Ig-like Lectin 3/metabolism
Collapse
Affiliation(s)
- Mohammed O Gbadamosi
- Department of Pharmacotherapy & Translational Research, Center for Pharmacogenomics, College of Pharmacy, University of Florida, Gainesville, FL 32610, USA
| | - Vivek M Shastri
- Department of Pharmacotherapy & Translational Research, Center for Pharmacogenomics, College of Pharmacy, University of Florida, Gainesville, FL 32610, USA
| | - Tiffany Hylkema
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Ioannis Papageorgiou
- Department of Pharmacotherapy & Translational Research, Center for Pharmacogenomics, College of Pharmacy, University of Florida, Gainesville, FL 32610, USA
| | | | - Christopher R Cogle
- Department of Hematology/Oncology, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Andria Doty
- Interdisciplinary Center for Biotechnology Flow Cytometry & Imaging Core, University of Florida, Gainesville, FL 32610, USA
| | | | - Soheil Meshinchi
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Jatinder K Lamba
- Department of Pharmacotherapy & Translational Research, Center for Pharmacogenomics, College of Pharmacy, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
9
|
Läubli H, Kawanishi K, George Vazhappilly C, Matar R, Merheb M, Sarwar Siddiqui S. Tools to study and target the Siglec-sialic acid axis in cancer. FEBS J 2020; 288:6206-6225. [PMID: 33251699 DOI: 10.1111/febs.15647] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 11/18/2020] [Accepted: 11/23/2020] [Indexed: 12/16/2022]
Abstract
Siglecs are widely expressed on leucocytes and bind to ubiquitously presented glycans containing sialic acids (sialoglycans). Most Siglecs carry an immunoreceptor tyrosine-based inhibition motif (ITIM) and elicit an inhibitory intracellular signal upon ligand binding. A few Siglec receptors can, however, recruit immunoreceptor tyrosine-based activation motif (ITAM)-containing factors, which activate cells. The role of hypersialylation (the enhanced expression of sialoglycans) has recently been explored in cancer progression. Mechanistic studies have shown that hypersialylation on cancer cells can engage inhibitory Siglecs on the surface of immune cells and induce immunosuppression. These recent studies strongly suggest that the Siglec-sialic acid axis can act as a potential target for cancer immunotherapy. Moreover, the use of new tools and techniques is facilitating these studies. In this review, we summarise techniques used to study Siglecs, including different mouse models, monoclonal antibodies, Siglec fusion proteins, and sialoglycan arrays. Furthermore, we discuss the recent major developments in the study of Siglecs in cancer immunosuppression, tools, and techniques used in targeting the Siglec-sialic acid axis and the possibility of clinical intervention.
Collapse
Affiliation(s)
- Heinz Läubli
- Laboratory for Cancer Immunotherapy, Department of Biomedicine, and Medical Oncology, Department of Internal Medicine, University Hospital Basel, Switzerland
| | - Kunio Kawanishi
- Kidney and Vascular Pathology, University of Tsukuba, Ibaraki, Japan
| | | | - Rachel Matar
- Department of Biotechnology, American University of Ras Al Khaimah (AURAK), UAE
| | - Maxime Merheb
- Department of Biotechnology, American University of Ras Al Khaimah (AURAK), UAE
| | | |
Collapse
|
10
|
Siddiqui SS, Rahman S, Rupasinghe HV, Vazhappilly CG. Dietary Flavonoids in p53-Mediated Immune Dysfunctions Linking to Cancer Prevention. Biomedicines 2020; 8:biomedicines8080286. [PMID: 32823757 PMCID: PMC7460013 DOI: 10.3390/biomedicines8080286] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/03/2020] [Accepted: 08/11/2020] [Indexed: 12/14/2022] Open
Abstract
The p53 protein plays a central role in mediating immune functioning and determines the fate of the cells. Its role as a tumor suppressor, and in transcriptional regulation and cytokine activity under stress conditions, is well defined. The wild type (WT) p53 functions as a guardian for the genome, while the mutant p53 has oncogenic roles. One of the ways that p53 combats carcinogenesis is by reducing inflammation. WT p53 functions as an anti-inflammatory molecule via cross-talk activity with multiple immunological pathways, such as the major histocompatibility complex I (MHCI) associated pathway, toll-like receptors (TLRs), and immune checkpoints. Due to the multifarious roles of p53 in cancer, it is a potent target for cancer immunotherapy. Plant flavonoids have been gaining recognition over the last two decades to use as a potential therapeutic regimen in ameliorating diseases. Recent studies have shown the ability of flavonoids to suppress chronic inflammation, specifically by modulating p53 responses. Further, the anti-oxidant Keap1/Nrf2/ARE pathway could play a crucial role in mitigating oxidative stress, leading to a reduction of chronic inflammation linked to the prevention of cancer. This review aims to discuss the pharmacological properties of plant flavonoids in response to various oxidative stresses and immune dysfunctions and analyzes the cross-talk between flavonoid-rich dietary intake for potential disease prevention.
Collapse
Affiliation(s)
- Shoib Sarwar Siddiqui
- Department of Biotechnology, American University of Ras Al Khaimah, Ras Al Khaimah PO Box 10021, UAE;
| | - Sofia Rahman
- School of Natural Sciences and Mathematics, The University of Texas at Dallas, Richardson, TX 75080, USA;
| | - H.P. Vasantha Rupasinghe
- Department of Plant, Food, and Environmental Sciences, Faculty of Agriculture, Dalhousie University, Truro, NS B2N 5E3, Canada;
- Department of Pathology, Faculty of Medicine, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Cijo George Vazhappilly
- Department of Biotechnology, American University of Ras Al Khaimah, Ras Al Khaimah PO Box 10021, UAE;
- Correspondence:
| |
Collapse
|