1
|
Raha S, Paidi RK, Dutta D, Pahan K. Cinnamic acid, a natural plant compound, exhibits neuroprotection in a mouse model of Sandhoff disease via PPARα. NEUROIMMUNE PHARMACOLOGY AND THERAPEUTICS 2024; 3:17-32. [PMID: 38532783 PMCID: PMC10961485 DOI: 10.1515/nipt-2023-0027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 02/26/2024] [Indexed: 03/28/2024]
Abstract
Tay-Sachs disease (TSD) and its severe form Sandhoff disease (SD) are autosomal recessive lysosomal storage metabolic disorders, which often result into excessive GM2 ganglioside accumulation predominantly in lysosomes of nerve cells. Although patients with these diseases appear normal at birth, the progressive accumulation of undegraded GM2 gangliosides in neurons leads to early death accompanied by manifestation of motor difficulties and gradual loss of behavioral skills. Unfortunately, there is still no effective treatment available for TSD/SD. The present study highlights the importance of cinnamic acid (CA), a naturally occurring aromatic fatty acid present in a number of plants, in inhibiting the disease process in a transgenic mouse model of SD. Oral administration of CA significantly attenuated glial activation and inflammation and reduced the accumulation of GM2 gangliosides/glycoconjugates in the cerebral cortex of Sandhoff mice. Besides, oral CA also improved behavioral performance and increased the survival of Sandhoff mice. While assessing the mechanism, we found that oral administration of CA increased the level of peroxisome proliferator-activated receptor α (PPARα) in the brain of Sandhoff mice and that oral CA remained unable to reduce glycoconjugates, improve behavior and increase survival in Sandhoff mice lacking PPARα. Our results indicate a beneficial function of CA that utilizes a PPARα-dependent mechanism to halt the progression of SD and thereby increase the longevity of Sandhoff mice.
Collapse
Affiliation(s)
- Sumita Raha
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Ramesh K. Paidi
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Debashis Dutta
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Kalipada Pahan
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
- Division of Research and Development, Jesse Brown Veterans Affairs Medical Center, Chicago, IL, USA
| |
Collapse
|
2
|
Bertani V, Prioni S, Di Lecce R, Gazza F, Ragionieri L, Merialdi G, Bonilauri P, Jagannathan V, Grassi S, Cabitta L, Paoli A, Morrone A, Sonnino S, Drögemüller C, Cantoni AM. A pathogenic HEXA missense variant in wild boars with Tay-Sachs disease. Mol Genet Metab 2021; 133:297-306. [PMID: 34119419 DOI: 10.1016/j.ymgme.2021.05.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 05/02/2021] [Accepted: 05/03/2021] [Indexed: 12/27/2022]
Abstract
Gangliosidoses are inherited lysosomal storage disorders caused by reduced or absent activity of either a lysosomal enzyme involved in ganglioside catabolism, or an activator protein required for the proper activity of a ganglioside hydrolase, which results in the intra-lysosomal accumulation of undegraded metabolites. We hereby describe morphological, ultrastructural, biochemical and genetic features of GM2 gangliosidosis in three captive bred wild boar littermates. The piglets were kept in a partially-free range farm and presented progressive neurological signs, starting at 6 months of age. Animals were euthanized at approximately one year of age due to their poor conditions. Neuropathogens were excluded as a possible cause of the signs. Gross examination showed a reduction of cerebral and cerebellar consistency. Central (CNS) and peripheral (PNS) nervous system neurons were enlarged and foamy, with severe and diffuse cytoplasmic vacuolization. Transmission electron microscopy (TEM) of CNS neurons demonstrated numerous lysosomes, filled by parallel or concentric layers of membranous electron-dense material, defined as membranous cytoplasmic bodies (MCB). Biochemical composition of gangliosides analysis from CNS revealed accumulation of GM2 ganglioside; furthermore, Hex A enzyme activity was less than 1% compared to control animals. These data confirmed the diagnosis of GM2 gangliosidosis. Genetic analysis identified, at a homozygous level, the presence of a missense nucleotide variant c.1495C > T (p Arg499Cys) in the hexosaminidase subunit alpha gene (HEXA), located within the GH20 hexosaminidase superfamily domain of the encoded protein. This specific HEXA variant is known to be pathogenic and associated with Tay-Sachs disease in humans, but has never been identified in other animal species. This is the first report of a HEXA gene associated Tay-Sachs disease in wild boars and provides a comprehensive description of a novel spontaneous animal model for this lysosomal storage disease.
Collapse
Affiliation(s)
- Valeria Bertani
- Department of Veterinary Science, University of Parma, Via Taglio, 8, 43100 Parma, Italy.
| | - Simona Prioni
- Department of Medical Biotechnology and Translational Medicine, University of Milano, Via Fratelli Cervi 93, 20129 Segrate, Italy
| | - Rosanna Di Lecce
- Department of Veterinary Science, University of Parma, Via Taglio, 8, 43100 Parma, Italy
| | - Ferdinando Gazza
- Department of Veterinary Science, University of Parma, Via Taglio, 8, 43100 Parma, Italy
| | - Luisa Ragionieri
- Department of Veterinary Science, University of Parma, Via Taglio, 8, 43100 Parma, Italy
| | - Giuseppe Merialdi
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna, Via Pietro Fiorini, 5, 40127, Bologna, Italy
| | - Paolo Bonilauri
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna, Via Pietro Fiorini, 5, 40127, Bologna, Italy
| | - Vidhya Jagannathan
- Institute of Genetics, Vetsuisse Faculty, University of Bern, Bremgartenstrasse 109a, 3001 Bern, Switzerland
| | - Sara Grassi
- Department of Medical Biotechnology and Translational Medicine, University of Milano, Via Fratelli Cervi 93, 20129 Segrate, Italy
| | - Livia Cabitta
- Department of Medical Biotechnology and Translational Medicine, University of Milano, Via Fratelli Cervi 93, 20129 Segrate, Italy
| | - Antonella Paoli
- Molecular and Cell Biology Laboratory, Paediatric Neurology Unit and Laboratories, Neuroscience Department, A. Meyer Children's Hospital, Florence, Italy
| | - Amelia Morrone
- Molecular and Cell Biology Laboratory, Paediatric Neurology Unit and Laboratories, Neuroscience Department, A. Meyer Children's Hospital, Florence, Italy; Department of Neurosciences, Psychology, Pharmacology and Child Health, University of Florence, Italy
| | - Sandro Sonnino
- Department of Medical Biotechnology and Translational Medicine, University of Milano, Via Fratelli Cervi 93, 20129 Segrate, Italy
| | - Cord Drögemüller
- Institute of Genetics, Vetsuisse Faculty, University of Bern, Bremgartenstrasse 109a, 3001 Bern, Switzerland
| | - Anna Maria Cantoni
- Department of Veterinary Science, University of Parma, Via Taglio, 8, 43100 Parma, Italy
| |
Collapse
|
3
|
Moro CA, Hanna-Rose W. Animal Model Contributions to Congenital Metabolic Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1236:225-244. [PMID: 32304075 PMCID: PMC8404832 DOI: 10.1007/978-981-15-2389-2_9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Genetic model systems allow researchers to probe and decipher aspects of human disease, and animal models of disease are frequently specifically engineered and have been identified serendipitously as well. Animal models are useful for probing the etiology and pathophysiology of disease and are critical for effective discovery and development of novel therapeutics for rare diseases. Here we review the impact of animal model organism research in three examples of congenital metabolic disorders to highlight distinct advantages of model system research. First, we discuss phenylketonuria research where a wide variety of research fields and models came together to make impressive progress and where a nearly ideal mouse model has been central to therapeutic advancements. Second, we review advancements in Lesch-Nyhan syndrome research to illustrate the role of models that do not perfectly recapitulate human disease as well as the need for multiple models of the same disease to fully investigate human disease aspects. Finally, we highlight research on the GM2 gangliosidoses Tay-Sachs and Sandhoff disease to illustrate the important role of both engineered traditional laboratory animal models and serendipitously identified atypical models in congenital metabolic disorder research. We close with perspectives for the future for animal model research in congenital metabolic disorders.
