1
|
Chen X, Yang W, Roberts CWM, Zhang J. Developmental origins shape the paediatric cancer genome. Nat Rev Cancer 2024; 24:382-398. [PMID: 38698126 DOI: 10.1038/s41568-024-00684-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/18/2024] [Indexed: 05/05/2024]
Abstract
In the past two decades, technological advances have brought unprecedented insights into the paediatric cancer genome revealing characteristics distinct from those of adult cancer. Originating from developing tissues, paediatric cancers generally have low mutation burden and are driven by variants that disrupt the transcriptional activity, chromatin state, non-coding cis-regulatory regions and other biological functions. Within each tumour, there are multiple populations of cells with varying states, and the lineages of some can be tracked to their fetal origins. Genome-wide genetic screening has identified vulnerabilities associated with both the cell of origin and transcription deregulation in paediatric cancer, which have become a valuable resource for designing new therapeutic approaches including those for small molecules, immunotherapy and targeted protein degradation. In this Review, we present recent findings on these facets of paediatric cancer from a pan-cancer perspective and provide an outlook on future investigations.
Collapse
Affiliation(s)
- Xiaolong Chen
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Wentao Yang
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Charles W M Roberts
- Comprehensive Cancer Center, St Jude Children's Research Hospital, Memphis, TN, USA
- Department of Oncology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Jinghui Zhang
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA.
| |
Collapse
|
2
|
Bravo JI, Mizrahi CR, Kim S, Zhang L, Suh Y, Benayoun BA. An eQTL-based approach reveals candidate regulators of LINE-1 RNA levels in lymphoblastoid cells. PLoS Genet 2024; 20:e1011311. [PMID: 38848448 PMCID: PMC11189215 DOI: 10.1371/journal.pgen.1011311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 06/20/2024] [Accepted: 05/21/2024] [Indexed: 06/09/2024] Open
Abstract
Long interspersed element 1 (LINE-1; L1) are a family of transposons that occupy ~17% of the human genome. Though a small number of L1 copies remain capable of autonomous transposition, the overwhelming majority of copies are degenerate and immobile. Nevertheless, both mobile and immobile L1s can exert pleiotropic effects (promoting genome instability, inflammation, or cellular senescence) on their hosts, and L1's contributions to aging and aging diseases is an area of active research. However, because of the cell type-specific nature of transposon control, the catalogue of L1 regulators remains incomplete. Here, we employ an eQTL approach leveraging transcriptomic and genomic data from the GEUVADIS and 1000Genomes projects to computationally identify new candidate regulators of L1 RNA levels in lymphoblastoid cell lines. To cement the role of candidate genes in L1 regulation, we experimentally modulate the levels of top candidates in vitro, including IL16, STARD5, HSD17B12, and RNF5, and assess changes in TE family expression by Gene Set Enrichment Analysis (GSEA). Remarkably, we observe subtle but widespread upregulation of TE family expression following IL16 and STARD5 overexpression. Moreover, a short-term 24-hour exposure to recombinant human IL16 was sufficient to transiently induce subtle, but widespread, upregulation of L1 subfamilies. Finally, we find that many L1 expression-associated genetic variants are co-associated with aging traits across genome-wide association study databases. Our results expand the catalogue of genes implicated in L1 RNA control and further suggest that L1-derived RNA contributes to aging processes. Given the ever-increasing availability of paired genomic and transcriptomic data, we anticipate this new approach to be a starting point for more comprehensive computational scans for regulators of transposon RNA levels.
