1
|
Sharma M, Pal P, Gupta SK. Deciphering the role of miRNAs in Alzheimer's disease: Predictive targeting and pathway modulation - A systematic review. Ageing Res Rev 2024; 101:102483. [PMID: 39236856 DOI: 10.1016/j.arr.2024.102483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 08/12/2024] [Accepted: 08/29/2024] [Indexed: 09/07/2024]
Abstract
Alzheimer's Disease (AD), a multifaceted neurodegenerative disorder, is increasingly understood through the regulatory lens of microRNAs (miRNAs). This review comprehensively examines the pivotal roles of miRNAs in AD pathogenesis, shedding light on their influence across various pathways. We delve into the biogenesis and mechanisms of miRNAs, emphasizing their significant roles in brain function and regulation. The review then navigates the complex landscape of AD pathogenesis, identifying key genetic, environmental, and molecular factors, with a focus on hallmark pathological features like amyloid-beta accumulation and tau protein hyperphosphorylation. Central to our discussion is the intricate involvement of miRNAs in these processes, highlighting their altered expression patterns in AD and subsequent functional implications, from amyloid-beta metabolism to tau pathology, neuroinflammation, oxidative stress, and synaptic dysfunction. The predictive analysis of miRNA targets using computational methods, complemented by experimental validations, forms a crucial part of our discourse, unraveling the contributions of specific miRNAs to AD. Moreover, we explore the therapeutic potential of miRNAs as biomarkers and in miRNA-based interventions, while addressing the challenges in translating these findings into clinical practice. This review aims to enhance understanding of miRNAs in AD, offering a foundation for future research directions and novel therapeutic strategies.
Collapse
Affiliation(s)
- Monika Sharma
- Department of Pharmacy, Banasthali Vidyapith, Rajasthan, India
| | - Pankaj Pal
- IIMT College of Pharmacy, IIMT Group of Colleges, Greater Noida, Uttar Pradesh, India.
| | - Sukesh Kumar Gupta
- KIET School of Pharmacy, KIET Group of Institutions, Ghaziabad, Uttar Pradesh, India; Department of Ophthalmology, Visual and Anatomical Sciences (OVAS), School of Medicine, Wayne State University, USA.
| |
Collapse
|
2
|
Fang Q, Cai Y, Chi J, Yang Y, Chen Q, Chen L, Zhang J, Ke J, Wu Y, He X. Silencing miR-155-5p alleviates hippocampal damage in kainic acid-induced epileptic rats via the Dusp14/MAPK pathway. Brain Res Bull 2024; 217:111057. [PMID: 39209069 DOI: 10.1016/j.brainresbull.2024.111057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/10/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024]
Abstract
Epilepsy with recurrent seizures is characterized by neuronal damage and glial proliferation induced by brain inflammation. Recurrent seizures can lead to changes in the microRNA (miRNA) spectrum, significantly influencing the inflammatory response of microglia. MiR-155-5p, as a pro-inflammatory miRNA, is increased in the epileptic brain. However, its specific role in acute seizures remains unknown. The study aimed to develop a new strategy for treating epilepsy by investigating how silencing of miR-155-5p initiated its anticonvulsive mechanism. The level of miR-155-5p was up-regulated in the hippocampus of epileptic immature rats induced by kainic acid (KA). The use of antago-miR-155-5p exerted significant beneficial effects on the seizure scores, brain discharges and cognition in immature rats following KA-induced epilepsy. Antago-miR-155-5p also inhibited neuron damage and microglial activation. Moreover, the silencing of miR-155-5p significantly inhibited the Dual-specificity phosphatase 14 (Dusp14)/ mitogen-activated protein kinase (MAPK) axis in vivo. MiR-155-5p interacted with dusp14 to regulate MAPK signaling way expression, verified by a dual-luciferase reporter assay. The results suggested that the silencing of miR-155-5p might reduce hippocampal damage in epileptic immature rats induced by KA via Dusp14/MAPK signaling way. This implied that miR-155-5p could serve as a therapeutic tool to prevent the development of epilepsy.
Collapse
Affiliation(s)
- Qiong Fang
- Department of Pediatrics, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou University Affiliated Provincial Hospital, Fuzhou, Fujian 350001, China.
| | - Yuehao Cai
- Department of Pediatrics, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou University Affiliated Provincial Hospital, Fuzhou, Fujian 350001, China
| | - Jiali Chi
- Department of Pediatrics, Ningde Normal University, NingDe, Ningde, Fujian 352000, China
| | - Yating Yang
- Department of Pediatrics, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou University Affiliated Provincial Hospital, Fuzhou, Fujian 350001, China
| | - Qiaobin Chen
- Department of Pediatrics, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou University Affiliated Provincial Hospital, Fuzhou, Fujian 350001, China.
| | - Libin Chen
- Department of Pediatrics, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou University Affiliated Provincial Hospital, Fuzhou, Fujian 350001, China
| | - Jiuyun Zhang
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou University Affiliated Provincial Hospital, Fuzhou, Fujian 350001, China; Department of Emergency, Fujian Provincial Hospital, Fuzhou University Affiliated Provincial Hospital, Fuzhou, Fujian 350001, China; Fujian Provincial Key Laboratory of Emergency Medicine, Fuzhou, Fujian 350001, China
| | - Jun Ke
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou University Affiliated Provincial Hospital, Fuzhou, Fujian 350001, China; Department of Emergency, Fujian Provincial Hospital, Fuzhou University Affiliated Provincial Hospital, Fuzhou, Fujian 350001, China; Fujian Provincial Key Laboratory of Emergency Medicine, Fuzhou, Fujian 350001, China
| | - Yanchen Wu
- Department of Pediatrics, Ningde Maternal and Child Health Hospital, Ningde, Fujian 352000, China
| | - Xiaoshuang He
- Department of Pediatrics, Fuzhou First General Hospital with Fujian Medical University, Fuzhou, Fujian 350001, China
| |
Collapse
|
3
|
Puranik N, Song M. Insights into the Role of microRNAs as Clinical Tools for Diagnosis, Prognosis, and as Therapeutic Targets in Alzheimer's Disease. Int J Mol Sci 2024; 25:9936. [PMID: 39337429 PMCID: PMC11431957 DOI: 10.3390/ijms25189936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/11/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024] Open
Abstract
Neurodegenerative diseases (NDDs) are a diverse group of neurological disorders characterized by alterations in the structure and function of the central nervous system. Alzheimer's disease (AD), characterized by impaired memory and cognitive abilities, is the most prevalent type of senile dementia. Loss of synapses, intracellular aggregation of hyperphosphorylated tau protein, and extracellular amyloid-β peptide (Aβ) plaques are the hallmarks of AD. MicroRNAs (miRNAs/miRs) are single-stranded ribonucleic acid (RNA) molecules that bind to the 3' and 5' untranslated regions of target genes to cause post-transcriptional gene silencing. The brain expresses over 70% of all experimentally detected miRNAs, and these miRNAs are crucial for synaptic function and particular signals during memory formation. Increasing evidence suggests that miRNAs play a role in AD pathogenesis and we provide an overview of the role of miRNAs in synapse formation, Aβ synthesis, tau protein accumulation, and brain-derived neurotrophic factor-associated AD pathogenesis. We further summarize and discuss the role of miRNAs as potential therapeutic targets and biomarkers for AD detection and differentiation between early- and late-stage AD, based on recent research. In conclusion, altered expression of miRNAs in the brain and peripheral circulation demonstrates their potential as biomarkers and therapeutic targets in AD.
Collapse
Affiliation(s)
- Nidhi Puranik
- Department of Life Sciences, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Minseok Song
- Department of Life Sciences, Yeungnam University, Gyeongsan 38541, Republic of Korea
| |
Collapse
|
4
|
Dong Q, Fu H, Jiang H. The role of exosome-shuttled miRNAs in heavy metal-induced peripheral tissues and neuroinflammation in Alzheimer's disease. Biomed Pharmacother 2024; 176:116880. [PMID: 38850652 DOI: 10.1016/j.biopha.2024.116880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 05/11/2024] [Accepted: 06/03/2024] [Indexed: 06/10/2024] Open
Abstract
Heavy metal-induced neuroinflammation is a significant pathophysiologic mechanism in Alzheimer's disease (AD). Microglia-mediated neuroinflammation plays a crucial role in the pathogenesis of AD. Multiple miRNAs are differentially expressed in peripheral tissues after heavy metal exposure, and increasing evidence suggests that they are involved in AD progression by regulating microglial homeostasis. Exosomes, which are capable of loading miRNAs and crossing the bloodbrain barrier, serve as mediators of communication between peripheral tissues and the brain. In this review, we summarize the current evidence on the link between miRNAs in peripheral tissues and neuroinflammation in AD after heavy metal exposure and propose a role for miRNAs in the microglial neurodegenerative phenotype (MGnD) of AD. This study will help to elucidate the link between peripheral tissue damage and MGnD-mediated neuroinflammation in AD after heavy metal exposure. Additionally, we summarize the regulatory effects of natural compounds on peripheral tissue-derived miRNAs, which could be potential therapeutic targets for natural compounds to regulate peripheral tissue-derived exosomal miRNAs to ameliorate heavy metal-induced MGnD-mediated neuroinflammation in patients with AD after heavy metal exposure.