Collapse
Affiliation(s)
- Corinna A Moro
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, USA
| | - Wendy Hanna-Rose
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, USA.
| |
Collapse
|
4
|
THE LYSOSOMAL STORAGE DISEASE GM2 GANGLIOSIDOSIS IN CAPTIVE BANDED MONGOOSE SIBLINGS ( MUNGOS MUNGO). J Zoo Wildl Med 2018; 49:335-344. [PMID: 29900785 DOI: 10.1638/2017-0199.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
This study reports the occurrence of the lysosomal storage disease GM2 gangliosidosis (Sandhoff disease) in two 11-mo-old captive-bred, male and female mongoose siblings ( Mungos mungo). The clinical signs and the pathological findings reported here were similar to those reported in other mammalian species. Light microscopy revealed an accumulation of stored material in neurons and macrophages accompanied by a significant neuronal degeneration (swelling of neuronal soma, loss of Nissl substance, and neuronal loss) and gliosis. Electron microscopy of brain tissue identified the stored material as membrane-bound multilamellar bodies. An almost complete lack of total hexosaminidase activity in serum suggested a defect in the HEXB gene (Sandhoff disease in humans). High-performance thin-layer chromatography and mass spectrometry confirmed the accumulation of GM2 ganglioside in brain and kidney tissue, and the lectin staining pattern of the brain tissue further corroborated the diagnosis of a Sandhoff-type lysosomal storage disease.
Collapse
|
5
|
Lawson CA, Martin DR. Animal models of GM2 gangliosidosis: utility and limitations. APPLICATION OF CLINICAL GENETICS 2016; 9:111-20. [PMID: 27499644 PMCID: PMC4959762 DOI: 10.2147/tacg.s85354] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
GM2 gangliosidosis, a subset of lysosomal storage disorders, is caused by a deficiency of the glycohydrolase, β-N-acetylhexosaminidase, and includes the closely related Tay–Sachs and Sandhoff diseases. The enzyme deficiency prevents the normal, stepwise degradation of ganglioside, which accumulates unchecked within the cellular lysosome, particularly in neurons. As a result, individuals with GM2 gangliosidosis experience progressive neurological diseases including motor deficits, progressive weakness and hypotonia, decreased responsiveness, vision deterioration, and seizures. Mice and cats are well-established animal models for Sandhoff disease, whereas Jacob sheep are the only known laboratory animal model of Tay–Sachs disease to exhibit clinical symptoms. Since the human diseases are relatively rare, animal models are indispensable tools for further study of pathogenesis and for development of potential treatments. Though no effective treatments for gangliosidoses currently exist, animal models have been used to test promising experimental therapies. Herein, the utility and limitations of gangliosidosis animal models and how they have contributed to the development of potential new treatments are described.
Collapse
Affiliation(s)
| | - Douglas R Martin
- Scott-Ritchey Research Center; Department of Anatomy, Physiology and Pharmacology, Auburn University College of Veterinary Medicine, Auburn, AL, USA
| |
Collapse
|
6
|
Yamato O, Satoh H, Matsuki N, Ono K, Yamasaki M, Maede Y. Laboratory Diagnosis of Canine GM2-Gangliosidosis using Blood and Cerebrospinal Fluid. J Vet Diagn Invest 2016; 16:39-44. [PMID: 14974845 DOI: 10.1177/104063870401600107] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
In the present study, laboratory techniques were used to diagnose canine GM2-gangliosidosis using blood and cerebrospinal fluid (CSF) that can be collected noninvasively from living individuals. Lysosomal acid β-hexosaminidase (Hex) was measured spectrofluorometrically using 4-methylumbelliferyl N-acetyl-β-d-glucosaminide and 4-methylumbelliferyl 7-(6-sulfo-2-acetamido-2-deoxy-β-d-glucopyranoside) as substrates. Main isoenzymes A and B of Hex in leukocytes were also analyzed using cellulose acetate membrane electrophoresis. GM2-ganglioside in CSF was detected and determined quantitatively by using thin-layer chromatography/enzyme-immunostaining method with anti-GM2-ganglioside antibody. In normal dogs, Hex activities could be determined in leukocytes, serum, and CSF, and the total activities were markedly reduced in all the enzyme sources in a dog with Sandhoff disease. Electrophoresis of a leukocyte lysate from a normal dog showed that the Hex A and Hex B were not separated distinctively with formation of a broad band, whereas there were no bands in electrophoresis of a lysate from a dog with Sandhoff disease, showing a deficiency in the total enzyme activity. GM2-ganglioside could be detected and determined quantitatively in as little as 100 μl of canine CSF. GM2-ganglioside in CSF in a dog with Sandhoff disease increased to 46 times the normal level. In conclusion, the methods in the present study are useful for diagnosis of canine GM2-gangliosidosis. These techniques enable definitive and early diagnosis of canine GM2-gangliosidosis even if tissues and organs cannot be obtained.