Collapse
Affiliation(s)
- Juan I. Bravo
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, California, United States of America
- Graduate program in the Biology of Aging, University of Southern California, Los Angeles, California, United States of America
| | - Chanelle R. Mizrahi
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, California, United States of America
- USC Gerontology Enriching MSTEM to Enhance Diversity in Aging Program, University of Southern California, Los Angeles, California, United States of America
| | - Seungsoo Kim
- Department of Obstetrics and Gynecology, Columbia University Irving Medical Center, New York, New York, United States of America
| | - Lucia Zhang
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, California, United States of America
- Quantitative and Computational Biology Department, USC Dornsife College of Letters, Arts and Sciences, Los Angeles, California, United States of America
| | - Yousin Suh
- Department of Obstetrics and Gynecology, Columbia University Irving Medical Center, New York, New York, United States of America
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, New York, United States of America
| | - Bérénice A. Benayoun
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, California, United States of America
- Molecular and Computational Biology Department, USC Dornsife College of Letters, Arts and Sciences, Los Angeles, California, United States of America
- Biochemistry and Molecular Medicine Department, USC Keck School of Medicine, Los Angeles, California, United States of America
- USC Norris Comprehensive Cancer Center, Epigenetics and Gene Regulation, Los Angeles, California, United States of America
- USC Stem Cell Initiative, Los Angeles, California, United States of America
| |
Collapse
|
3
|
Chiang J, Bagchi A, Li X, Dhanda SK, Huang J, Pinto SN, Sioson E, Dalton J, Tatevossian RG, Jia S, Partap S, Fisher PG, Bowers DC, Hassall TEG, Lu C, Zaldivar-Peraza A, Wright KD, Broniscer A, Qaddoumi I, Upadhyaya SA, Vinitsky A, Sabin ND, Orr BA, Klimo P, Boop FA, Ashford JM, Conklin HM, Onar-Thomas A, Zhou X, Ellison DW, Gajjar A, Robinson GW. High-grade glioma in infants and young children is histologically, molecularly, and clinically diverse: Results from the SJYC07 trial and institutional experience. Neuro Oncol 2024; 26:178-190. [PMID: 37503880 PMCID: PMC10768990 DOI: 10.1093/neuonc/noad130] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Indexed: 07/29/2023] Open
Abstract
BACKGROUND High-grade gliomas (HGG) in young children pose a challenge due to favorable but unpredictable outcomes. While retrospective studies broadened our understanding of tumor biology, prospective data is lacking. METHODS A cohort of children with histologically diagnosed HGG from the SJYC07 trial was augmented with nonprotocol patients with HGG treated at St. Jude Children's Research Hospital from November 2007 to December 2020. DNA methylome profiling and whole genome, whole exome, and RNA sequencing were performed. These data were integrated with histopathology to yield an integrated diagnosis. Clinical characteristics and preoperative imaging were analyzed. RESULTS Fifty-six children (0.0-4.4 years) were identified. Integrated analysis split the cohort into four categories: infant-type hemispheric glioma (IHG), HGG, low-grade glioma (LGG), and other-central nervous system (CNS) tumors. IHG was the most prevalent (n = 22), occurred in the youngest patients (median age = 0.4 years), and commonly harbored receptor tyrosine kinase gene fusions (7 ALK, 2 ROS1, 3 NTRK1/2/3, 4 MET). The 5-year event-free (EFS) and overall survival (OS) for IHG was 53.13% (95%CI: 35.52-79.47) and 90.91% (95%CI: 79.66-100.00) vs. 0.0% and 16.67% (95%CI: 2.78-99.74%) for HGG (p = 0.0043, p = 0.00013). EFS and OS were not different between IHG and LGG (p = 0.95, p = 0.43). Imaging review showed IHGs are associated with circumscribed margins (p = 0.0047), hemispheric location (p = 0.0010), and intratumoral hemorrhage (p = 0.0149). CONCLUSIONS HGG in young children is heterogeneous and best defined by integrating histopathological and molecular features. Patients with IHG have relatively good outcomes, yet they endure significant deficits, making them good candidates for therapy de-escalation and trials of molecular targeted therapy.
Collapse
Affiliation(s)
- Jason Chiang
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Aditi Bagchi
- Department of Oncology, Division of Neuro-Oncology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Xiaoyu Li
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Sandeep K Dhanda
- Department of Oncology, Division of Neuro-Oncology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Jie Huang
- Department of Biostatistics, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Soniya N Pinto
- Department of Diagnostic Imaging, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Edgar Sioson
- Department of Computational Biology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - James Dalton
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Ruth G Tatevossian
- Cancer Biomarkers Laboratory, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Sujuan Jia
- Cancer Biomarkers Laboratory, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Sonia Partap
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | - Paul G Fisher
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | - Daniel C Bowers
- Division of Pediatric Hematology-Oncology, University of Texas Southwestern Medical School, Dallas, TX, USA
| | | | - Congyu Lu
- Department of Computational Biology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Airen Zaldivar-Peraza
- Department of Computational Biology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Karen D Wright
- Dana Farber/Boston Children’s Cancer and Blood Disorders Center, Boston, MA, USA
| | - Alberto Broniscer
- Department of Oncology, Division of Neuro-Oncology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Ibrahim Qaddoumi
- Department of Oncology, Division of Neuro-Oncology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Santhosh A Upadhyaya
- Department of Pediatrics, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Anna Vinitsky
- Department of Oncology, Division of Neuro-Oncology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Noah D Sabin
- Department of Diagnostic Imaging, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Brent A Orr
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Paul Klimo
- Department of Surgery, St Jude Children’s Research Hospital, Memphis, TN, USA