Collapse
Affiliation(s)
- Qing Dong
- Department of Health Laboratory Technology, School of Public Health, China Medical University, Shenyang, Liaoning 110122, China.
| | - Huanyong Fu
- Department of Health Laboratory Technology, School of Public Health, China Medical University, Shenyang, Liaoning 110122, China.
| | - Hong Jiang
- Key Laboratory of Environmental Stress and Chronic Disease Control and Prevention, Ministry of Education, China Medical University, Shenyang, Liaoning 110122, China; The Key Laboratory of Liaoning Province on Toxic and Biological Effects of Arsenic, Shenyang, Liaoning 110122, China; Department of Health Laboratory Technology, School of Public Health, China Medical University, Shenyang, Liaoning 110122, China.
| |
Collapse
|
5
|
Zhao K, Liu J, Sun T, Zeng L, Cai Z, Li Z, Liu R. The miR-25802/KLF4/NF-κB signaling axis regulates microglia-mediated neuroinflammation in Alzheimer's disease. Brain Behav Immun 2024; 118:31-48. [PMID: 38360375 DOI: 10.1016/j.bbi.2024.02.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 01/15/2024] [Accepted: 02/08/2024] [Indexed: 02/17/2024] Open
Abstract
Microglia-mediated neuroinflammation plays a critical role in the occurrence and progression of Alzheimer's disease (AD). In recent years, studies have increasingly explored microRNAs as biomarkers and treatment interventions for AD. This study identified a novel microRNA termed miR-25802 from our high-throughput sequencing dataset of an AD model and explored its role and the underlying mechanism. The results confirmed the miRNA properties of miR-25802 based on bioinformatics and experimental verification. Expression of miR-25802 was increased in the plasma of AD patients and in the hippocampus of APP/PS1 and 5 × FAD mice carrying two and five familial AD gene mutations. Functional studies suggested that overexpression or inhibition of miR-25802 respectively aggravated or ameliorated AD-related pathology, including cognitive disability, Aβ deposition, microglial pro-inflammatory phenotype activation, and neuroinflammation, in 5 × FAD mice and homeostatic or LPS/IFN-γ-stimulated EOC20 microglia. Mechanistically, miR-25802 negatively regulates KLF4 by directly binding to KLF4 mRNA, thus stimulating microglia polarization toward the pro-inflammatory M1 phenotype by promoting the NF-κB-mediated inflammatory response. The results also showed that inhibition of miR-25802 increased microglial anti-inflammatory M2 phenotype activity and suppressed NF-κB-mediated inflammatory reactions in the brains of 5 × FAD mice, while overexpression of miR-25802 exacerbated microglial pro-inflammatory M1 activity by enhancing NF-κB pathways. Of note, AD-associated manifestations induced by inhibition or overexpression of miR-25802 via the NF-κB signaling pathway were reversed by KLF4 silencing or upregulation. Collectively, these results provide the first evidence that miR-25802 is a regulator of microglial activity and establish the role of miR-25802/KLF4/NF-κB signaling in microglia-mediated neuroinflammation, suggesting potential therapeutic targets for AD.
Collapse
Affiliation(s)
- Kaiyue Zhao
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, PR China
| | - Jianghong Liu
- Department of Neurology, Xuan Wu Hospital, Capital Medical University, Beijing 100053, PR China
| | - Ting Sun
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, PR China
| | - Li Zeng
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, PR China
| | - Zhongdi Cai
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, PR China
| | - Zhuorong Li
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, PR China
| | - Rui Liu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, PR China.
| |
Collapse
|
6
|
Li L, Jin M, Tan J, Xiao B. NcRNAs: A synergistically antiapoptosis therapeutic tool in Alzheimer's disease. CNS Neurosci Ther 2024; 30:e14476. [PMID: 37735992 PMCID: PMC11017435 DOI: 10.1111/cns.14476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/22/2023] [Accepted: 09/08/2023] [Indexed: 09/23/2023] Open
Abstract
AIMS The aim of this review is to systematically summarize and analyze the noncoding RNAs (ncRNAs), especially microRNAs (miRNAs), long noncoding RNAs (lncRNAs), and circular RNAs (circRNAs), in the cell apoptosis among Alzheimer's disease (AD) in recent years to demonstrate their value in the diagnosis and treatment of AD. METHODS We systematically summarized in vitro and in vivo studies focusing on the ncRNAs in the regulation of cell apoptosis among AD in PubMed, ScienceDirect, and Google Scholar. RESULTS We discover three patterns of ncRNAs (including 'miRNA-mRNA', 'lncRNA-miRNA-mRNA', and 'circRNA-miRNA-mRNA') form the ncRNA-based regulatory networks in regulating cell apoptosis in AD. CONCLUSIONS This review provides a future diagnosis and treatment strategy for AD patients based on ncRNAs.
Collapse
Affiliation(s)
- Liangxian Li
- Laboratory of Respiratory DiseaseAffiliated Hospital of Guilin Medical UniversityGuilinChina
- Guangxi Key Laboratory of Brain and Cognitive NeuroscienceGuilin Medical UniversityGuilinChina
| | - Mingyue Jin
- Guangxi Key Laboratory of Brain and Cognitive NeuroscienceGuilin Medical UniversityGuilinChina
| | - Jie Tan
- Guangxi Key Laboratory of Brain and Cognitive NeuroscienceGuilin Medical UniversityGuilinChina
| | - Bo Xiao
- Laboratory of Respiratory DiseaseAffiliated Hospital of Guilin Medical UniversityGuilinChina
- Guangxi Key Laboratory of Brain and Cognitive NeuroscienceGuilin Medical UniversityGuilinChina
- Key Laboratory of Respiratory DiseasesEducation Department of Guangxi Zhuang Autonomous RegionGuilinChina
| |
Collapse
|
7
|
Candeias E, Pereira-Santos AR, Empadinhas N, Cardoso SM, Esteves ARF. The Gut-Brain Axis in Alzheimer's and Parkinson's Diseases: The Catalytic Role of Mitochondria. J Alzheimers Dis 2024; 100:413-429. [PMID: 38875045 DOI: 10.3233/jad-240524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2024]
Abstract
Accumulating evidence suggests that gut inflammation is implicated in neuroinflammation in Alzheimer's and Parkinson's diseases. Despite the numerous connections it remains unclear how the gut and the brain communicate and whether gut dysbiosis is the cause or consequence of these pathologies. Importantly, several reports highlight the importance of mitochondria in the gut-brain axis, as well as in mechanisms like gut epithelium self-renewal, differentiation, and homeostasis. Herein we comprehensively address the important role of mitochondria as a cellular hub in infection and inflammation and as a link between inflammation and neurodegeneration in the gut-brain axis. The role of mitochondria in gut homeostasis and as well the crosstalk between mitochondria and gut microbiota is discussed. Significantly, we also review studies highlighting how gut microbiota can ultimately affect the central nervous system. Overall, this review summarizes novel findings regarding this cross-talk where the mitochondria has a main role in the pathophysiology of both Alzheimer's and Parkinson's disease strengthen by cellular, animal and clinical studies.
Collapse
Affiliation(s)
- Emanuel Candeias
- CNC-Center for Neuroscience and Cell Biology and CIBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| | - Ana Raquel Pereira-Santos
- CNC-Center for Neuroscience and Cell Biology and CIBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
- Ph.D. Programme in Biomedicine and Experimental Biology (PDBEB), Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | - Nuno Empadinhas
- CNC-Center for Neuroscience and Cell Biology and CIBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| | - Sandra Morais Cardoso
- CNC-Center for Neuroscience and Cell Biology and CIBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
- Institute of Cellular and Molecular Biology, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Ana Raquel Fernandes Esteves
- CNC-Center for Neuroscience and Cell Biology and CIBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
- IIIUC-Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
8
|
Ma YM, Zhao L. Mechanism and Therapeutic Prospect of miRNAs in Neurodegenerative Diseases. Behav Neurol 2023; 2023:8537296. [PMID: 38058356 PMCID: PMC10697780 DOI: 10.1155/2023/8537296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 08/30/2023] [Accepted: 10/21/2023] [Indexed: 12/08/2023] Open
Abstract
MicroRNAs (miRNAs) are the smallest class of noncoding RNAs, which widely exist in animals and plants. They can inhibit translation or overexpression by combining with mRNA and participate in posttranscriptional regulation of genes, resulting in reduced expression of target proteins, affecting the development, growth, aging, metabolism, and other physiological and pathological processes of animals and plants. It is a powerful negative regulator of gene expression. It mediates the information exchange between different cellular pathways in cellular homeostasis and stress response and regulates the differentiation, plasticity, and neurotransmission of neurons. In neurodegenerative diseases, in addition to the complex interactions between genetic susceptibility and environmental factors, miRNAs can serve as a promising diagnostic tool for diseases. They can also increase or reduce neuronal damage by regulating the body's signaling pathways, immune system, stem cells, gut microbiota, etc. They can not only affect the occurrence of diseases and exacerbate disease progression but also promote neuronal repair and reduce apoptosis, to prevent and slow down the development of diseases. This article reviews the research progress of miRNAs on the mechanism and treatment of neurodegenerative diseases in the nervous system. This trial is registered with NCT01819545, NCT02129452, NCT04120493, NCT04840823, NCT02253732, NCT02045056, NCT03388242, NCT01992029, NCT04961450, NCT03088839, NCT04137926, NCT02283073, NCT04509271, NCT02859428, and NCT05243017.
