1
|
Sugimori A, Omori I, Iwasawa O, Saito H, Nakajima H, Matsuno A, Sato S, Sumida H. Association of serum Ly6/PLAUR domain-containing protein 1 levels with skin sclerosis in systemic sclerosis. Sci Rep 2024; 14:5572. [PMID: 38448661 PMCID: PMC10918060 DOI: 10.1038/s41598-024-56221-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 03/04/2024] [Indexed: 03/08/2024] Open
Abstract
Systemic sclerosis (SSc) is a connective tissue disease characterized by aberrant immune activation, vascular injury, and fibrosis of the skin and internal organs. Ly6/PLAUR domain-containing protein 1 (LYPD1) was reported to be secreted and to have various physiological functions such as anti-angiogenic effects. Here we investigated serum LYPD1 levels in SSc patients and the association of serum LYPD1 levels with clinical features of SSc. Serum samples were obtained from 75 SSc patients and 22 healthy individuals as controls. We measured serum LYPD1 levels using enzyme-linked immunosorbent assay kits. Then, the relationship between serum LYPD1 levels and clinical features of SSc was analyzed. Serum LYPD1 levels in diffuse cutaneous SSc (dcSSc) patients were significantly higher than those in the limited cutaneous SSc (lcSSc) patients (median [25-75th percentiles], 1693.43 [1086.61-1917.57] vs. 904.55 [714.356-1285.56] pg/mL), while there were no significant differences in the serum LYPD1 levels between lcSSc and healthy controls (904.55 [714.356-1285.56] vs. 750.71 pg/mL [544.00-912.14]). Further analysis revealed that serum LYPD1 levels in patients correlated with skin thickness scores and serum interleukin (IL)-6 levels, which were known to reflect the extent of skin thickening in SSc. Moreover, serum LYPD1 levels showed a decrease with improvement in skin thickness after treatment, along with a decrease in serum IL-6 levels. These results indicate that LYPD1 might be a potential marker for monitoring skin sclerosis and evaluating the efficacy of skin fibrosis treatment in SSc patients.
Collapse
Affiliation(s)
- Ayaka Sugimori
- Department of Dermatology, Graduate School of Medicine, Faculty of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Issei Omori
- Department of Dermatology, Graduate School of Medicine, Faculty of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Okuto Iwasawa
- Department of Dermatology, Graduate School of Medicine, Faculty of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Hinako Saito
- Department of Dermatology, Graduate School of Medicine, Faculty of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Hibari Nakajima
- Department of Dermatology, Graduate School of Medicine, Faculty of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Ai Matsuno
- Department of Dermatology, Graduate School of Medicine, Faculty of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Shinichi Sato
- Department of Dermatology, Graduate School of Medicine, Faculty of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Hayakazu Sumida
- Department of Dermatology, Graduate School of Medicine, Faculty of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan.
- Scleroderma Center, The University of Tokyo Hospital, Tokyo, Japan.
- SLE Center, The University of Tokyo Hospital, Tokyo, Japan.
| |
Collapse
|
2
|
Sahinoglu M, Sargin G, Yavasoglu I, Senturk T. The relationship between peripheral T follicular helper cells and disease severity in systemic sclerosis. Clin Exp Med 2024; 24:19. [PMID: 38280030 PMCID: PMC10822004 DOI: 10.1007/s10238-023-01286-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 11/04/2023] [Indexed: 01/29/2024]
Abstract
We aimed to investigate the association between follicular T helper cells (Tfh) and disease severity in systemic sclerosis (SSc), a chronic connective tissue disease characterized by progressive fibrosis. While Tfh cells have been extensively studied in other autoimmune diseases, their role in SSc remains poorly understood. A cohort of 50 SSc patients, diagnosed based on the ACR/EULAR 2013 classification criteria, was included in the study. Patient data, including demographic information, comorbidities, treatment history and organ involvement, were collected. Disease severity was assessed using the modified Rodnan skin score and Medsger disease severity index. Statistical analyses were performed, considering a p value of < 0.05 as statistically significant. 38% had SSc with limited skin involvement, while 62% had SSc with extensive skin involvement. However, there were no statistically significant differences observed in the levels of CD4+ CXCR5+ , CD4+ ICOS+ , CD4+ CD40L+ and CD4+ PD+ lymphocytes between the two groups. Notably, SSc patients with Raynaud's phenomenon, digital ulcer and lung involvement exhibited higher levels of CD4+ CXCR5+ lymphocytes compared to those without these manifestations. Furthermore, a significant positive correlation was observed between CD4+ CXCR5+ lymphocyte levels and the severity of lung disease according to the Medsger disease severity index. Based on these findings, we conclude that elevated levels of Tfh cells are associated with lung involvement in SSc and there is a significant correlation between Tfh cell levels and the severity of lung disease. These observations suggest a potential role for Tfh cells in the pathogenesis of lung involvement in SSc and may guide the development of targeted therapies for this aspect of the disease.