Collapse
Affiliation(s)
- Osamu Yamato
- Laboratory of Internal Medicine, Department of Veterinary Clinical Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan
| | | | | | | | | | | |
Collapse
|
7
|
Kohyama M, Yabuki A, Ochiai K, Nakamoto Y, Uchida K, Hasegawa D, Takahashi K, Kawaguchi H, Tsuboi M, Yamato O. In situ detection of GM1 and GM2 gangliosides using immunohistochemical and immunofluorescent techniques for auxiliary diagnosis of canine and feline gangliosidoses. BMC Vet Res 2016; 12:67. [PMID: 27036194 PMCID: PMC4815186 DOI: 10.1186/s12917-016-0691-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Accepted: 03/22/2016] [Indexed: 11/23/2022] Open
Abstract
Background GM1 and GM2 gangliosidoses are progressive neurodegenerative lysosomal storage diseases resulting from the excessive accumulation of GM1 and GM2 gangliosides in the lysosomes, respectively. The diagnosis of gangliosidosis is carried out based on comprehensive findings using various types of specimens for histological, ultrastructural, biochemical and genetic analyses. Therefore, the partial absence or lack of specimens might have resulted in many undiagnosed cases. The aim of the present study was to establish immunohistochemical and immunofluorescent techniques for the auxiliary diagnosis of canine and feline gangliosidoses, using paraffin-embedded brain specimens stored for a long period. Results Using hematoxylin and eosin staining, cytoplasmic accumulation of pale to eosinophilic granular materials in swollen neurons was observed in animals previously diagnosed with GM1 or GM2 gangliosidosis. The immunohistochemical and immunofluorescent techniques developed in this study clearly demonstrated the accumulated material to be either GM1 or GM2 ganglioside. Conclusions Immunohistochemical and immunofluorescent techniques using stored paraffin-embedded brain specimens are useful for the retrospective diagnosis of GM1 and GM2 gangliosidoses in dogs and cats.
Collapse
Affiliation(s)
- Moeko Kohyama
- Laboratory of Clinical Pathology, Department of Veterinary Medicine, Joint Faculty of Veterinary Medicine, Kagoshima University, 1-21-24 Kohrimoto, Kagoshima-shi, Kagoshima, 890-0065, Japan
| | - Akira Yabuki
- Laboratory of Clinical Pathology, Department of Veterinary Medicine, Joint Faculty of Veterinary Medicine, Kagoshima University, 1-21-24 Kohrimoto, Kagoshima-shi, Kagoshima, 890-0065, Japan
| | - Kenji Ochiai
- Laboratory of Veterinary Pathology, Department of Veterinary Medicine, Faculty of Agriculture, Iwate University, 3-18-8 Ueda, Morioka-shi, Iwate, 020-8550, Japan
| | - Yuya Nakamoto
- Kyoto Animal Referral Medical Center, 208-4 Shin-arami, Tai, Kumiyama-cho, Kuse-gun, Kyoto, 613-0036, Japan
| | - Kazuyuki Uchida
- Laboratory of Veterinary Pathology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyou-ku, Tokyo, 113-8657, Japan
| | - Daisuke Hasegawa
- Department of Veterinary Radiology, Nippon Veterinary and Life Science University, 1-7-1 Kyouman-chou, Musashino-shi, Tokyo, 180-8602, Japan
| | - Kimimasa Takahashi
- Department of Veterinary Pathology, Nippon Veterinary and Life Science University, 1-7-1 Kyouman-chou, Musashino-shi, Tokyo, 180-8602, Japan
| | - Hiroaki Kawaguchi
- Laboratory of Veterinary Histopathology, Department of Veterinary Medicine, Joint Faculty of Veterinary Medicine, Kagoshima University, 1-21-24 Kohrimoto, Kagoshima-shi, Kagoshima, 890-0065, Japan
| | - Masaya Tsuboi
- Laboratory of Veterinary Pathology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyou-ku, Tokyo, 113-8657, Japan
| | - Osamu Yamato
- Laboratory of Clinical Pathology, Department of Veterinary Medicine, Joint Faculty of Veterinary Medicine, Kagoshima University, 1-21-24 Kohrimoto, Kagoshima-shi, Kagoshima, 890-0065, Japan.
| |
Collapse
|
8
|
Herder V, Kummrow M, Leeb T, Sewell AC, Hansmann F, Lehmbecker A, Wohlsein P, Baumgärtner W. Polycystic kidneys and GM2 gangliosidosis-like disease in neonatal springboks (Antidorcas marsupialis). Vet Pathol 2014; 52:543-52. [PMID: 25232033 DOI: 10.1177/0300985814549210] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Clinical, gross, histopathologic, electron microscopic findings and enzymatic analysis of 4 captive, juvenile springboks (Antidorcas marsupialis) showing both polycystic kidneys and a storage disease are described. Springbok offspring (4 of 34; 12%) were affected by either one or both disorders in a German zoo within a period of 5 years (2008-2013). Macroscopic findings included bilaterally severely enlarged kidneys displaying numerous cysts in 4 animals and superior brachygnathism in 2 animals. Histopathologically, kidneys of 4 animals displayed cystic dilation of the renal tubules. In addition, abundant cytoplasmic vacuoles with a diameter ranging from 2 to 10 μm in neurons of the central and peripheral nervous system, hepatocytes, thyroid follicular epithelial cells, pancreatic islets of Langerhans and renal tubular cells were found in 2 springbok neonates indicative of an additional storage disease. Ultrastructurally, round electron-lucent vacuoles, up to 4 μm in diameter, were present in neurons. Enzymatic analysis of liver and kidney tissue of 1 affected springbok revealed a reduced activity of total hexosaminidase (Hex) with relatively increased HexA activity at the same level of total Hex, suggesting a hexosaminidase defect. Pedigree analysis suggested a monogenic autosomal recessive inheritance for both diseases. In summary, related springboks showed 2 different changes resembling both polycystic kidney and a GM2 gangliosidosis similar to the human Sandhoff disease. Whether the simultaneous occurrence of these 2 entities represents an incidental finding or has a genetic link needs to be investigated in future studies.