Collapse
Affiliation(s)
- Ya-Min Ma
- Acupuncture and Massage Department of Nanyang Traditional Chinese Medicine Hospital, Wo Long District, Nanyang City 473000, China
| | - Lan Zhao
- Tianjin Key Laboratory of Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Xiqing District, Tianjin 300381, China
| |
Collapse
|
9
|
Wang L, Shui X, Diao Y, Chen D, Zhou Y, Lee TH. Potential Implications of miRNAs in the Pathogenesis, Diagnosis, and Therapeutics of Alzheimer's Disease. Int J Mol Sci 2023; 24:16259. [PMID: 38003448 PMCID: PMC10671222 DOI: 10.3390/ijms242216259] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/10/2023] [Accepted: 11/12/2023] [Indexed: 11/26/2023] Open
Abstract
Alzheimer's disease (AD) is a complex multifactorial disorder that poses a substantial burden on patients, caregivers, and society. Considering the increased aging population and life expectancy, the incidence of AD will continue to rise in the following decades. However, the molecular pathogenesis of AD remains controversial, superior blood-based biomarker candidates for early diagnosis are still lacking, and effective therapeutics to halt or slow disease progression are urgently needed. As powerful genetic regulators, microRNAs (miRNAs) are receiving increasing attention due to their implications in the initiation, development, and theranostics of various diseases, including AD. In this review, we summarize miRNAs that directly target microtubule-associated protein tau (MAPT), amyloid precursor protein (APP), and β-site APP-cleaving enzyme 1 (BACE1) transcripts and regulate the alternative splicing of tau and APP. We also discuss related kinases, such as glycogen synthase kinase (GSK)-3β, cyclin-dependent kinase 5 (CDK5), and death-associated protein kinase 1 (DAPK1), as well as apolipoprotein E, that are directly targeted by miRNAs to control tau phosphorylation and amyloidogenic APP processing leading to Aβ pathologies. Moreover, there is evidence of miRNA-mediated modulation of inflammation. Furthermore, circulating miRNAs in the serum or plasma of AD patients as noninvasive biomarkers with diagnostic potential are reviewed. In addition, miRNA-based therapeutics optimized with nanocarriers or exosomes as potential options for AD treatment are discussed.
Collapse
Affiliation(s)
| | | | | | | | - Ying Zhou
- Fujian Key Laboratory of Translational Research in Cancer and Neurodegenerative Diseases, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350122, China; (L.W.)
| | - Tae Ho Lee
- Fujian Key Laboratory of Translational Research in Cancer and Neurodegenerative Diseases, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350122, China; (L.W.)
| |
Collapse
|
10
|
de Souza Carneiro VC, Leon LAA, de Paula VS. miRNAs: Targets to Investigate Herpesvirus Infection Associated with Neurological Disorders. Int J Mol Sci 2023; 24:15876. [PMID: 37958855 PMCID: PMC10650863 DOI: 10.3390/ijms242115876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 10/30/2023] [Accepted: 10/31/2023] [Indexed: 11/15/2023] Open
Abstract
Herpesvirus is associated with various neurological disorders and a specific diagnosis is associated with a better prognosis. MicroRNAs (miRNAs) are potential diagnostic and prognostic biomarkers of neurological diseases triggered by herpetic infection. In this review, we discuss miRNAs that have been associated with neurological disorders related to the action of herpesviruses. Human miRNAs and herpesvirus-encoded miRNAs were listed and discussed. This review article will be valuable in stimulating the search for new diagnostic and prognosis alternatives and understanding the role of these miRNAs in neurological diseases triggered by herpesviruses.
Collapse
Affiliation(s)
- Vanessa Cristine de Souza Carneiro
- Laboratory of Molecular Virology and Parasitology, Oswaldo Cruz Institute, Fiocruz, Rio de Janeiro 21040-360, Brazil; (V.C.d.S.C.); (V.S.d.P.)
- Laboratory of Technological Development in Virology, Oswaldo Cruz Institute, Fiocruz, Rio de Janeiro 21040-360, Brazil
| | - Luciane Almeida Amado Leon
- Laboratory of Technological Development in Virology, Oswaldo Cruz Institute, Fiocruz, Rio de Janeiro 21040-360, Brazil
| | - Vanessa Salete de Paula
- Laboratory of Molecular Virology and Parasitology, Oswaldo Cruz Institute, Fiocruz, Rio de Janeiro 21040-360, Brazil; (V.C.d.S.C.); (V.S.d.P.)
| |
Collapse
|
11
|
Gandy S, Ehrlich ME. miR155, TREM2, INPP5D: Disease stage and cell type are essential considerations when targeting clinical interventions based on mouse models of Alzheimer's amyloidopathy. J Neuroinflammation 2023; 20:214. [PMID: 37749581 PMCID: PMC10518910 DOI: 10.1186/s12974-023-02895-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 09/11/2023] [Indexed: 09/27/2023] Open
Abstract
Studies of microglial gene manipulation in mouse models of Alzheimer's disease (AD) amyloidopathy can cause unpredictable effects on various key endpoints, including amyloidosis, inflammation, neuritic dystrophy, neurodegeneration, and learning behavior. In this Correspondence, we discuss three examples, microRNA 155 (miR155), TREM2, and INPP5D, in which observed results have been difficult to reconcile with predicted results based on precedent, because these six key endpoints do not reliably track together. The pathogenesis of AD involves multiple cell types and complex events that may change with disease stage. We propose that cell-type targeting and timing of intervention are responsible for the sometimes impossibility of predicting whether any prospective therapeutic intervention should aim at increasing or decreasing the level or activity of a particular molecular target.
Collapse
Affiliation(s)
- Sam Gandy
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- Department of Psychiatry and Alzheimer's Disease Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- James J Peters VA Medical Center, Bronx, NY, 10468, USA.
| | - Michelle E Ehrlich
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| |
Collapse
|
12
|
Piotrowski SL, Tucker A, Jacobson S. The elusive role of herpesviruses in Alzheimer's disease: current evidence and future directions. NEUROIMMUNE PHARMACOLOGY AND THERAPEUTICS 2023; 2:253-266. [PMID: 38013835 PMCID: PMC10474380 DOI: 10.1515/nipt-2023-0011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 06/26/2023] [Indexed: 11/29/2023]
Abstract
Alzheimer's disease (AD) is the most common cause of dementia. While pathologic hallmarks, such as extracellular beta-amyloid plaques, are well-characterized in affected individuals, the pathogenesis that causes plaque formation and eventual cognitive decline is not well understood. A recent resurgence of the decades-old "infectious hypothesis" has garnered increased attention on the potential role that microbes may play in AD. In this theory, it is thought that pathogens such as viruses may act as seeds for beta-amyloid aggregation, ultimately leading to plaques. Interest in the infectious hypothesis has also spurred further investigation into additional characteristics of viral infection that may play a role in AD progression, such as neuroinflammation, latency, and viral DNA integration. While a flurry of research in this area has been recently published, with herpesviruses being of particular interest, the role of pathogens in AD remains controversial. In this review, the insights gained thus far into the possible role of herpesviruses in AD are summarized. The challenges and potential future directions of herpesvirus research in AD and dementia are also discussed.
Collapse
Affiliation(s)
- Stacey L. Piotrowski
- Viral Immunology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
- Comparative Biomedical Scientist Training Program, National Institutes of Health, Bethesda, MD, USA
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN, USA
| | - Allison Tucker
- Viral Immunology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Steven Jacobson
- Viral Immunology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
13
|
Guo X. A state-of-the-art review on miRNA in prevention and treatment of Alzheimer 's disease. Zhejiang Da Xue Xue Bao Yi Xue Ban 2023; 52:485-498. [PMID: 37643982 PMCID: PMC10495246 DOI: 10.3724/zdxbyxb-2023-0324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 08/15/2023] [Indexed: 08/24/2023]
Abstract
Alzheimer's disease (AD) is a multifactorial and heterogenic disorder. MiRNA is a class of non-coding RNAs with 19-22 nucleotides in length that can regulate the expression of target genes in the post-transcriptional level. It has been found that the miRNAome in AD patients is significantly altered in brain tissues, cerebrospinal fluid and blood circulation, as compared to healthy subjects. Experimental studies have suggested that expression changes in miRNA could drive AD onset and development via different mechanisms. Therefore, targeting miRNA expression to regulate the key genes involved in AD progression is anticipated to be a promising approach for AD prevention and treatment. Rodent AD models have demonstrated that targeting miRNAs could block biogenesis and toxicity of amyloid β, inhibit the production and hyper-phosphorylation of τ protein, prevent neuronal apoptosis and promote neurogenesis, maintain neural synaptic and calcium homeostasis, as well as mitigate neuroinflammation mediated by microglia. In addition, animal and human studies support the view that miRNAs are critical players contributing to the beneficial effects of cell therapy and lifestyle intervention to AD. This article reviews the most recent advances in the roles, mechanisms and applications of targeting miRNA in AD prevention and treatment based on rodent AD models and human intervention studies. The potential opportunities and challenges in clinical application of targeting miRNA for AD patients are also discussed.