Collapse
Affiliation(s)
- Melek Sahinoglu
- Department of Internal Medicine, Aydin Adnan Menderes University, Aydin, Turkey
| | - Gokhan Sargin
- Department of Rheumatology, Aydin Adnan Menderes University, Aydin, Turkey.
| | - Irfan Yavasoglu
- Department of Hematology, Aydin Adnan Menderes University, Aydin, Turkey
| | - Taskin Senturk
- Department of Rheumatology, Aydin Adnan Menderes University, Aydin, Turkey
| |
Collapse
|
3
|
Ansari AW, Ahmad F, Raheed T, Jochebeth A, Mateo JMP, Abdulrahman N, Joy EF, Alam MA, Buddenkotte J, Hamoudi RA, Steinhoff M. Azithromycin downregulates ICOS (CD278) and OX40 (CD134) expression and mTOR activity of TCR-activated T cells to inhibit proliferation. Int Immunopharmacol 2023; 124:110831. [PMID: 37633240 DOI: 10.1016/j.intimp.2023.110831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/16/2023] [Accepted: 08/18/2023] [Indexed: 08/28/2023]
Abstract
The precise mechanism of macrolide antibiotic azithromycin (AZM) mediated CD4+ T cell suppression is not fully understood. Given the crucial role of co-stimulatory signaling in T-lymphocyte function, we tested in vitro effects of AZM on two of the most extensively investigated costimulatory molecules, ICOS and OX40 in context to CD4+ T cell proliferation. Using multi-color flow cytometry approach on TCR-activated healthy donor peripheral blood mononuclear cells, we observed a marked reduction in the frequencies and surface expression of ICOS and OX40 receptors following AZM treatment. Functionally, in contrast to ICOS- and OX40- CD3+ CD4+ T cells, AZM treated ICOS+ and OX40+ displayed profound reduction in cell proliferation. Furthermore, AZM treated T cells displaying reduced levels of ICOS and OX40 found to be associated with suppressed mTOR activity as detected by phosphorylation levels of S6 ribosomal protein. This study provides new insights on potential mechanism of AZM mediated inhibition of T cell proliferation by targeting costimulatory pathways.
Collapse
Affiliation(s)
- Abdul Wahid Ansari
- Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar.