Collapse
Affiliation(s)
- V Herder
- Department of Pathology, University of Veterinary Medicine Hannover, Hannover, Germany Center for Systems Neuroscience, Hannover, Germany
| | - M Kummrow
- Erlebnis-Zoo Hannover, Hannover, Germany
| | - T Leeb
- Vetsuisse Faculty, Institute of Genetics, University of Bern, Bern, Switzerland
| | - A C Sewell
- Department of Pediatrics, University Hospital Frankfurt, Frankfurt, Germany
| | - F Hansmann
- Department of Pathology, University of Veterinary Medicine Hannover, Hannover, Germany Center for Systems Neuroscience, Hannover, Germany
| | - A Lehmbecker
- Department of Pathology, University of Veterinary Medicine Hannover, Hannover, Germany Center for Systems Neuroscience, Hannover, Germany
| | - P Wohlsein
- Department of Pathology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - W Baumgärtner
- Department of Pathology, University of Veterinary Medicine Hannover, Hannover, Germany Center for Systems Neuroscience, Hannover, Germany
| |
Collapse
|
9
|
Zigdon H, Meshcheriakova A, Futerman AH. From sheep to mice to cells: Tools for the study of the sphingolipidoses. Biochim Biophys Acta Mol Cell Biol Lipids 2014; 1841:1189-99. [DOI: 10.1016/j.bbalip.2014.02.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2014] [Revised: 02/24/2014] [Accepted: 02/25/2014] [Indexed: 12/12/2022]
|
10
|
GM2 Gangliosidosis in British Jacob Sheep. J Comp Pathol 2014; 150:253-7. [DOI: 10.1016/j.jcpa.2013.10.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Revised: 09/02/2013] [Accepted: 10/14/2013] [Indexed: 11/20/2022]
|
11
|
Rosenberg R, Halimi E, Mention-Mulliez K, Cuisset JM, Holder M, Defoort-Dhellemmes S. Five year follow-up of two sisters with type II sialidosis: systemic and ophthalmic findings including OCT analysis. J Pediatr Ophthalmol Strabismus 2013; 50 Online:e33-6. [PMID: 23819954 DOI: 10.3928/01913913-20130625-02] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Accepted: 05/02/2013] [Indexed: 11/20/2022]
Abstract
The authors report a 5-year follow-up examination of two sisters diagnosed as having a juvenile form of type II sialidosis. Diagnosis occurred during a routine ophthalmic examination when the girls were 5 and 3 years old after bilateral macular cherry-red spots were revealed. Main clinical findings were hypotonia, hepatosplenomegaly, hearing loss, dysostosis, and respiratory distress. Ophthalmic symptoms were low visual acuity and nystagmus. Spectral-domain optical coherence tomography examination showed increased reflectivity of the retinal ganglion cells. Sialidosis may present as a mild form with slow progression. The cherry-red spots may be the first clue for proper diagnosis of storage disease. Spectral-domain optical coherence tomography examination unveiled the accumulation of sialic acid in the retinal ganglion cells and could potentially be used to monitor the progression of storage diseases.
Collapse
Affiliation(s)
- Rémi Rosenberg
- Service d’Exploration Fonctionnelle de la Vision et Neuro Ophtalmologie, Hopital Roger Salengro, Lille, France.
| | | | | | | | | | | |
Collapse
|
12
|
Sanders DN, Zeng R, Wenger DA, Johnson GS, Johnson GC, Decker JE, Katz ML, Platt SR, O'Brien DP. GM2 gangliosidosis associated with a HEXA missense mutation in Japanese Chin dogs: a potential model for Tay Sachs disease. Mol Genet Metab 2013; 108:70-5. [PMID: 23266199 DOI: 10.1016/j.ymgme.2012.11.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Accepted: 11/17/2012] [Indexed: 12/25/2022]
Abstract
GM2 gangliosidosis is a fatal lysosomal storage disease caused by a deficiency of β-hexosaminidase (EC 3.2.1.52). There are two major isoforms of the enzyme: hexosaminidase A composed of an α and a β subunit (encoded by HEXA and HEXB genes, respectively); and, hexosaminidase B composed of two β subunits. Hexosaminidase A requires an activator protein encoded by GM2A to catabolize GM2 ganglioside, but even in the absence of the activator protein, it can hydrolyze the synthetic substrates commonly used to assess enzyme activity. GM2 gangliosidosis has been reported in Japanese Chin dogs, and we identified the disease in two related Japanese Chin dogs based on clinical signs, histopathology and elevated brain GM2 gangliosides. As in previous reports, we found normal or elevated hexosaminidase activity when measured with the synthetic substrates. This suggested that the canine disease is analogous to human AB variant of G(M2) gangliosidosis, which results from mutations in GM2A. However, only common neutral single nucleotide polymorphisms were found upon sequence analysis of the canine ortholog of GM2A from the affected Japanese Chins. When the same DNA samples were used to sequence HEXA, we identified a homozygous HEXA:c967G>A transition which predicts a p.E323K substitution. The glutamyl moiety at 323 is known to make an essential contribution to the active site of hexosaminidase A, and none of the 128 normal Japanese Chins and 92 normal dogs of other breeds that we tested was homozygous for HEXA:c967A. Thus it appears that the HEXA:c967G>A transition is responsible for the GM2 gangliosidosis in Japanese Chins.
Collapse
Affiliation(s)
- Douglas N Sanders
- Mason Eye Institute, University of Missouri School of Medicine, Columbia, MO 65211, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Rickmeyer T, Schöniger S, Petermann A, Harzer K, Kustermann-Kuhn B, Fuhrmann H, Schoon HA. GM2 gangliosidosis in an adult pet rabbit. J Comp Pathol 2012; 148:243-7. [PMID: 22878054 DOI: 10.1016/j.jcpa.2012.06.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Revised: 05/30/2012] [Accepted: 06/20/2012] [Indexed: 11/19/2022]
Abstract
A 1.5-year-old neutered male rabbit was presented with chronic nasal discharge and ataxia. Rapid progression of neurological signs was noted subsequent to general anaesthesia and the rabbit was humanely destroyed due to the poor prognosis. At necropsy examination there were no gross changes affecting the brain or spinal cord. Microscopical examination revealed that the perikarya of numerous neurons in the brain and spinal cord were distended by the intracytoplasmic accumulation of pale, finely granular to vacuolar material. Transmission electron microscopy showed this to be composed of concentric membranous cytoplasmic bodies. Thin layer chromatography revealed elevation of GM2 ganglioside in the brain of this rabbit compared with that of an unaffected control rabbit. Enzymatically, there was markedly reduced activity of tissue β-hexosaminidase A in brain and liver tissue from the rabbit. This was a result of an almost complete absence of the enzymatic activity of the α-subunit of that enzyme. These findings are consistent with sphingolipidosis comparable with human GM2 gangliosidosis variant B1.