Collapse
Affiliation(s)
- Xihan Guo
- School of Life Science, Yunnan Normal University, Engineering Research Center, Sustainable Development and Utilization of Biomass Energy of the Ministry of Education, Kunming 650500, China.
| |
Collapse
|
14
|
Liu JJ, Long YF, Xu P, Guo HD, Cui GH. Pathogenesis of miR-155 on nonmodifiable and modifiable risk factors in Alzheimer's disease. Alzheimers Res Ther 2023; 15:122. [PMID: 37452431 PMCID: PMC10347850 DOI: 10.1186/s13195-023-01264-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 06/28/2023] [Indexed: 07/18/2023]
Abstract
Alzheimer's disease (AD) is a common age-related neurodegenerative disease in the central nervous system and is the primary cause of dementia. It is clinically characterized by the memory impairment, aphasia, apraxia, agnosia, visuospatial and executive dysfunction, behavioral changes, and so on. Incidence of this disease was bound up with age, genetic factors, cardiovascular and cerebrovascular dysfunction, and other basic diseases, but the exact etiology has not been clarified. MicroRNAs (miRNAs) are small endogenous non-coding RNAs that were involved in the regulation of post-transcriptional gene expression. miRNAs have been extensively studied as noninvasive potential biomarkers for disease due to their relative stability in bodily fluids. In addition, they play a significant role in the physiological and pathological processes of various neurological disorders, including stroke, AD, and Parkinson's disease. MiR-155, as an important pro-inflammatory mediator of neuroinflammation, was reported to participate in the progression of β-amyloid peptide and tau via regulating immunity and inflammation. In this review, we put emphasis on the effects of miR-155 on AD and explore the underlying biological mechanisms which could provide a novel approach for diagnosis and treatment of AD.
Collapse
Affiliation(s)
- Jia-Jia Liu
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- Department of Anatomy, School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yun-Fan Long
- Department of Neurology, Shanghai No. 9 People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200011, China
| | - Peng Xu
- Affiliated Hospital of Jining Medical University, Jining, 272000, Shandong, China.
| | - Hai-Dong Guo
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
- Department of Anatomy, School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Guo-Hong Cui
- Department of Neurology, Shanghai No. 9 People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200011, China.
| |
Collapse
|
15
|
Yin Z, Herron S, Silveira S, Kleemann K, Gauthier C, Mallah D, Cheng Y, Margeta MA, Pitts KM, Barry JL, Subramanian A, Shorey H, Brandao W, Durao A, Delpech JC, Madore C, Jedrychowski M, Ajay AK, Murugaiyan G, Hersh SW, Ikezu S, Ikezu T, Butovsky O. Identification of a protective microglial state mediated by miR-155 and interferon-γ signaling in a mouse model of Alzheimer's disease. Nat Neurosci 2023; 26:1196-1207. [PMID: 37291336 PMCID: PMC10619638 DOI: 10.1038/s41593-023-01355-y] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 05/05/2023] [Indexed: 06/10/2023]
Abstract
Microglia play a critical role in brain homeostasis and disease progression. In neurodegenerative conditions, microglia acquire the neurodegenerative phenotype (MGnD), whose function is poorly understood. MicroRNA-155 (miR-155), enriched in immune cells, critically regulates MGnD. However, its role in Alzheimer's disease (AD) pathogenesis remains unclear. Here, we report that microglial deletion of miR-155 induces a pre-MGnD activation state via interferon-γ (IFN-γ) signaling, and blocking IFN-γ signaling attenuates MGnD induction and microglial phagocytosis. Single-cell RNA-sequencing analysis of microglia from an AD mouse model identifies Stat1 and Clec2d as pre-MGnD markers. This phenotypic transition enhances amyloid plaque compaction, reduces dystrophic neurites, attenuates plaque-associated synaptic degradation and improves cognition. Our study demonstrates a miR-155-mediated regulatory mechanism of MGnD and the beneficial role of IFN-γ-responsive pre-MGnD in restricting neurodegenerative pathology and preserving cognitive function in an AD mouse model, highlighting miR-155 and IFN-γ as potential therapeutic targets for AD.
Collapse
Affiliation(s)
- Zhuoran Yin
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Evergrande Center for Immunologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Shawn Herron
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, USA
| | - Sebastian Silveira
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Kilian Kleemann
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- School of Computing, University of Portsmouth, Portsmouth, UK
| | - Christian Gauthier
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Dania Mallah
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Yiran Cheng
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Milica A Margeta
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, USA
| | - Kristen M Pitts
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, USA
| | - Jen-Li Barry
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Ayshwarya Subramanian
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- ARCND, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Hannah Shorey
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Wesley Brandao
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Ana Durao
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Jean-Christophe Delpech
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, USA
- Laboratoire NutriNeuro, UMR 1286, Bordeaux INP, INRAE, University of Bordeaux, Bordeaux, France
| | - Charlotte Madore
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Laboratoire NutriNeuro, UMR 1286, Bordeaux INP, INRAE, University of Bordeaux, Bordeaux, France
| | - Mark Jedrychowski
- Department of Cancer Biology, Dana-Farber Cancer Institute and Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Amrendra K Ajay
- Department of Medicine, Division of Renal Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Gopal Murugaiyan
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Samuel W Hersh
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, USA
| | - Seiko Ikezu
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, USA
- Department of Neuroscience, Mayo Clinic Florida, Jacksonville, FL, USA
| | - Tsuneya Ikezu
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, USA.
- Department of Neuroscience, Mayo Clinic Florida, Jacksonville, FL, USA.
| | - Oleg Butovsky
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
- Evergrande Center for Immunologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
16
|
Castranio EL, Hasel P, Haure-Mirande JV, Ramirez Jimenez AV, Hamilton BW, Kim RD, Glabe CG, Wang M, Zhang B, Gandy S, Liddelow SA, Ehrlich ME. Microglial INPP5D limits plaque formation and glial reactivity in the PSAPP mouse model of Alzheimer's disease. Alzheimers Dement 2023; 19:2239-2252. [PMID: 36448627 PMCID: PMC10481344 DOI: 10.1002/alz.12821] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 08/23/2022] [Accepted: 09/13/2022] [Indexed: 12/05/2022]
Abstract
INTRODUCTION The inositol polyphosphate-5-phosphatase D (INPP5D) gene encodes a dual-specificity phosphatase that can dephosphorylate both phospholipids and phosphoproteins. Single nucleotide polymorphisms in INPP5D impact risk for developing late onset sporadic Alzheimer's disease (LOAD). METHODS To assess the consequences of inducible Inpp5d knockdown in microglia of APPKM670/671NL /PSEN1Δexon9 (PSAPP) mice, we injected 3-month-old Inpp5dfl/fl /Cx3cr1CreER/+ and PSAPP/Inpp5dfl/fl /Cx3cr1CreER/+ mice with either tamoxifen (TAM) or corn oil (CO) to induce recombination. RESULTS At age 6 months, we found that the percent area of 6E10+ deposits and plaque-associated microglia in Inpp5d knockdown mice were increased compared to controls. Spatial transcriptomics identified a plaque-specific expression profile that was extensively altered by Inpp5d knockdown. DISCUSSION These results demonstrate that conditional Inpp5d downregulation in the PSAPP mouse increases plaque burden and recruitment of microglia to plaques. Spatial transcriptomics highlighted an extended gene expression signature associated with plaques and identified CST7 (cystatin F) as a novel marker of plaques. HIGHLIGHTS Inpp5d knockdown increases plaque burden and plaque-associated microglia number. Spatial transcriptomics identifies an expanded plaque-specific gene expression profile. Plaque-induced gene expression is altered by Inpp5d knockdown in microglia. Our plaque-associated gene signature overlaps with human Alzheimer's disease gene networks.