| | - Fareed Ahmad
- Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Thesni Raheed
- Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Anh Jochebeth
- Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Jericha Miles Pamiloza Mateo
- Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Nabeel Abdulrahman
- Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Elizabeth Febu Joy
- Department of Dermatology and Venereology, Hamad Medical Corporation, Doha, Qatar
| | - Majid Ali Alam
- Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Joerg Buddenkotte
- Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Department of Dermatology and Venereology, Hamad Medical Corporation, Doha, Qatar
| | - Rifat Akram Hamoudi
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates; Division of Surgery and Interventional Science, University College London, London, United Kingdom
| | - Martin Steinhoff
- Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Department of Dermatology and Venereology, Hamad Medical Corporation, Doha, Qatar; Weill Cornell Medicine-Qatar, Doha, Qatar; Department of Medicine, Weill Cornell University, New York, NY, USA
| |
Collapse
|
4
|
Serum immune modulators associated with immune-related toxicities and efficacy of atezolizumab in patients with non-small cell lung cancer. J Cancer Res Clin Oncol 2022:10.1007/s00432-022-04193-w. [PMID: 35834011 DOI: 10.1007/s00432-022-04193-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 07/06/2022] [Indexed: 10/17/2022]
Abstract
PURPOSE Identifying patients at high risk of immune-related adverse events (irAEs) that impede the achievement of durable efficacy of programmed cell death 1 (PD-1)/programmed death ligand 1 (PD-L1) blockade therapy is important in improving their management. Identification of a novel predictive factor of therapeutic benefit is also important in improving patient selection for treatment with PD-1/PD-L1 inhibitors. Further determinants driving response and linking with irAEs are urgently required. METHODS To address these unmet needs in the field, we explored whether 27 soluble checkpoint proteins and immunomodulatory proteins in serum at the therapy baseline and after week 3 were associated with irAE onset and therapeutic efficacy using MILLIPLEX Human Immuno-Oncology Checkpoint Protein Panel assays in a prospective, multicenter cohort of 81 patients with non-small cell lung cancer (NSCLC) receiving atezolizumab monotherapy. RESULTS By competing-risks regression analysis, we identified that high levels of B cell-activating factor (BAFF) at baseline were a significant and strong risk factor of irAEs (hazard ratio, 5.61; 95% confidence interval, 2.43-12.96; P < 0.0001). We also identified that increased inducible T cell co-stimulator (ICOS) during the first therapeutic cycle was an independent factor associated with prolonged progression-free survival and overall survival. CONCLUSION These findings are in keeping with the reported mechanistic basis of these molecules and may provide potential guidance for clinical decision-making to improve patient care. Further validation studies are warranted. Trial registration UMIN000035616 (January 28, 2019).
Collapse
|
5
|
Kobayashi S, Nagafuchi Y, Shoda H, Fujio K. The Pathophysiological Roles of Regulatory T Cells in the Early Phase of Systemic Sclerosis. Front Immunol 2022; 13:900638. [PMID: 35686127 PMCID: PMC9172592 DOI: 10.3389/fimmu.2022.900638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 04/26/2022] [Indexed: 11/13/2022] Open
Abstract
Systemic sclerosis (SSc) is an autoimmune disease that is characterized by vascular damage and fibrosis. Both clinical manifestations and immunological disturbances are diverse according to the disease duration. Particularly, changes in immunological processes are prominent in the early phase of SSc. The orchestration of several subsets of immune cells promotes autoimmune responses and inflammation, and eventually stimulates pro-fibrotic processes. Many reports have indicated that CD4+ T cells play pivotal roles in pathogenesis in the early phase of SSc. In particular, the pathogenic roles of regulatory T (Treg) cells have been investigated. Although the results were controversial, recent reports suggested an increase of Treg cells in the early phase of SSc patients. Treg cells secrete transforming growth factor-β (TGF-β), which promotes myofibroblast activation and fibrosis. In addition, the dysfunction of Treg cells in the early phase of SSc was reported, which results in the development of autoimmunity and inflammation. Notably, Treg cells have the plasticity to convert to T-helper17 (Th17) cells under pro-inflammatory conditions. Th17 cells secrete IL-17A, which could also promote myofibroblast transformation and fibrosis and contributes to vasculopathy, although the issue is still controversial. Our recent transcriptomic comparison between the early and late phases of SSc revealed a clear difference of gene expression patterns only in Treg cells. The gene signature of an activated Treg cell subpopulation was expanded in the early phase of SSc and the oxidative phosphorylation pathway was enhanced, which can promote Th17 differentiation. And this result was accompanied by the increase in Th17 cells frequency. Therefore, an imbalance between Treg and Th17 cells could also have an important role in the pathogenesis of the early phase of SSc. In this review, we outlined the roles of Treg cells in the early phase of SSc, summarizing the data of both human and mouse models. The contributions of Treg cells to autoimmunity, vasculopathy, and fibrosis were revealed, based on the dysfunction and imbalance of Treg cells. We also referred to the potential development in treatment strategies in SSc.