Collapse
Affiliation(s)
- T Rickmeyer
- Institute of Pathology, Faculty of Veterinary Medicine, University of Leipzig, An den Tierkliniken 33, Leipzig, Germany.
| | | | | | | | | | | | | |
Collapse
|
14
|
Rahman MM, Chang HS, Mizukami K, Hossain MA, Yabuki A, Tamura S, Kitagawa M, Mitani S, Higo T, Uddin MM, Uchida K, Yamato O. A frameshift mutation in the canine HEXB gene in toy poodles with GM2 gangliosidosis variant 0 (Sandhoff disease). Vet J 2012; 194:412-6. [PMID: 22766310 DOI: 10.1016/j.tvjl.2012.05.021] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2011] [Revised: 05/16/2012] [Accepted: 05/22/2012] [Indexed: 12/25/2022]
Abstract
GM2 gangliosidosis variant 0 (Sandhoff disease, SD) is a fatal, progressive neurodegenerative lysosomal storage disease caused by mutations in the HEXB gene. Toy poodles recently were reported as the second breed of dog with SD. The present paper describes the molecular defect of this canine SD as the first identification of a pathogenic mutation in the canine HEXB gene. Genomic and complementary DNA sequences covering exonic regions of the canine HEXB gene, except exon 1, were analysed using DNA and RNA in an affected dog. A homozygous single base pair deletion of guanine in exon 3 was identified at nucleotide position 283 of the putative open reading frame (c.283delG). This mutation has the potential to cause a frameshift resulting in the alteration of valine at amino acid position 59 to a stop codon (p.V59fsX). Genotyping using the mutagenically separated PCR method demonstrated a correlation between phenotype and genotype in dogs with a pedigree related to the disease and that the mutation was rare in a randomly-selected population of toy poodles. These results strongly suggest that the deletion is pathogenic.
Collapse
Affiliation(s)
- Mohammad M Rahman
- Laboratory of Clinical Pathology, Department of Veterinary Medicine, Kagoshima University, 1-21-24 Kohrimoto, Kagoshima 890-0065, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Porter BF, Lewis BC, Edwards JF, Alroy J, Zeng BJ, Torres PA, Bretzlaff KN, Kolodny EH. Pathology of GM2 gangliosidosis in Jacob sheep. Vet Pathol 2010; 48:807-13. [PMID: 21123862 DOI: 10.1177/0300985810388522] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The G(M2) gangliosidoses are a group of lysosomal storage diseases caused by defects in the genes coding for the enzyme hexosaminidase or the G(M2) activator protein. Four Jacob sheep from the same farm were examined over a 3-year period for a progressive neurologic disease. Two lambs were 6-month-old intact males and 2 were 8-month-old females. Clinical findings included ataxia in all 4 limbs, proprioceptive deficits, and cortical blindness. At necropsy, the nervous system appeared grossly normal. Histologically, most neurons within the brain, spinal cord, and peripheral ganglia were enlarged, and the cytoplasm was distended by foamy to granular material that stained positively with Luxol fast blue and Sudan black B stains. Other neuropathologic findings included widespread astrocytosis, microgliosis, and scattered spheroids. Electron microscopy revealed membranous cytoplasmic bodies within the cytoplasm of neurons. Biochemical and molecular genetic studies confirmed the diagnosis of G(M2) gangliosidosis. This form of G(M2) gangliosidosis in Jacob sheep is very similar to human Tay-Sachs disease and is potentially a useful animal model.
Collapse
Affiliation(s)
- B F Porter
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843-4467, USA.
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Torres PA, Zeng BJ, Porter BF, Alroy J, Horak F, Horak J, Kolodny EH. Tay-Sachs disease in Jacob sheep. Mol Genet Metab 2010; 101:357-63. [PMID: 20817517 DOI: 10.1016/j.ymgme.2010.08.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2010] [Revised: 08/03/2010] [Accepted: 08/03/2010] [Indexed: 10/19/2022]
Abstract
Autopsy studies of four Jacob sheep dying within their first 6-8 months of a progressive neurodegenerative disorder suggested the presence of a neuronal storage disease. Lysosomal enzyme studies of brain and liver from an affected animal revealed diminished activity of hexosaminidase A (Hex A) measured with an artificial substrate specific for this component of β-hexosaminidase. Absence of Hex A activity was confirmed by cellulose acetate electrophoresis. Brain lipid analyses demonstrated the presence of increased concentrations of G(M2)-ganglioside and asialo-G(M2)-ganglioside. The hexa cDNA of Jacob sheep was cloned and sequenced revealing an identical number of nucleotides and exons as in human HexA and 86% homology in nucleotide sequence. A missense mutation was found in the hexa cDNA of the affected sheep caused by a single nucleotide change at the end of exon 11 resulting in skipping of exon 11. Transfection of normal sheep hexa cDNA into COS1 cells and human Hex A-deficient cells led to expression of Hex S but no increase in Hex A indicating absence of cross-species dimerization of sheep Hex α-subunit with human Hex β-subunits. Using restriction site analysis, the heterozygote frequency of this mutation in Jacob sheep was determined in three geographically separate flocks to average 14%. This large naturally occurring animal model of Tay-Sachs disease is the first to offer promise as a means for trials of gene therapy applicable to human infants.