Collapse
Affiliation(s)
- Emilie L. Castranio
- Department of Neurology, Icahn School of Medicine at Mount
Sinai, New York, New York, USA
| | - Philip Hasel
- Neuroscience Institute, NYU Grossman School of Medicine,
New York, New York, USA
| | | | | | - B. Wade Hamilton
- Department of Neurology, Icahn School of Medicine at Mount
Sinai, New York, New York, USA
| | - Rachel D. Kim
- Neuroscience Institute, NYU Grossman School of Medicine,
New York, New York, USA
| | - Charles G. Glabe
- Department of Molecular Biology and Biochemistry,
University of California, Irvine, Irvine, California, USA
| | - Minghui Wang
- Department of Genetics and Genomic Sciences, Icahn School
of Medicine at Mount Sinai, New York, New York, USA
| | - Bin Zhang
- Department of Genetics and Genomic Sciences, Icahn School
of Medicine at Mount Sinai, New York, New York, USA
| | - Sam Gandy
- Department of Neurology, Icahn School of Medicine at Mount
Sinai, New York, New York, USA
- Department of Psychiatry and Alzheimer’s Disease
Research Center, Icahn School of Medicine at Mount Sinai, New York, New York,
USA
- James J. Peters VA Medical Center, Bronx, New York,
USA
| | - Shane A. Liddelow
- Neuroscience Institute, NYU Grossman School of Medicine,
New York, New York, USA
- Department of Neuroscience & Physiology, NYU Grossman
School of Medicine, New York, New York, USA
- Department of Ophthalmology, NYU Grossman School of
Medicine, New York, New York, USA
- Parekh Center for Interdisciplinary Neurology, NYU Grossman
School of Medicine, New York, New York, USA
| | - Michelle E. Ehrlich
- Department of Neurology, Icahn School of Medicine at Mount
Sinai, New York, New York, USA
- Department of Genetics and Genomic Sciences, Icahn School
of Medicine at Mount Sinai, New York, New York, USA
- Department of Pediatrics, Icahn School of Medicine at
Mount Sinai, New York, New York, USA
| |
Collapse
|
17
|
Romá-Mateo C, Lorente-Pozo S, Márquez-Thibaut L, Moreno-Estellés M, Garcés C, González D, Lahuerta M, Aguado C, García-Giménez JL, Sanz P, Pallardó FV. Age-Related microRNA Overexpression in Lafora Disease Male Mice Provides Links between Neuroinflammation and Oxidative Stress. Int J Mol Sci 2023; 24:ijms24021089. [PMID: 36674605 PMCID: PMC9865572 DOI: 10.3390/ijms24021089] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/02/2023] [Accepted: 01/03/2023] [Indexed: 01/09/2023] Open
Abstract
Lafora disease is a rare, fatal form of progressive myoclonus epilepsy characterized by continuous neurodegeneration with epileptic seizures, characterized by the intracellular accumulation of aberrant polyglucosan granules called Lafora bodies. Several works have provided numerous evidence of molecular and cellular alterations in neural tissue from experimental mouse models deficient in either laforin or malin, two proteins related to the disease. Oxidative stress, alterations in proteostasis, and deregulation of inflammatory signals are some of the molecular alterations underlying this condition in both KO animal models. Lafora bodies appear early in the animal's life, but many of the aforementioned molecular aberrant processes and the consequent neurological symptoms ensue only as animals age. Here, using small RNA-seq and quantitative PCR on brain extracts from laforin and malin KO male mice of different ages, we show that two different microRNA species, miR-155 and miR-146a, are overexpressed in an age-dependent manner. We also observed altered expression of putative target genes for each of the microRNAs studied in brain extracts. These results open the path for a detailed dissection of the molecular consequences of laforin and malin deficiency in brain tissue, as well as the potential role of miR-155 and miR-146a as specific biomarkers of disease progression in LD.
Collapse
Affiliation(s)
- Carlos Romá-Mateo
- Department of Physiology, Facultat de Medicina i Odontologia, Universitat de València, 46010 Valencia, Spain
- Fundación Instituto de Investigación Sanitaria INCLIVA, 46010 Valencia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER)—ISCIII, 46010 Valencia, Spain
- Correspondence: (C.R.-M.); (P.S.); Tel.: +34-963983170 (C.R.-M.); +34-963391760 (P.S.)
| | - Sheila Lorente-Pozo
- Neonatal Research Group, Health Research Institute La Fe, 46026 Valencia, Spain
| | - Lucía Márquez-Thibaut
- Institut d’Investigació Biomèdica de Girona Dr. Josep Trueta (IDIBGI), Parc Hospitalari Martí i Julià de Salt, 17190 Girona, Spain
| | - Mireia Moreno-Estellés
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER)—ISCIII, 46010 Valencia, Spain
- Instituto de Biomedicina de Valencia, Consejo Superior de Investigaciones Científicas, 46010 Valencia, Spain
| | - Concepción Garcés
- Department of Physiology, Facultat de Medicina i Odontologia, Universitat de València, 46010 Valencia, Spain
| | - Daymé González
- EpiDisease S.L. (Spin-off From the CIBER-ISCIII), Parc Científic de la Universitat de València, 46980 Paterna, Spain
- Novartis Institutes for BioMedical Research (NIBR), Novartis Campus, CH-4056 Basel, Switzerland
| | - Marcos Lahuerta
- Instituto de Biomedicina de Valencia, Consejo Superior de Investigaciones Científicas, 46010 Valencia, Spain
| | - Carmen Aguado
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER)—ISCIII, 46010 Valencia, Spain
| | - José Luis García-Giménez
- Department of Physiology, Facultat de Medicina i Odontologia, Universitat de València, 46010 Valencia, Spain
- Fundación Instituto de Investigación Sanitaria INCLIVA, 46010 Valencia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER)—ISCIII, 46010 Valencia, Spain
| | - Pascual Sanz
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER)—ISCIII, 46010 Valencia, Spain
- Instituto de Biomedicina de Valencia, Consejo Superior de Investigaciones Científicas, 46010 Valencia, Spain
- Correspondence: (C.R.-M.); (P.S.); Tel.: +34-963983170 (C.R.-M.); +34-963391760 (P.S.)
| | - Federico V. Pallardó
- Department of Physiology, Facultat de Medicina i Odontologia, Universitat de València, 46010 Valencia, Spain
- Fundación Instituto de Investigación Sanitaria INCLIVA, 46010 Valencia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER)—ISCIII, 46010 Valencia, Spain
| |
Collapse
|
18
|
Zheng Z, Wu L, Li Z, Tang R, Li H, Huang Y, Wang T, Xu S, Cheng H, Ye Z, Xiao D, Lin X, Wu G, Jaspers RT, Pathak JL. Mir155 regulates osteogenesis and bone mass phenotype via targeting S1pr1 gene. eLife 2023; 12:77742. [PMID: 36598122 PMCID: PMC9839347 DOI: 10.7554/elife.77742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 01/03/2023] [Indexed: 01/05/2023] Open
Abstract
MicroRNA-155 (miR155) is overexpressed in various inflammatory diseases and cancer, in which bone resorption and osteolysis are frequently observed. However, the role of miR155 on osteogenesis and bone mass phenotype is still unknown. Here, we report a low bone mass phenotype in the long bone of Mir155-Tg mice compared with wild-type mice. In contrast, Mir155-KO mice showed a high bone mass phenotype and protective effect against inflammation-induced bone loss. Mir155-KO mice showed robust bone regeneration in the ectopic and orthotopic model, but Mir155-Tg mice showed compromised bone regeneration compared with the wild-type mice. Similarly, the osteogenic differentiation potential of bone marrow stromal stem cells (BMSCs) from Mir155-KO mice was robust and Mir155-Tg was compromised compared with that of wild-type mice. Moreover, Mir155 knockdown in BMSCs from wild-type mice showed higher osteogenic differentiation potential, supporting the results from Mir155-KO mice. TargetScan analysis predicted sphingosine 1-phosphate receptor-1 (S1pr1) as a target gene of Mir155, which was further confirmed by luciferase assay and Mir155 knockdown. S1pr1 overexpression in BMSCs robustly promoted osteogenic differentiation without affecting cell viability and proliferation. Furthermore, osteoclastogenic differentiation of Mir155-Tg bone marrow-derived macrophages was inhibited compared with that of wild-type mice. Thus, Mir155 showed a catabolic effect on osteogenesis and bone mass phenotype via interaction with the S1pr1 gene, suggesting inhibition of Mir155 as a potential strategy for bone regeneration and bone defect healing.