Collapse
Affiliation(s)
- Satomi Kobayashi
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Japan
- Department of Medicine and Rheumatology, Tokyo Metropolitan Geriatric Hospital, Itabashi-ku, Japan
| | - Yasuo Nagafuchi
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Japan
- Department of Functional Genomics and Immunological Diseases, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Japan
| | - Hirofumi Shoda
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Japan
| | - Keishi Fujio
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Japan
| |
Collapse
|
6
|
Bellan M, Murano F, Ceruti F, Piccinino C, Tonello S, Minisini R, Giubertoni A, Sola D, Pedrazzoli R, Maglione V, Manfredi GF, Acquaviva A, Piffero R, Patti G, Pirisi M, Sainaghi PP. Increased Levels of ICOS and ICOSL Are Associated to Pulmonary Arterial Hypertension in Patients Affected by Connective Tissue Diseases. Diagnostics (Basel) 2022; 12:diagnostics12030704. [PMID: 35328257 PMCID: PMC8947069 DOI: 10.3390/diagnostics12030704] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/04/2022] [Accepted: 03/09/2022] [Indexed: 12/07/2022] Open
Abstract
Background: Pulmonary hypertension (PH) is a life-threatening complication of connective tissue diseases (CTD); in this study, we aimed at investigating the potential role of inducible co-stimulator (ICOS) and its ligand (ICOS-L) as biomarkers of PH in CTD. Materials and Methods: We recruited 109 patients: 84 CTD patients, 13 patients with CTD complicated by pulmonary arterial hypertension (PAH), and 12 subjects with PAH alone. All recruited patients underwent a complete clinical and instrumental assessment along with quantitative measurement of serum ICOS and ICOS-L. Results: Independently of the underlying cause, patients with PAH were older and had a lower glomerular filtration rate. Interestingly, patients with both CTD-related and CTD-unrelated PAH had higher ICOS and ICOS-L serum concentrations than CTD patients (0.0001 for both). When compared to CTD patients, those affected by CTD-PAH showed higher ICOS (440 (240–600) vs. 170 (105–275) pg/mL, p = 0.0001) and ICOS-L serum concentrations (6000 (4300–7000) vs. 2450 (1500–4100) pg/mL; p = 0.0001). In a logistic regression, ICOS and ICOS-L were associated with a diagnosis of PAH, independently from age, gender, and renal function. The corresponding receiver operating characteristic (ROC) curves demonstrated a good diagnostic performance for both ICOS and ICOS-L. Conclusions: ICOS and ICOS-L are increased in patients with PAH, irrespectively from the underlying cause, and represent promising candidate biomarkers for the diagnostic screening for PAH among CTDs patients.
Collapse
Affiliation(s)
- Mattia Bellan
- Department of Translational Medicine (DiMeT), Università del Piemonte Orientale (UPO), 28100 Novara, Italy; (F.M.); (F.C.); (S.T.); (R.M.); (A.G.); (V.M.); (G.F.M.); (A.A.); (R.P.); (G.P.); (M.P.); (P.P.S.)
- Rheumatology Unit, Department of Internal Medicine, AOU Maggiore della Carità, 28100 Novara, Italy; (D.S.); (R.P.)
- Center for Translational Research on Autoimmune and Allergic Disease (CAAD), Università del Piemonte Orientale (UPO), 28100 Novara, Italy
- Correspondence: ; Tel.: +39-0321-3737512
| | - Francesco Murano
- Department of Translational Medicine (DiMeT), Università del Piemonte Orientale (UPO), 28100 Novara, Italy; (F.M.); (F.C.); (S.T.); (R.M.); (A.G.); (V.M.); (G.F.M.); (A.A.); (R.P.); (G.P.); (M.P.); (P.P.S.)