Collapse
Affiliation(s)
- Paola A Torres
- Department of Neurology, New York University School of Medicine, NY, USA
| | | | | | | | | | | | | |
Collapse
|
17
|
Tamura S, Tamura Y, Uchida K, Nibe K, Nakaichi M, Hossain MA, Chang HS, Rahman MM, Yabuki A, Yamato O. GM2 gangliosidosis variant 0 (Sandhoff-like disease) in a family of toy poodles. J Vet Intern Med 2010; 24:1013-9. [PMID: 20695991 DOI: 10.1111/j.1939-1676.2010.0564.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND GM2 gangliosidosis variant 0 (human Sandhoff disease) is a lysosomal storage disorder caused by deficiencies of acid β-hexosaminidase (Hex) A and Hex B because of an abnormality of the β-subunit, a common component in these enzyme molecules, which is coded by the HEXB gene. OBJECTIVE To describe the clinical, pathological, biochemical, and magnetic resonance imaging (MRI) findings of Sandhoff-like disease identified in a family of Toy Poodles. ANIMALS Three red-haired Toy Poodles demonstrated clinical signs including motor disorders and tremor starting between 9 and 12 months of age. The animals finally died of neurological deterioration between 18 and 23 months of age. There were some lymphocytes with abnormal cytoplasmic vacuoles detected. METHODS Observational case study. RESULTS The common MRI finding was diffuse T2-hyperintensity of the subcortical white matter in the cerebrum. Bilateral T2-hyperintensity and T1-hypointensity in the nucleus caudatus, and atrophic findings of the cerebrum and cerebellum, were observed in a dog in the late stage. Histopathologically, swollen neurons with pale to eosinophilic granular materials in the cytoplasm were observed throughout the central nervous system. Biochemically, GM2 ganglioside had accumulated in the brain, and Hex A and Hex B were deficient in the brain and liver. Pedigree analysis demonstrated that the 3 affected dogs were from the same family line. CONCLUSIONS AND CLINICAL IMPORTANCE The Sandhoff-like disease observed in this family of Toy Poodles is the 2nd occurrence of the canine form of this disease and the 1st report of its identification in a family of dogs.
Collapse
Affiliation(s)
- S Tamura
- Tamura Animal Clinic, Hiroshima, Japan Laboratory of Veterinary Pathology, Graduate School of Agriculture and Life Sciences, University of Tokyo, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Lysosomal Storage Disease in Two Presumed-Related Springboks (Antidorcas marsupialis). J Zoo Wildl Med 2010; 41:104-10. [DOI: 10.1638/2009-0119.1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
19
|
Yamato O, Hayashi D, Satoh H, Shoda T, Uchida K, Nakayama H, Sakai H, Masegi T, Murai A, Iida T, Hisada H, Hisada A, Yamasaki M, Maede Y, Arai T. Retrospective diagnosis of feline GM2 gangliosidosis variant 0 (Sandhoff-like disease) in Japan: possible spread of the mutant allele in the Japanese domestic cat population. J Vet Med Sci 2008; 70:813-8. [PMID: 18772556 DOI: 10.1292/jvms.70.813] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
GM2 gangliosidosis variant 0 (human Sandhoff disease) is a lysosomal storage disease caused by simultaneous deficiencies of acid beta-hexosaminidase (Hex) A and Hex B due to an abnormality of beta-subunit, a common component in these enzyme molecules, which is coded by the HEXB gene. In the present study, a retrospective diagnosis was performed in 2 previous suspected cases of feline Sandhoff-like disease using a DNA test to detect the causative mutation identified previously in 4 cats in 2 other families of Japanese domestic cats. Enzymic analysis was also performed using stored leukocytes and plasma collected from the subject families in order to investigate the usefulness of enzymic diagnosis and genotyping of carriers. The DNA test suggested that the 2 cases were homozygous recessive for the mutation. Consequently, 6 cats homozygous for the same mutation have been found in 4 separate locations of Japan, suggesting that this mutant allele may be spread widely in the Japanese domestic cat populations. In enzymic analysis, Hex A and Hex B activities in leukocytes and plasma measured using 4-methylumbelliferyl N-acetyl-beta-D-glucosaminide as a substrate were negligible in affected cats, compared with those in normal and carrier cats. However, there was a wide overlap in enzyme activity between normal and carrier cats. Therefore, it was concluded that enzymic analysis is useful for diagnosis of affected cats, but is not acceptable for genotyping of carriers.
Collapse
Affiliation(s)
- Osamu Yamato
- Laboratory of Clinical Pathology, Department of Veterinary Clinical Sciences, Faculty of Agriculture, Kagoshima University, Kagoshima, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Zeng BJ, Torres PA, Viner TC, Wang ZH, Raghavan SS, Alroy J, Pastores GM, Kolodny EH. Spontaneous appearance of Tay-Sachs disease in an animal model. Mol Genet Metab 2008; 95:59-65. [PMID: 18693054 DOI: 10.1016/j.ymgme.2008.06.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2008] [Revised: 06/13/2008] [Accepted: 06/13/2008] [Indexed: 10/21/2022]
Abstract
Tay-Sachs disease (TSD) is a progressive neurodegenerative disorder due to an autosomal recessively inherited deficiency of beta-hexosaminidase A (Hex A). Deficiency of Hex A in TSD is caused by a defect of the alpha-subunit resulting from mutations of the HEXA gene. To date, there is no effective treatment for TSD. Animal models of genetic diseases, similar to those known to exist in humans, are valuable and essential research tools for the study of potentially effective therapies. However, there is no ideal animal model of TSD available for use in therapeutic trials. In the present study, we report an animal model (American flamingo; Phoenicopterus ruber) of TSD with Hex A deficiency occurring spontaneously in nature, with accumulation of G(M2)-ganglioside, deficiency of Hex A enzymatic activity, and a homozygous P469L mutation in exon 12 of the hexa gene. In addition, we have isolated the full-length cDNA sequence of the flamingo, which consists of 1581 nucleotides encoding a protein of 527 amino acids. Its coding sequence indicates approximately 71% identity at the nucleotide level and about 72.5% identity at the amino acid level with the encoding region of the human HEXA gene. This animal model, with many of the same features as TSD in humans, could represent a valuable resource for investigating therapy of TSD.
Collapse
Affiliation(s)
- B J Zeng
- Department of Neurology, New York University School of Medicine, New York, NY 10016, USA
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Hasegawa D, Yamato O, Kobayashi M, Fujita M, Nakamura S, Takahashi K, Satoh H, Shoda T, Hayashi D, Yamasaki M, Maede Y, Arai T, Orima H. Clinical and molecular analysis of GM2 gangliosidosis in two apparent littermate kittens of the Japanese domestic cat. J Feline Med Surg 2007; 9:232-7. [PMID: 17198760 PMCID: PMC10822618 DOI: 10.1016/j.jfms.2006.11.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/08/2006] [Indexed: 11/28/2022]
Abstract
This case report documents clinical and molecular findings in two littermate kittens of the Japanese domestic cat with GM2 gangliosidosis variant 0. Analysis included detailed physical, magnetic resonance imaging, biochemical, pathological and genetic examinations. At first, these littermate kittens showed typical cerebellar signs at approximately 2 months of age. About 2 months later, they progressively showed other neurological signs and subsequently died at about 7 months of age. Magnetic resonance imaging just before the death showed an enlarged ventricular system, T1 hyperintensity in the internal capsule, and T2 hyperintensity in the white matter of the whole brain. Histological findings suggested a type of lysosomal storage disease. Biochemical studies demonstrated that the kittens were affected with GM2 gangliosidosis variant 0, and a DNA assay finally demonstrated that these animals were homozygous for the mutation, which the authors had identified in a different family of the Japanese domestic cat. The findings in the present cases provide useful information about GM2 gangliosidosis variant 0 in Japanese domestic cats.