Collapse
Affiliation(s)
- Zhichao Zheng
- Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative MedicineGuangzhouChina,Laboratory for Myology, Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement SciencesAmsterdamNetherlands
| | - Lihong Wu
- Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative MedicineGuangzhouChina
| | - Zhicong Li
- Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative MedicineGuangzhouChina
| | - Ruoshu Tang
- Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative MedicineGuangzhouChina
| | - Hongtao Li
- State Key Laboratory of Respiratory Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina
| | - Yinyin Huang
- Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative MedicineGuangzhouChina
| | - Tianqi Wang
- Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative MedicineGuangzhouChina
| | - Shaofen Xu
- Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative MedicineGuangzhouChina
| | - Haoyu Cheng
- Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative MedicineGuangzhouChina
| | - Zhitong Ye
- Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative MedicineGuangzhouChina
| | - Dong Xiao
- Guangdong Provincial Key Laboratory of Cancer Immunotherapy Research and Guangzhou Key Laboratory of Tumour Immunology Research, Cancer Research Institute, School of Basic Medical Science, Southern Medical UniversityGuangzhouChina,Institute of Comparative Medicine & Laboratory Animal Center, Southern Medical UniversityGuangzhouChina
| | - Xiaolin Lin
- Guangdong Provincial Key Laboratory of Cancer Immunotherapy Research and Guangzhou Key Laboratory of Tumour Immunology Research, Cancer Research Institute, School of Basic Medical Science, Southern Medical UniversityGuangzhouChina,Institute of Comparative Medicine & Laboratory Animal Center, Southern Medical UniversityGuangzhouChina
| | - Gang Wu
- Department of Oral and Maxillofacial Surgery/Pathology, Amsterdam UMC and Academic Center for Dentistry Amsterdam (ACTA), Amsterdam Movement Science, Vrije Universiteit AmsterdamAmsterdamNetherlands,Department of Oral Cell Biology, Academic Center for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit AmsterdamAmsterdamNetherlands
| | - Richard T Jaspers
- Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative MedicineGuangzhouChina,Laboratory for Myology, Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement SciencesAmsterdamNetherlands
| | - Janak L Pathak
- Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative MedicineGuangzhouChina
| |
Collapse
|
19
|
Ando K, Nagaraj S, Küçükali F, de Fisenne MA, Kosa AC, Doeraene E, Lopez Gutierrez L, Brion JP, Leroy K. PICALM and Alzheimer's Disease: An Update and Perspectives. Cells 2022; 11:3994. [PMID: 36552756 PMCID: PMC9776874 DOI: 10.3390/cells11243994] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 11/30/2022] [Accepted: 12/04/2022] [Indexed: 12/14/2022] Open
Abstract
Genome-wide association studies (GWAS) have identified the PICALM (Phosphatidylinositol binding clathrin-assembly protein) gene as the most significant genetic susceptibility locus after APOE and BIN1. PICALM is a clathrin-adaptor protein that plays a critical role in clathrin-mediated endocytosis and autophagy. Since the effects of genetic variants of PICALM as AD-susceptibility loci have been confirmed by independent genetic studies in several distinct cohorts, there has been a number of in vitro and in vivo studies attempting to elucidate the underlying mechanism by which PICALM modulates AD risk. While differential modulation of APP processing and Aβ transcytosis by PICALM has been reported, significant effects of PICALM modulation of tau pathology progression have also been evidenced in Alzheimer's disease models. In this review, we summarize the current knowledge about PICALM, its physiological functions, genetic variants, post-translational modifications and relevance to AD pathogenesis.
Collapse
Affiliation(s)
- Kunie Ando
- Laboratory of Histology, Neuropathology and Neuroanatomy, Faculty of Medicine, Université Libre de Bruxelles, ULB Neuroscience Institute, 808 Route de Lennik, 1070 Brussels, Belgium
| | - Siranjeevi Nagaraj
- Laboratory of Histology, Neuropathology and Neuroanatomy, Faculty of Medicine, Université Libre de Bruxelles, ULB Neuroscience Institute, 808 Route de Lennik, 1070 Brussels, Belgium
| | - Fahri Küçükali
- Complex Genetics of Alzheimer’s Disease Group, VIB Center for Molecular Neurology, VIB Antwerp, Department of Biomedical Sciences, University of Antwerp, 2000 Antwerp, Belgium
| | - Marie-Ange de Fisenne
- Laboratory of Histology, Neuropathology and Neuroanatomy, Faculty of Medicine, Université Libre de Bruxelles, ULB Neuroscience Institute, 808 Route de Lennik, 1070 Brussels, Belgium
| | - Andreea-Claudia Kosa
- Laboratory of Histology, Neuropathology and Neuroanatomy, Faculty of Medicine, Université Libre de Bruxelles, ULB Neuroscience Institute, 808 Route de Lennik, 1070 Brussels, Belgium
| | - Emilie Doeraene
- Laboratory of Histology, Neuropathology and Neuroanatomy, Faculty of Medicine, Université Libre de Bruxelles, ULB Neuroscience Institute, 808 Route de Lennik, 1070 Brussels, Belgium
| | - Lidia Lopez Gutierrez
- Laboratory of Histology, Neuropathology and Neuroanatomy, Faculty of Medicine, Université Libre de Bruxelles, ULB Neuroscience Institute, 808 Route de Lennik, 1070 Brussels, Belgium
| | - Jean-Pierre Brion
- Laboratory of Histology, Neuropathology and Neuroanatomy, Faculty of Medicine, Université Libre de Bruxelles, ULB Neuroscience Institute, 808 Route de Lennik, 1070 Brussels, Belgium
| | - Karelle Leroy
- Laboratory of Histology, Neuropathology and Neuroanatomy, Faculty of Medicine, Université Libre de Bruxelles, ULB Neuroscience Institute, 808 Route de Lennik, 1070 Brussels, Belgium
| |
Collapse
|
20
|
Aerqin Q, Wang ZT, Wu KM, He XY, Dong Q, Yu JT. Omics-based biomarkers discovery for Alzheimer's disease. Cell Mol Life Sci 2022; 79:585. [PMID: 36348101 DOI: 10.1007/s00018-022-04614-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 10/22/2022] [Accepted: 10/26/2022] [Indexed: 11/09/2022]
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disorders presenting with the pathological hallmarks of amyloid plaques and tau tangles. Over the past few years, great efforts have been made to explore reliable biomarkers of AD. High-throughput omics are a technology driven by multiple levels of unbiased data to detect the complex etiology of AD, and it provides us with new opportunities to better understand the pathophysiology of AD and thereby identify potential biomarkers. Through revealing the interaction networks between different molecular levels, the ultimate goal of multi-omics is to improve the diagnosis and treatment of AD. In this review, based on the current AD pathology and the current status of AD diagnostic biomarkers, we summarize how genomics, transcriptomics, proteomics and metabolomics are all conducing to the discovery of reliable AD biomarkers that could be developed and used in clinical AD management.
Collapse
Affiliation(s)
- Qiaolifan Aerqin
- Department of Neurology and Institute of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, 200040, China
| | - Zuo-Teng Wang
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Kai-Min Wu
- Department of Neurology and Institute of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, 200040, China
| | - Xiao-Yu He
- Department of Neurology and Institute of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, 200040, China
| | - Qiang Dong
- Department of Neurology and Institute of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, 200040, China
| | - Jin-Tai Yu
- Department of Neurology and Institute of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, 200040, China.
| |
Collapse
|
21
|
Haure-Mirande JV, Audrain M, Ehrlich ME, Gandy S. Microglial TYROBP/DAP12 in Alzheimer's disease: Transduction of physiological and pathological signals across TREM2. Mol Neurodegener 2022; 17:55. [PMID: 36002854 PMCID: PMC9404585 DOI: 10.1186/s13024-022-00552-w] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 06/27/2022] [Indexed: 02/01/2023] Open
Abstract
TYROBP (also known as DAP12 or KARAP) is a transmembrane adaptor protein initially described as a receptor-activating subunit component of natural killer (NK) cells. TYROBP is expressed in numerous cell types, including peripheral blood monocytes, macrophages, dendritic cells, and osteoclasts, but a key point of recent interest is related to the critical role played by TYROBP in the function of many receptors expressed on the plasma membrane of microglia. TYROBP is the downstream adaptor and putative signaling partner for several receptors implicated in Alzheimer's disease (AD), including SIRP1β, CD33, CR3, and TREM2. TYROBP has received much of its current notoriety because of its importance in brain homeostasis by signal transduction across those receptors. In this review, we provide an overview of evidence indicating that the biology of TYROBP extends beyond its interaction with these four ligand-binding ectodomain-intramembranous domain molecules. In addition to reviewing the structure and localization of TYROBP, we discuss our recent progress using mouse models of either cerebral amyloidosis or tauopathy that were engineered to be TYROBP-deficient or TYROBP-overexpressing. Remarkably, constitutively TYROBP-deficient mice provided a model of genetic resilience to either of the defining proteinopathies of AD. Learning behavior and synaptic electrophysiological function were preserved at normal physiological levels even in the face of robust cerebral amyloidosis (in APP/PSEN1;Tyrobp-/- mice) or tauopathy (in MAPTP301S;Tyrobp-/- mice). A fundamental underpinning of the functional synaptic dysfunction associated with each proteotype was an accumulation of complement C1q. TYROBP deficiency prevented C1q accumulation associated with either proteinopathy. Based on these data, we speculate that TYROBP plays a key role in the microglial sensome and the emergence of the disease-associated microglia (DAM) phenotype. TYROBP may also play a key role in the loss of markers of synaptic integrity (e.g., synaptophysin-like immunoreactivity) that has long been held to be the feature of human AD molecular neuropathology that most closely correlates with concurrent clinical cognitive function.