- Rheumatology Unit, Department of Internal Medicine, AOU Maggiore della Carità, 28100 Novara, Italy; (D.S.); (R.P.)
| | - Federico Ceruti
- Department of Translational Medicine (DiMeT), Università del Piemonte Orientale (UPO), 28100 Novara, Italy; (F.M.); (F.C.); (S.T.); (R.M.); (A.G.); (V.M.); (G.F.M.); (A.A.); (R.P.); (G.P.); (M.P.); (P.P.S.)
- Rheumatology Unit, Department of Internal Medicine, AOU Maggiore della Carità, 28100 Novara, Italy; (D.S.); (R.P.)
| | | | - Stelvio Tonello
- Department of Translational Medicine (DiMeT), Università del Piemonte Orientale (UPO), 28100 Novara, Italy; (F.M.); (F.C.); (S.T.); (R.M.); (A.G.); (V.M.); (G.F.M.); (A.A.); (R.P.); (G.P.); (M.P.); (P.P.S.)
| | - Rosalba Minisini
- Department of Translational Medicine (DiMeT), Università del Piemonte Orientale (UPO), 28100 Novara, Italy; (F.M.); (F.C.); (S.T.); (R.M.); (A.G.); (V.M.); (G.F.M.); (A.A.); (R.P.); (G.P.); (M.P.); (P.P.S.)
| | - Ailia Giubertoni
- Department of Translational Medicine (DiMeT), Università del Piemonte Orientale (UPO), 28100 Novara, Italy; (F.M.); (F.C.); (S.T.); (R.M.); (A.G.); (V.M.); (G.F.M.); (A.A.); (R.P.); (G.P.); (M.P.); (P.P.S.)
- Division of Cardiology, AOU Maggiore della Carità, 28100 Novara, Italy;
| | - Daniele Sola
- Rheumatology Unit, Department of Internal Medicine, AOU Maggiore della Carità, 28100 Novara, Italy; (D.S.); (R.P.)
| | - Roberta Pedrazzoli
- Rheumatology Unit, Department of Internal Medicine, AOU Maggiore della Carità, 28100 Novara, Italy; (D.S.); (R.P.)
| | - Veronica Maglione
- Department of Translational Medicine (DiMeT), Università del Piemonte Orientale (UPO), 28100 Novara, Italy; (F.M.); (F.C.); (S.T.); (R.M.); (A.G.); (V.M.); (G.F.M.); (A.A.); (R.P.); (G.P.); (M.P.); (P.P.S.)
| | - Giulia Francesca Manfredi
- Department of Translational Medicine (DiMeT), Università del Piemonte Orientale (UPO), 28100 Novara, Italy; (F.M.); (F.C.); (S.T.); (R.M.); (A.G.); (V.M.); (G.F.M.); (A.A.); (R.P.); (G.P.); (M.P.); (P.P.S.)
- Rheumatology Unit, Department of Internal Medicine, AOU Maggiore della Carità, 28100 Novara, Italy; (D.S.); (R.P.)
| | - Antonio Acquaviva
- Department of Translational Medicine (DiMeT), Università del Piemonte Orientale (UPO), 28100 Novara, Italy; (F.M.); (F.C.); (S.T.); (R.M.); (A.G.); (V.M.); (G.F.M.); (A.A.); (R.P.); (G.P.); (M.P.); (P.P.S.)
- Rheumatology Unit, Department of Internal Medicine, AOU Maggiore della Carità, 28100 Novara, Italy; (D.S.); (R.P.)
| | - Roberto Piffero
- Department of Translational Medicine (DiMeT), Università del Piemonte Orientale (UPO), 28100 Novara, Italy; (F.M.); (F.C.); (S.T.); (R.M.); (A.G.); (V.M.); (G.F.M.); (A.A.); (R.P.); (G.P.); (M.P.); (P.P.S.)
- Rheumatology Unit, Department of Internal Medicine, AOU Maggiore della Carità, 28100 Novara, Italy; (D.S.); (R.P.)
| | - Giuseppe Patti
- Department of Translational Medicine (DiMeT), Università del Piemonte Orientale (UPO), 28100 Novara, Italy; (F.M.); (F.C.); (S.T.); (R.M.); (A.G.); (V.M.); (G.F.M.); (A.A.); (R.P.); (G.P.); (M.P.); (P.P.S.)