Collapse
Affiliation(s)
- Daisuke Hasegawa
- School of Veterinary Medicine, Nippon Veterinary and Life Science University, 1-7-1 Kyounan-chou, Musashino-shi, Tokyo 180-8602, Japan
| | - Osamu Yamato
- Laboratory of Clinical Pathology, Department of Veterinary Clinical Sciences, Faculty of Agriculture, Kagoshima University, 1-21-24 Kohrimoto, Kagoshima 890-0065, Japan
| | - Masanori Kobayashi
- School of Veterinary Medicine, Nippon Veterinary and Life Science University, 1-7-1 Kyounan-chou, Musashino-shi, Tokyo 180-8602, Japan
| | - Michio Fujita
- School of Veterinary Medicine, Nippon Veterinary and Life Science University, 1-7-1 Kyounan-chou, Musashino-shi, Tokyo 180-8602, Japan
| | - Shinichiro Nakamura
- School of Veterinary Medicine, Nippon Veterinary and Life Science University, 1-7-1 Kyounan-chou, Musashino-shi, Tokyo 180-8602, Japan
| | - Kimimasa Takahashi
- School of Veterinary Medicine, Nippon Veterinary and Life Science University, 1-7-1 Kyounan-chou, Musashino-shi, Tokyo 180-8602, Japan
| | - Hiroyuki Satoh
- Laboratory of Internal Medicine, Department of Veterinary Clinical Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Kita-18 Nishi-9, Kita-ku, Sapporo 060-0818, Japan
| | - Toru Shoda
- Laboratory of Internal Medicine, Department of Veterinary Clinical Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Kita-18 Nishi-9, Kita-ku, Sapporo 060-0818, Japan
| | - Daisuke Hayashi
- Laboratory of Internal Medicine, Department of Veterinary Clinical Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Kita-18 Nishi-9, Kita-ku, Sapporo 060-0818, Japan
| | - Masahiro Yamasaki
- Laboratory of Internal Medicine, Department of Veterinary Clinical Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Kita-18 Nishi-9, Kita-ku, Sapporo 060-0818, Japan
| | - Yoshimitsu Maede
- Laboratory of Internal Medicine, Department of Veterinary Clinical Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Kita-18 Nishi-9, Kita-ku, Sapporo 060-0818, Japan
| | - Toshiro Arai
- School of Veterinary Medicine, Nippon Veterinary and Life Science University, 1-7-1 Kyounan-chou, Musashino-shi, Tokyo 180-8602, Japan
| | - Hiromitsu Orima
- School of Veterinary Medicine, Nippon Veterinary and Life Science University, 1-7-1 Kyounan-chou, Musashino-shi, Tokyo 180-8602, Japan
| |
Collapse
|
22
|
Kanae Y, Endoh D, Yamato O, Hayashi D, Matsunaga S, Ogawa H, Maede Y, Hayashi M. Nonsense mutation of feline β-hexosaminidase β-subunit (HEXB) gene causing Sandhoff disease in a family of Japanese domestic cats. Res Vet Sci 2007; 82:54-60. [PMID: 16872651 DOI: 10.1016/j.rvsc.2006.05.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2006] [Revised: 05/02/2006] [Accepted: 05/20/2006] [Indexed: 11/21/2022]
Abstract
G(M2) gangliosidoses are inherited metabolic disorders and are caused by severely reduced enzymatic activity of lysosomal beta-hexosaminidase. In the present study, the open reading frame (ORF) of the HEXB gene in a family of Japanese domestic cats with G(M2) gangliosidosis variant 0 (Sandhoff disease) was determined. Two types of abnormal cDNA clones were obtained from the liver of an affected cat tissue. One showed a single nucleotide substitution from C to T at nucleotide position 667 of the HEXB ORF. In the deduced amino acid sequence, the codon of arginine was altered to a stop codon. The genotyping, using PCR-primer introduced restriction analysis confirmed that Sandhoff disease in this family is associated with this nonsense mutation. Discovery of the nonsense mutation will permit the confirmation of the clinical diagnosis of Sandhoff disease in conjugation with the already established enzyme-based test.
Collapse
Affiliation(s)
- Y Kanae
- Department of Veterinary Radiology, School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu 069-8501, Japan
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Maegawa GHB, Stockley T, Tropak M, Banwell B, Blaser S, Kok F, Giugliani R, Mahuran D, Clarke JTR. The natural history of juvenile or subacute GM2 gangliosidosis: 21 new cases and literature review of 134 previously reported. Pediatrics 2006; 118:e1550-62. [PMID: 17015493 PMCID: PMC2910078 DOI: 10.1542/peds.2006-0588] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
OBJECTIVE Juvenile GM2 gangliosidosis is a group of inherited neurodegenerative diseases caused by deficiency of lysosomal beta-hexosaminidase resulting in GM2 ganglioside accumulation in brain. The purpose of this study was to delineate the natural history of the condition and identify genotype-phenotype correlations that might be helpful in predicting the course of the disease in individual patients. METHODS A cohort of 21 patients with juvenile GM2 gangliosidosis, 15 with the Tay-Sachs variant and 6 with the Sandhoff variant, was studied prospectively in 2 centers. Our experience was compared with previously published reports on 134 patients. Information about clinical features, beta-hexosaminidase enzyme activity, and mutation analysis was collected. RESULTS In our cohort of patients, the mean (+/-SD) age of onset of symptoms was 5.3 +/- 4.1 years, with a mean follow-up time of 8.4 years. The most common symptoms at onset were gait disturbances (66.7%), incoordination (52.4%), speech problems (28.6%), and developmental delay (28.6%). The age of onset of gait disturbances was 7.1 +/- 5.6 years. The mean time for progression to becoming wheelchair-bound was 6.2 +/- 5.5 years. The mean age of onset of speech problems was 7.0 +/- 5.6 years, with a mean time of progression to anarthria of 5.6 +/- 5.3 years. Muscle wasting (10.6 +/- 7.4 years), proximal weakness (11.1 +/- 7.7 years), and incontinence of sphincters (14.6 +/- 9.7 years) appeared later in the course of the disease. Psychiatric disturbances and neuropathy were more prevalent in patients with the Sandhoff variant than in those with the Tay-Sachs variant. However, dysphagia, sphincter incontinence, and sleep problems occurred earlier in those with the Tay-Sachs variant. Cerebellar atrophy was the most common finding on brain MRI (52.9%). The median survival time among the studied and reviewed patients was 14.5 years. The genotype-phenotype correlation revealed that in patients with the Tay-Sachs variant, the presence of R178H and R499H mutations was predictive of an early onset and rapidly progressive course. The presence of either G269S or W474C mutations was associated with a later onset of symptoms along with a more slowly progressive disease course. CONCLUSIONS Juvenile GM2 gangliosidosis is clinically heterogeneous, not only in terms of age of onset and clinical features but also with regard to the course of the disease. In general, the earlier the onset of symptoms, the more rapidly the disease progresses. The Tay-Sachs and Sandhoff variants differed somewhat in the frequency of specific clinical characteristics. Speech deterioration progressed more rapidly than gait abnormalities in both the Tay-Sachs variant and Sandhoff variant groups. Among patients with the Tay-Sachs variant, the HEXA genotype showed a significant correlation with the clinical course.