Collapse
Affiliation(s)
| | - Mickael Audrain
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA
| | - Michelle E. Ehrlich
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA
| | - Sam Gandy
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA
- Department of Psychiatry and the NIA-Designated Mount Sinai Alzheimer’s Disease Research Center, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA
- James J Peters VA Medical Center, New York, Bronx NY 10468 USA
| |
Collapse
|
22
|
Eshkoor SA, Ghodsian N, Akhtari-Zavare M. MicroRNAs influence and longevity. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2022. [DOI: 10.1186/s43042-022-00316-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
MiRNAs play critical roles in the regulation of cellular function, life span, and the aging process. They can affect longevity positively and negatively through different aging pathways.
Main text
MiRNAs are a group of short non-coding RNAs that regulate gene expressions at post-transcriptional levels. The different types of alterations in miRNAs biogenesis, mRNA expressions, and activities of miRNA-protein complexes can affect the regulation of normal post-transcriptional gene process, which may lead to aging, age-related diseases, and an earlier death. It seems that the influence of deregulation of miRNAs on senescence and age-related diseases occurring by targeting aging molecular pathways can be used for diagnosis and prognosis of them. Therefore, the expression and function of miRNAs should be studied more accurately with new applicable and validated experimental tools. However, the current review wishes to highlight simply a connection among miRNAs, senescence and some age-related diseases.
Conclusion
Despite several research indicating the key roles of miRNAs in aging and longevity, further investigations are still needed to elucidate the essential roles of miRNAs in controlling mRNA regulation, cell proliferation, death and/or protection during stress and health problems. Besides, more research on miRNAs will help to identify new targets for alternative strategies regarding effectively screen, treat, and prevent diseases as well as make slow the aging process.
Collapse
|
23
|
Romanescu C, Schreiner TG, Mukovozov I. The Role of Human Herpesvirus 6 Infection in Alzheimer’s Disease Pathogenicity—A Theoretical Mosaic. J Clin Med 2022; 11:jcm11113061. [PMID: 35683449 PMCID: PMC9181317 DOI: 10.3390/jcm11113061] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/24/2022] [Accepted: 05/27/2022] [Indexed: 02/07/2023] Open
Abstract
Alzheimer’s disease (AD), a neurodegenerative disorder generally affecting older adults, is the most common form of dementia worldwide. The disease is marked by severe cognitive and psychiatric decline and has dramatic personal and social consequences. Considerable time and resources are dedicated to the pursuit of a better understanding of disease mechanisms; however, the ultimate goal of obtaining a viable treatment option remains elusive. Neurodegenerative disease as an outcome of gene–environment interaction is a notion widely accepted today; a clear understanding of how external factors are involved in disease pathogenesis is missing, however. In the case of AD, significant effort has been invested in the study of viral pathogens and their role in disease mechanisms. The current scoping review focuses on the purported role HHV-6 plays in AD pathogenesis. First, early studies demonstrating evidence of HHV-6 cantonment in either post-mortem AD brain specimens or in peripheral blood samples of living AD patients are reviewed. Next, selected examples of possible mechanisms whereby viral infection can directly or indirectly contribute to AD pathogenesis are presented, such as autophagy dysregulation, the interaction between miR155 and HHV-6, and amyloid-beta as an antimicrobial peptide. Finally, closely related topics such as HHV-6 penetration in the CNS, HHV-6 involvement in neuroinflammation, and a brief discussion on HHV-6 epigenetics are examined.
Collapse
Affiliation(s)
- Constantin Romanescu
- Clinical Section IV, “St. Parascheva” Infectious Disease Hospital, 700116 Iași, Romania
- Correspondence: (C.R.); (T.G.S.)
| | - Thomas Gabriel Schreiner
- Faculty of Medicine, University of Medicine and Pharmacy “Gr. T. Popa”, 700115 Iasi, Romania
- Faculty of Medicine, University of Medicine and Pharmacy “Carol Davila”, 050474 Bucharest, Romania
- Department of Electrical Measurements and Materials, Faculty of Electrical Engineering and Information Technology, Gheorghe Asachi Technical University of Iasi, 21–23 Professor Dimitrie Mangeron Blvd.,700050 Iasi, Romania
- Correspondence: (C.R.); (T.G.S.)
| | - Ilya Mukovozov
- Department of Dermatology and Skin Science, University of British Columbia, Vancouver, BC V6T 1Z4, Canada;
| |
Collapse
|
24
|
Nguyen TPN, Kumar M, Fedele E, Bonanno G, Bonifacino T. MicroRNA Alteration, Application as Biomarkers, and Therapeutic Approaches in Neurodegenerative Diseases. Int J Mol Sci 2022; 23:ijms23094718. [PMID: 35563107 PMCID: PMC9104163 DOI: 10.3390/ijms23094718] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/20/2022] [Accepted: 04/21/2022] [Indexed: 01/27/2023] Open
Abstract
MicroRNAs (miRNAs) are essential post-transcriptional gene regulators involved in various neuronal and non-neuronal cell functions and play a key role in pathological conditions. Numerous studies have demonstrated that miRNAs are dysregulated in major neurodegenerative diseases, such as Alzheimer’s disease, Parkinson’s disease, multiple sclerosis, amyotrophic lateral sclerosis, or Huntington’s disease. Hence, in the present work, we constructed a comprehensive overview of individual microRNA alterations in various models of the above neurodegenerative diseases. We also provided evidence of miRNAs as promising biomarkers for prognostic and diagnostic approaches. In addition, we summarized data from the literature about miRNA-based therapeutic applications via inhibiting or promoting miRNA expression. We finally identified the overlapping miRNA signature across the diseases, including miR-128, miR-140-5p, miR-206, miR-326, and miR-155, associated with multiple etiological cellular mechanisms. However, it remains to be established whether and to what extent miRNA-based therapies could be safely exploited in the future as effective symptomatic or disease-modifying approaches in the different human neurodegenerative disorders.
Collapse
Affiliation(s)
- T. P. Nhung Nguyen
- Pharmacology and Toxicology Unit, Department of Pharmacy, University of Genoa, Viale Cembrano 4, 16148 Genoa, Italy; (T.P.N.N.); (M.K.); (G.B.); (T.B.)
| | - Mandeep Kumar
- Pharmacology and Toxicology Unit, Department of Pharmacy, University of Genoa, Viale Cembrano 4, 16148 Genoa, Italy; (T.P.N.N.); (M.K.); (G.B.); (T.B.)
| | - Ernesto Fedele
- Pharmacology and Toxicology Unit, Department of Pharmacy, University of Genoa, Viale Cembrano 4, 16148 Genoa, Italy; (T.P.N.N.); (M.K.); (G.B.); (T.B.)
- IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
- Correspondence:
| | - Giambattista Bonanno
- Pharmacology and Toxicology Unit, Department of Pharmacy, University of Genoa, Viale Cembrano 4, 16148 Genoa, Italy; (T.P.N.N.); (M.K.); (G.B.); (T.B.)
- IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Tiziana Bonifacino
- Pharmacology and Toxicology Unit, Department of Pharmacy, University of Genoa, Viale Cembrano 4, 16148 Genoa, Italy; (T.P.N.N.); (M.K.); (G.B.); (T.B.)
- Inter-University Center for the Promotion of the 3Rs Principles in Teaching & Research (Centro 3R), 56122 Genoa, Italy
| |
Collapse
|
25
|
Zheng Q, Song B, Li G, Cai F, Wu M, Zhao Y, Jiang L, Guo T, Shen M, Hou H, Zhou Y, Zhao Y, Di A, Zhang L, Zeng F, Zhang XF, Luo H, Zhang X, Zhang H, Zeng Z, Huang TY, Dong C, Qing H, Zhang Y, Zhang Q, Wang X, Wu Y, Xu H, Song W, Wang X. USP25 inhibition ameliorates Alzheimer's pathology through the regulation of APP processing and Aβ generation. J Clin Invest 2022; 132:152170. [PMID: 35229730 PMCID: PMC8884900 DOI: 10.1172/jci152170] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 01/11/2022] [Indexed: 02/02/2023] Open
Abstract
Down syndrome (DS), or trisomy 21, is one of the critical risk factors for early-onset Alzheimer’s disease (AD), implicating key roles for chromosome 21–encoded genes in the pathogenesis of AD. We previously identified a role for the deubiquitinase USP25, encoded on chromosome 21, in regulating microglial homeostasis in the AD brain; however, whether USP25 affects amyloid pathology remains unknown. Here, by crossing 5×FAD AD and Dp16 DS mice, we observed that trisomy 21 exacerbated amyloid pathology in the 5×FAD brain. Moreover, bacterial artificial chromosome (BAC) transgene–mediated USP25 overexpression increased amyloid deposition in the 5×FAD mouse brain, whereas genetic deletion of Usp25 reduced amyloid deposition. Furthermore, our results demonstrate that USP25 promoted β cleavage of APP and Aβ generation by reducing the ubiquitination and lysosomal degradation of both APP and BACE1. Importantly, pharmacological inhibition of USP25 ameliorated amyloid pathology in the 5×FAD mouse brain. In summary, we identified the DS-related gene USP25 as a critical regulator of AD pathology, and our data suggest that USP25 serves as a potential pharmacological target for AD drug development.