- Division of Cardiology, AOU Maggiore della Carità, 28100 Novara, Italy;
| | - Mario Pirisi
- Department of Translational Medicine (DiMeT), Università del Piemonte Orientale (UPO), 28100 Novara, Italy; (F.M.); (F.C.); (S.T.); (R.M.); (A.G.); (V.M.); (G.F.M.); (A.A.); (R.P.); (G.P.); (M.P.); (P.P.S.)
- Rheumatology Unit, Department of Internal Medicine, AOU Maggiore della Carità, 28100 Novara, Italy; (D.S.); (R.P.)
- Center for Translational Research on Autoimmune and Allergic Disease (CAAD), Università del Piemonte Orientale (UPO), 28100 Novara, Italy
| | - Pier Paolo Sainaghi
- Department of Translational Medicine (DiMeT), Università del Piemonte Orientale (UPO), 28100 Novara, Italy; (F.M.); (F.C.); (S.T.); (R.M.); (A.G.); (V.M.); (G.F.M.); (A.A.); (R.P.); (G.P.); (M.P.); (P.P.S.)
- Rheumatology Unit, Department of Internal Medicine, AOU Maggiore della Carità, 28100 Novara, Italy; (D.S.); (R.P.)
- Center for Translational Research on Autoimmune and Allergic Disease (CAAD), Università del Piemonte Orientale (UPO), 28100 Novara, Italy
| |
Collapse
|
7
|
Orvain C, Cauvet A, Prudent A, Guignabert C, Thuillet R, Ottaviani M, Tu L, Duhalde F, Nicco C, Batteux F, Avouac J, Wang N, Seaberg MA, Dillon SR, Allanore Y. Acazicolcept (ALPN-101), a dual ICOS/CD28 antagonist, demonstrates efficacy in systemic sclerosis preclinical mouse models. Arthritis Res Ther 2022; 24:13. [PMID: 34986869 PMCID: PMC8728910 DOI: 10.1186/s13075-021-02709-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 12/20/2021] [Indexed: 11/24/2022] Open
Abstract
Background Uncontrolled immune response with T cell activation has a key role in the pathogenesis of systemic sclerosis (SSc), a disorder that is characterized by generalized fibrosis affecting particularly the lungs and skin. Costimulatory molecules are key players during immune activation, and recent evidence supports a role of CD28 and ICOS in the development of fibrosis. We herein investigated the efficacy of acazicolcept (ALPN-101), a dual ICOS/CD28 antagonist, in two complementary SSc-related mouse models recapitulating skin fibrosis, interstitial lung disease, and pulmonary hypertension. Methods Expression of circulating soluble ICOS and skin-expressed ICOS was investigated in SSc patients. Thereafter, acazicolcept was evaluated in the hypochlorous acid (HOCL)-induced dermal fibrosis mouse model and in the Fra-2 transgenic (Tg) mouse model. In each model, mice received 400 μg of acazicolcept or a molar-matched dose of an Fc control protein twice a week for 6 weeks. After 6 weeks, skin and lung were evaluated. Results ICOS was significantly increased in the sera from SSc patients and in SSc skin biopsies as compared to samples from healthy controls. Similar body weight changes were observed between Fc control and acazicolcept groups in both HOCL and Fra-2 Tg mice suggesting a good tolerance of acazicolcept treatment. In mice challenged with HOCL, acazicolcept induced a significant decrease in dermal thickness, collagen content, myofibroblast number, and inflammatory infiltrates characterized by B cells, T cells, neutrophils, and macrophages. In the Fra-2 Tg mouse model, acazicolcept treatment reduced lung collagen content, fibrillar collagen, histological fibrosis score, and right ventricular systolic pressure (RVSP). A reduction in frequency of CD4+ and T effector memory cells and an increase in the percentage of CD4+ T naïve cells in spleen and lung of acazicolcept-treated Fra-2 Tg mice was observed as compared to Fc control-treated Fra-2 Tg mice. Moreover, acazicolcept reduced CD69 and PD-1 expression on CD4+ T cells from the spleen and the lung. Target engagement by acazicolcept was demonstrated by blockade of CD28 and ICOS detection by flow cytometry in treated mice. Conclusions Our results confirm the importance of costimulatory molecules in inflammatory-driven fibrosis. Our data highlight a key role of ICOS and CD28 in SSc. Using complementary models, we demonstrated that dual ICOS/CD28 blockade by acazicolcept decreased dermal and pulmonary fibrosis and alleviated pulmonary hypertension. These results pave the way for subsequent research on ICOS/CD28-targeted therapies. Supplementary Information The online version contains supplementary material available at 10.1186/s13075-021-02709-2.