- Department of Neurosurgery, University of Tennessee Health and Science Center, Memphis, TN, USA
- Le Bonheur Neuroscience Institute, Le Bonheur Children’s Hospital, Memphis, TN, USA
| | - Frederick A Boop
- Department of Surgery, St Jude Children’s Research Hospital, Memphis, TN, USA
- Department of Neurosurgery, University of Tennessee Health and Science Center, Memphis, TN, USA
- Le Bonheur Neuroscience Institute, Le Bonheur Children’s Hospital, Memphis, TN, USA
| | - Jason M Ashford
- Department of Psychology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Heather M Conklin
- Department of Psychology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Arzu Onar-Thomas
- Department of Biostatistics, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Xin Zhou
- Department of Computational Biology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - David W Ellison
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Amar Gajjar
- Department of Oncology, Division of Neuro-Oncology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Giles W Robinson
- Department of Oncology, Division of Neuro-Oncology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| |
Collapse
|
4
|
Macke EL, Miller AR, Stonerock E, Olshefski R, Zajo K, Bedrosian TA, Mardis ER, Akkari YMN, Cottrell CE, Schieffer KM. A LINE-1 mediated deletion resulting in germline retinoblastoma predisposition. Neurooncol Adv 2024; 6:vdad163. [PMID: 38213835 PMCID: PMC10783486 DOI: 10.1093/noajnl/vdad163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2024] Open
Abstract
Retinoblastoma is an ocular cancer associated with genomic variation in the RB1 gene. In individuals with bilateral retinoblastoma, a germline variant in RB1 is identified in virtually all cases. We describe herein an individual with bilateral retinoblastoma for whom multiple clinical lab assays performed by outside commercial laboratories failed to identify a germline RB1 variant. Paired tumor/normal exome sequencing, long-read whole genome sequencing, and long-read isoform sequencing was performed on a translational research basis ultimately identified a germline likely de novo Long Interspersed Nuclear Element (LINE)-1 mediated deletion resulting in a premature stop of translation of RB1 as the underlying genetic cause of retinoblastoma in this individual. Based on these research findings, the LINE-1 mediated deletion was confirmed via Sanger sequencing in our clinical laboratory, and results were reported in the patient's medical record to allow for appropriate genetic counseling.
Collapse
Affiliation(s)
- Erica L Macke
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children’s Hospital, Columbus, Ohio, USA
| | - Anthony R Miller
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children’s Hospital, Columbus, Ohio, USA
| | - Eileen Stonerock
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children’s Hospital, Columbus, Ohio, USA
| | - Randal Olshefski
- Division of Hematology/Oncology/BMT, Department of Pediatrics, Nationwide Children’s Hospital, Columbus, Ohio, USA
- Department of Pediatrics, The Ohio State University, Columbus, Ohio, USA
| | - Kristin Zajo
- Division of Hematology/Oncology/BMT, Department of Pediatrics, Nationwide Children’s Hospital, Columbus, Ohio, USA
| | - Tracy A Bedrosian
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children’s Hospital, Columbus, Ohio, USA
- Department of Pediatrics, The Ohio State University, Columbus, Ohio, USA
| | - Elaine R Mardis
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children’s Hospital, Columbus, Ohio, USA
- Department of Pediatrics, The Ohio State University, Columbus, Ohio, USA
| | - Yassmine M N Akkari
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children’s Hospital, Columbus, Ohio, USA
- Department of Pediatrics, The Ohio State University, Columbus, Ohio, USA
- Department of Pathology, The Ohio State University, Columbus, Ohio, USA
| | - Catherine E Cottrell
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children’s Hospital, Columbus, Ohio, USA
- Department of Pediatrics, The Ohio State University, Columbus, Ohio, USA
- Department of Pathology, The Ohio State University, Columbus, Ohio, USA
| | - Kathleen M Schieffer
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children’s Hospital, Columbus, Ohio, USA
- Department of Pediatrics, The Ohio State University, Columbus, Ohio, USA
- Department of Pathology, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
5
|
Bravo JI, Mizrahi CR, Kim S, Zhang L, Suh Y, Benayoun BA. An eQTL-based Approach Reveals Candidate Regulators of LINE-1 RNA Levels in Lymphoblastoid Cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.15.553416. [PMID: 37645920 PMCID: PMC10461994 DOI: 10.1101/2023.08.15.553416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Long interspersed element 1 (L1) are a family of autonomous, actively mobile transposons that occupy ~17% of the human genome. A number of pleiotropic effects induced by L1 (promoting genome instability, inflammation, or cellular senescence) have been observed, and L1's contributions to aging and aging diseases is an area of active research. However, because of the cell type-specific nature of transposon control, the catalogue of L1 regulators remains incomplete. Here, we employ an eQTL approach leveraging transcriptomic and genomic data from the GEUVADIS and 1000Genomes projects to computationally identify new candidate regulators of L1 RNA levels in lymphoblastoid cell lines. To cement the role of candidate genes in L1 regulation, we experimentally modulate the levels of top candidates in vitro, including IL16, STARD5, HSDB17B12, and RNF5, and assess changes in TE family expression by Gene Set Enrichment Analysis (GSEA). Remarkably, we observe subtle but widespread upregulation of TE family expression following IL16 and STARD5 overexpression. Moreover, a short-term 24-hour exposure to recombinant human IL16 was sufficient to transiently induce subtle, but widespread, upregulation of L1 subfamilies. Finally, we find that many L1 expression-associated genetic variants are co-associated with aging traits across genome-wide association study databases. Our results expand the catalogue of genes implicated in L1 RNA control and further suggest that L1-derived RNA contributes to aging processes. Given the ever-increasing availability of paired genomic and transcriptomic data, we anticipate this new approach to be a starting point for more comprehensive computational scans for transposon transcriptional regulators.