Collapse
Affiliation(s)
- Qiuyang Zheng
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Department of Neuroscience, Center for Brain Sciences, First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Beibei Song
- Townsend Family Laboratories, Department of Psychiatry, University of British Columbia, Vancouver, British Columbia, Canada
| | - Guilin Li
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Department of Neuroscience, Center for Brain Sciences, First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Fang Cai
- Townsend Family Laboratories, Department of Psychiatry, University of British Columbia, Vancouver, British Columbia, Canada
| | - Meiling Wu
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Department of Neuroscience, Center for Brain Sciences, First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Yingjun Zhao
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Department of Neuroscience, Center for Brain Sciences, First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - LuLin Jiang
- Neuroscience Initiative, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Tiantian Guo
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Department of Neuroscience, Center for Brain Sciences, First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Mingyu Shen
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Department of Neuroscience, Center for Brain Sciences, First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Huan Hou
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Department of Neuroscience, Center for Brain Sciences, First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Ying Zhou
- Department of Translational Medicine, School of Medicine, Xiamen University, Xiamen, China
| | - Yini Zhao
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Department of Neuroscience, Center for Brain Sciences, First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Anjie Di
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Department of Neuroscience, Center for Brain Sciences, First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Lishan Zhang
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Department of Neuroscience, Center for Brain Sciences, First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Fanwei Zeng
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Department of Neuroscience, Center for Brain Sciences, First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Xiu-Fang Zhang
- Department of Pediatrics, Xiang'an Hospital of Xiamen University, Xiamen, China
| | - Hong Luo
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Department of Neuroscience, Center for Brain Sciences, First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Xian Zhang
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Department of Neuroscience, Center for Brain Sciences, First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Hongfeng Zhang
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Department of Neuroscience, Center for Brain Sciences, First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Zhiping Zeng
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen, China
| | - Timothy Y Huang
- Neuroscience Initiative, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Chen Dong
- Institute for Immunology, School of Medicine, Tsinghua University, Beijing, China
| | - Hong Qing
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Yun Zhang
- Townsend Family Laboratories, Department of Psychiatry, University of British Columbia, Vancouver, British Columbia, Canada
| | - Qing Zhang
- Townsend Family Laboratories, Department of Psychiatry, University of British Columbia, Vancouver, British Columbia, Canada
| | - Xu Wang
- Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, School of Mental Health and Kangning Hospital, Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China.,Oujiang Laboratory, Zhejiang Lab for Regenerative Medicine, Vision and Brain Health, Wenzhou, China
| | - Yili Wu
- Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, School of Mental Health and Kangning Hospital, Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China.,Oujiang Laboratory, Zhejiang Lab for Regenerative Medicine, Vision and Brain Health, Wenzhou, China
| | - Huaxi Xu
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Department of Neuroscience, Center for Brain Sciences, First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Weihong Song
- Townsend Family Laboratories, Department of Psychiatry, University of British Columbia, Vancouver, British Columbia, Canada.,Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, School of Mental Health and Kangning Hospital, Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China.,Oujiang Laboratory, Zhejiang Lab for Regenerative Medicine, Vision and Brain Health, Wenzhou, China
| | - Xin Wang
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Department of Neuroscience, Center for Brain Sciences, First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| |
Collapse
|
26
|
Zheng Q, Li G, Wang S, Zhou Y, Liu K, Gao Y, Zhou Y, Zheng L, Zhu L, Deng Q, Wu M, Di A, Zhang L, Zhao Y, Zhang H, Sun H, Dong C, Xu H, Wang X. Trisomy 21-induced dysregulation of microglial homeostasis in Alzheimer's brains is mediated by USP25. SCIENCE ADVANCES 2021; 7:7/1/eabe1340. [PMID: 33523861 PMCID: PMC7775784 DOI: 10.1126/sciadv.abe1340] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Accepted: 11/05/2020] [Indexed: 05/11/2023]
Abstract
Down syndrome (DS), caused by trisomy of chromosome 21, is the most significant risk factor for early-onset Alzheimer's disease (AD); however, underlying mechanisms linking DS and AD remain unclear. Here, we show that triplication of homologous chromosome 21 genes aggravates neuroinflammation in combined murine DS-AD models. Overexpression of USP25, a deubiquitinating enzyme encoded by chromosome 21, results in microglial activation and induces synaptic and cognitive deficits, whereas genetic ablation of Usp25 reduces neuroinflammation and rescues synaptic and cognitive function in 5×FAD mice. Mechanistically, USP25 deficiency attenuates microglia-mediated proinflammatory cytokine overproduction and synapse elimination. Inhibition of USP25 reestablishes homeostatic microglial signatures and restores synaptic and cognitive function in 5×FAD mice. In summary, we demonstrate an unprecedented role for trisomy 21 and pathogenic effects associated with microgliosis as a result of the increased USP25 dosage, implicating USP25 as a therapeutic target for neuroinflammation in DS and AD.
Collapse
Affiliation(s)
- Qiuyang Zheng
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, Fujian 361005, China
| | - Guilin Li
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, Fujian 361005, China
| | - Shihua Wang
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, Fujian 361005, China
- School of Medicine, Xizang Minzu University, Xianyang, Shaanxi 712082, China
| | - Ying Zhou
- Department of Translational Medicine, School of Medicine, Xiamen University, Xiamen, Fujian 361005, China
| | - Ke Liu
- Department of Translational Medicine, School of Medicine, Xiamen University, Xiamen, Fujian 361005, China
| | - Yue Gao
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, Fujian 361005, China
| | - Yulin Zhou
- Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, Fujian 361003, China
| | - Liangkai Zheng
- Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, Fujian 361003, China
| | - Lin Zhu
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, Fujian 361005, China
| | - Qingfang Deng
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, Fujian 361005, China
| | - Meiling Wu
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, Fujian 361005, China
| | - Anjie Di
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, Fujian 361005, China
| | - Lishan Zhang
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, Fujian 361005, China
| | - Yingjun Zhao
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, Fujian 361005, China
| | - Hongfeng Zhang
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, Fujian 361005, China
| | - Hao Sun
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, Fujian 361005, China
| | - Chen Dong
- Institute for Immunology, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Huaxi Xu
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, Fujian 361005, China
- Center for Brain Sciences, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361003, China
| | - Xin Wang
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, Fujian 361005, China.
| |
Collapse
|
27
|
He C, Su C, Zhang W, Wan Q. miR-485-5p alleviates Alzheimer's disease progression by targeting PACS1. Transl Neurosci 2021; 12:335-345. [PMID: 34594577 PMCID: PMC8442568 DOI: 10.1515/tnsci-2020-0177] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 05/14/2021] [Accepted: 05/24/2021] [Indexed: 12/14/2022] Open
Abstract
Alzheimer's disease (AD) is a common dementia and a heterogeneous disease. Previous research has validated that microRNAs (miRNAs) are pivotal regulators in the initiation and development of tremendous diseases including AD. MicroRNA-485-5p (miR-485-5p) was reported to be an important participant implicated in several neurological diseases, but its role in AD still needs to be further investigated. In this research, we explored the biological function of miR-485-5p in AD. RT-qPCR revealed that miR-485-5p expression was downregulated in the hippocampus of APP/PS1 mice. Additionally, miR-485-5p overexpression facilitated the learning and memory capabilities of APP/PS1 mice according to Morris water maze test, fear conditioning test, and immunofluorescent staining. Moreover, CCK-8 assay, flow cytometric analysis, and western blot analysis suggested that miR-485-5p overexpression promoted pericyte viability and prohibited pericyte apoptosis in APP/PS1 mice. Mechanistically, miR-485-5p directly targeted PACS1 in pericytes, as shown in a luciferase reporter assay. In rescue assays, PACS1 overexpression countervailed the effect of miR-485-5p overexpression on pericyte viability and apoptosis. In conclusion, miR-485-5p ameliorates AD progression by targeting PACS1.
Collapse
Affiliation(s)
- Chuan He
- Department of Rehabilitation Medicine, Jiangsu-Shengze Hospital affiliated to Nanjing Medical University, Suzhou 215228, Jiangsu, China
| | - Caixia Su
- Department of Rehabilitation Medicine, Jiangsu-Shengze Hospital affiliated to Nanjing Medical University, Suzhou 215228, Jiangsu, China
| | - Wentong Zhang
- Department of Rehabilitation Medicine, Jiangsu-Shengze Hospital affiliated to Nanjing Medical University, Suzhou 215228, Jiangsu, China
| | - Qi Wan
- Department of Neurological Medicine, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing 21000, Jiangsu, China
| |
Collapse
|