Collapse
Affiliation(s)
- Cindy Orvain
- Université Paris Descartes, Sorbonne Paris Cité, INSERM U1016, Institut Cochin, CNRS UMR8104, Paris, France
| | - Anne Cauvet
- Université Paris Descartes, Sorbonne Paris Cité, INSERM U1016, Institut Cochin, CNRS UMR8104, Paris, France
| | - Alexis Prudent
- Université Paris Descartes, Sorbonne Paris Cité, INSERM U1016, Institut Cochin, CNRS UMR8104, Paris, France
| | - Christophe Guignabert
- INSERM UMR_S 999, Le Plessis-Robinson, France.,Université Paris-Sud, Université Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Raphaël Thuillet
- INSERM UMR_S 999, Le Plessis-Robinson, France.,Université Paris-Sud, Université Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Mina Ottaviani
- INSERM UMR_S 999, Le Plessis-Robinson, France.,Université Paris-Sud, Université Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Ly Tu
- INSERM UMR_S 999, Le Plessis-Robinson, France.,Université Paris-Sud, Université Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Fanny Duhalde
- Université Paris Descartes, Sorbonne Paris Cité, INSERM U1016, Institut Cochin, CNRS UMR8104, Paris, France
| | - Carole Nicco
- Université Paris Descartes, Sorbonne Paris Cité, INSERM U1016, Institut Cochin, CNRS UMR8104, Paris, France
| | - Frédéric Batteux
- Université Paris Descartes, Sorbonne Paris Cité, INSERM U1016, Institut Cochin, CNRS UMR8104, Paris, France.,Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Universitaire Paris Centre (HUPC), Centre Hospitalier Universitaire (CHU) Cochin, Service d'immunologie biologique (Professeur Batteux), Paris, France
| | - Jérôme Avouac
- Université Paris Descartes, Sorbonne Paris Cité, INSERM U1016, Institut Cochin, CNRS UMR8104, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Service de Rhumatologie A, Hôpital 27 rue du Faubourg Saint-Jacques, Cochin, 75014, Paris, France
| | | | | | | | - Yannick Allanore
- Université Paris Descartes, Sorbonne Paris Cité, INSERM U1016, Institut Cochin, CNRS UMR8104, Paris, France. .,Université Paris Descartes, Sorbonne Paris Cité, Service de Rhumatologie A, Hôpital 27 rue du Faubourg Saint-Jacques, Cochin, 75014, Paris, France.