Collapse
Affiliation(s)
- Juan I. Bravo
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
- Graduate program in the Biology of Aging, University of Southern California, Los Angeles, CA 90089, USA
| | - Chanelle R. Mizrahi
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
- USC Gerontology Enriching MSTEM to Enhance Diversity in Aging Program, University of Southern California, Los Angeles, CA 90089, USA
| | - Seungsoo Kim
- Department of Obstetrics and Gynecology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Lucia Zhang
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
- Quantitative and Computational Biology Department, USC Dornsife College of Letters, Arts and Sciences, Los Angeles, CA 90089, USA
| | - Yousin Suh
- Department of Obstetrics and Gynecology, Columbia University Irving Medical Center, New York, NY 10032, USA
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Bérénice A. Benayoun
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
- Molecular and Computational Biology Department, USC Dornsife College of Letters, Arts and Sciences, Los Angeles, CA 90089, USA
- Biochemistry and Molecular Medicine Department, USC Keck School of Medicine, Los Angeles, CA 90089, USA
- USC Norris Comprehensive Cancer Center, Epigenetics and Gene Regulation, Los Angeles, CA 90089, USA
- USC Stem Cell Initiative, Los Angeles, CA 90089, USA
| |
Collapse
|
6
|
Song J, Li L, Fang Y, Lin Y, Wu L, Wan W, Wei G, Hua F, Ying J. FOXN Transcription Factors: Regulation and Significant Role in Cancer. Mol Cancer Ther 2023; 22:1028-1039. [PMID: 37566097 DOI: 10.1158/1535-7163.mct-23-0208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 06/29/2023] [Accepted: 07/19/2023] [Indexed: 08/12/2023]
Abstract
A growing number of studies have demonstrated that cancer development is closely linked to abnormal gene expression, including alterations in the transcriptional activity of transcription factors. The Forkhead box class N (FOXN) proteins FOXN1-6 form a highly conserved class of transcription factors, which have been shown in recent years to be involved in the regulation of malignant progression in a variety of cancers. FOXNs mediate cell proliferation, cell-cycle progression, cell differentiation, metabolic homeostasis, embryonic development, DNA damage repair, tumor angiogenesis, and other critical biological processes. Therefore, transcriptional dysregulation of FOXNs can directly affect cellular physiology and promote cancer development. Numerous studies have demonstrated that the transcriptional activity of FOXNs is regulated by protein-protein interactions, microRNAs (miRNA), and posttranslational modifications (PTM). However, the mechanisms underlying the molecular regulation of FOXNs in cancer development are unclear. Here, we reviewed the molecular regulatory mechanisms of FOXNs expression and activity, their role in the malignant progression of tumors, and their value for clinical applications in cancer therapy. This review may help design experimental studies involving FOXN transcription factors, and enhance their therapeutic potential as antitumor targets.
Collapse
Affiliation(s)
- Jiali Song
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, P.R. China
- Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang City, Jiangxi Province, P.R. China
| | - Longshan Li
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, P.R. China
- Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang City, Jiangxi Province, P.R. China
| | - Yang Fang
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, P.R. China
- Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang City, Jiangxi Province, P.R. China
| | - Yue Lin
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, P.R. China
- Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang City, Jiangxi Province, P.R. China
| | - Luojia Wu
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, P.R. China
- Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang City, Jiangxi Province, P.R. China
| | - Wei Wan
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, P.R. China
- Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang City, Jiangxi Province, P.R. China
| | - Gen Wei
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, P.R. China
- Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang City, Jiangxi Province, P.R. China
| | - Fuzhou Hua
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, P.R. China
- Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang City, Jiangxi Province, P.R. China
| | - Jun Ying
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, P.R. China
- Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang City, Jiangxi Province, P.R. China
| |
Collapse
|