Collapse
Affiliation(s)
- Gustavo H. B. Maegawa
- Division of Clinical and Metabolic Genetics, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
- Research Institute, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
- Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Tracy Stockley
- Department of Paediatrics, Paediatric Laboratory Medicine, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Michael Tropak
- Research Institute, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Brenda Banwell
- Division of Neurology, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Susan Blaser
- Department of Paediatrics, Diagnostic Imaging, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Fernando Kok
- Centro do Genoma Humano, University of Sao Paulo, Sao Paulo, Brazil
| | - Roberto Giugliani
- Medical Genetics Service, Hospital de Clinicas de Porto Alegre, Porto Alegre, Brazil
| | - Don Mahuran
- Research Institute, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Joe T. R. Clarke
- Division of Clinical and Metabolic Genetics, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
- Research Institute, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
24
|
Cachón-González MB, Wang SZ, Lynch A, Ziegler R, Cheng SH, Cox TM. Effective gene therapy in an authentic model of Tay-Sachs-related diseases. Proc Natl Acad Sci U S A 2006; 103:10373-10378. [PMID: 16801539 PMCID: PMC1482797 DOI: 10.1073/pnas.0603765103] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Tay-Sachs disease is a prototypic neurodegenerative disease. Lysosomal storage of GM2 ganglioside in Tay-Sachs and the related disorder, Sandhoff disease, is caused by deficiency of beta-hexosaminidase A, a heterodimeric protein. Tay-Sachs-related diseases (GM2 gangliosidoses) are incurable, but gene therapy has the potential for widespread correction of the underlying lysosomal defect by means of the secretion-recapture cellular pathway for enzymatic complementation. Sandhoff mice, lacking the beta-subunit of hexosaminidase, manifest many signs of classical human Tay-Sachs disease and, with an acute course, die before 20 weeks of age. We treated Sandhoff mice by stereotaxic intracranial inoculation of recombinant adeno-associated viral vectors encoding the complementing human beta-hexosaminidase alpha and beta subunit genes and elements, including an HIV tat sequence, to enhance protein expression and distribution. Animals survived for >1 year with sustained, widespread, and abundant enzyme delivery in the nervous system. Onset of the disease was delayed with preservation of motor function; inflammation and GM2 ganglioside storage in the brain and spinal cord was reduced. Gene delivery of beta-hexosaminidase A by using adeno-associated viral vectors has realistic potential for treating the human Tay-Sachs-related diseases.
Collapse
Affiliation(s)
- M Begoña Cachón-González
- *Department of Medicine, University of Cambridge, Level 5, Box 157, Addenbrooke's Hospital, Hills Road, Cambridge CB2 2QQ, United Kingdom
| | - Susan Z Wang
- *Department of Medicine, University of Cambridge, Level 5, Box 157, Addenbrooke's Hospital, Hills Road, Cambridge CB2 2QQ, United Kingdom
| | - Andrew Lynch
- Centre for Applied Medical Statistics, Department of Public Health and Primary Care, University Forvie Site, Robinson Way, Cambridge CB2 2SR, United Kingdom; and
| | - Robin Ziegler
- Genzyme Corporation, 31 New York Avenue, Framingham, MA 01701-9322
| | - Seng H Cheng
- Genzyme Corporation, 31 New York Avenue, Framingham, MA 01701-9322
| | - Timothy M Cox
- *Department of Medicine, University of Cambridge, Level 5, Box 157, Addenbrooke's Hospital, Hills Road, Cambridge CB2 2QQ, United Kingdom;
| |
Collapse
|
25
|
Fornai F, Gesi M, Lenzi P, Ferrucci M, Pellegrini A, Ruggieri S, Casini A, Paparelli A. Striatal postsynaptic ultrastructural alterations following methylenedioxymethamphetamine administration. Ann N Y Acad Sci 2002; 965:381-98. [PMID: 12105114 DOI: 10.1111/j.1749-6632.2002.tb04180.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Amphetamine derivatives, such as methamphetamine (METH) and 3,4-methylenedioxymethamphetamine (MDMA), act as monoaminergic neurotoxins in the central nervous system. Although there are slight differences in their mechanism of action, these compounds share a final common pathway, which involves dopamine release and oxidative stress. Apart from striatal toxicity involving monoamine axons, no previous report evidenced any alteration at the striatal level concerning postsynaptic sites. Given the potential toxicity for extracellular dopamine at the striatal level, and the hypothesis for neurotoxic effects of dopamine on striatal medium-sized neurons in Huntington's disease, we evaluated at an ultrastructural level the effects of MDMA on intrinsic striatal neurons of the mouse. In this study, administering MDMA, we noted ultrastructural alterations of striatal postsynaptic GABAergic cells consisting of neuronal inclusions shaped as whorls of concentric membranes. These whorls stained for ubiquitin but not for synuclein and represent the first morphologic correlate of striatal postsynaptic effects induced by MDMA.
Collapse
Affiliation(s)
- F Fornai
- Department of Human Morphology and Applied Biology, University of Pisa, Pisa, Italy.
| | | | | | | | | | | | | | | |
Collapse
|