| |
Collapse
|
8
|
Boggio E, Gigliotti CL, Moia R, Scotta A, Crespi I, Boggione P, De Paoli L, Deambrogi C, Garzaro M, Vidali M, Chiocchetti A, Stoppa I, Rolla R, Dianzani C, Monge C, Clemente N, Gaidano G, Dianzani U. Inducible T-cell co-stimulator (ICOS) and ICOS ligand are novel players in the multiple-myeloma microenvironment. Br J Haematol 2021; 196:1369-1380. [PMID: 34954822 DOI: 10.1111/bjh.17968] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/03/2021] [Accepted: 11/09/2021] [Indexed: 12/19/2022]
Abstract
The inducible T-cell co-stimulator (ICOS) is a T-cell receptor that, once bound to ICOS ligand (ICOSL) expressed on several cell types including the B-cell lineage, plays a decisive role in adaptive immunity by regulating the interplay between B and T cells. In addition to its immunomodulatory functions, we have shown that ICOS/ICOSL signalling can inhibit the activity of osteoclasts, unveiling a novel mechanism of lymphocyte-bone cells interactions. ICOS and ICOSL can also be found as soluble forms, namely sICOS and sICOSL. Here we show that: (i) levels of sICOS and sICOSL are increased in multiple myeloma (MM) compared to monoclonal gammopathy of undetermined significance and smouldering MM; (ii) levels of sICOS and sICOSL variably correlate with several markers of tumour burden; and (iii) sICOS levels tend to be higher in Durie-Salmon stage II/III versus stage I MM and correlate with overall survival as an independent variable. Moreover, surface ICOS and ICOSL are expressed in both myeloma cells and normal plasma cells, where they probably regulate different functional stages. Finally, ICOSL triggering inhibits the migration of myeloma cell lines in vitro and the growth of ICOSL+ MOPC-21 myeloma cells in vivo. These results suggest that ICOS and ICOSL represent novel markers and therapeutic targets for MM.
Collapse
Affiliation(s)
- Elena Boggio
- Department of Health Sciences and Interdisciplinary Research Center of Autoimmune Diseases (IRCAD), Università del Piemonte Orientale, Novara, Italy
| | - Casimiro Luca Gigliotti
- Department of Health Sciences and Interdisciplinary Research Center of Autoimmune Diseases (IRCAD), Università del Piemonte Orientale, Novara, Italy
| | - Riccardo Moia
- Division of Hematology, Department of Translational Medicine, Università del Piemonte Orientale, Novara, Italy.,Maggiore della Carità University Hospital, Novara, Italy
| | | | - Ilaria Crespi
- Maggiore della Carità University Hospital, Novara, Italy
| | - Paola Boggione
- Division of Hematology, Department of Translational Medicine, Università del Piemonte Orientale, Novara, Italy.,Maggiore della Carità University Hospital, Novara, Italy
| | - Lorenzo De Paoli
- Division of Hematology, Department of Translational Medicine, Università del Piemonte Orientale, Novara, Italy.,Maggiore della Carità University Hospital, Novara, Italy
| | - Clara Deambrogi
- Division of Hematology, Department of Translational Medicine, Università del Piemonte Orientale, Novara, Italy.,Maggiore della Carità University Hospital, Novara, Italy
| | - Massimiliano Garzaro
- Department of Health Sciences and Interdisciplinary Research Center of Autoimmune Diseases (IRCAD), Università del Piemonte Orientale, Novara, Italy
| | - Matteo Vidali
- Maggiore della Carità University Hospital, Novara, Italy
| | - Annalisa Chiocchetti
- Department of Health Sciences and Interdisciplinary Research Center of Autoimmune Diseases (IRCAD), Università del Piemonte Orientale, Novara, Italy
| | - Ian Stoppa
- Department of Health Sciences and Interdisciplinary Research Center of Autoimmune Diseases (IRCAD), Università del Piemonte Orientale, Novara, Italy
| | - Roberta Rolla
- Department of Health Sciences and Interdisciplinary Research Center of Autoimmune Diseases (IRCAD), Università del Piemonte Orientale, Novara, Italy.,Maggiore della Carità University Hospital, Novara, Italy
| | - Chiara Dianzani
- Department of Scienza e Tecnologia del Farmaco, University of Turin, Turin, Italy
| | - Chiara Monge
- Department of Scienza e Tecnologia del Farmaco, University of Turin, Turin, Italy
| | - Nausicaa Clemente
- Department of Health Sciences and Interdisciplinary Research Center of Autoimmune Diseases (IRCAD), Università del Piemonte Orientale, Novara, Italy
| | - Gianluca Gaidano
- Division of Hematology, Department of Translational Medicine, Università del Piemonte Orientale, Novara, Italy.,Maggiore della Carità University Hospital, Novara, Italy
| | - Umberto Dianzani
- Department of Health Sciences and Interdisciplinary Research Center of Autoimmune Diseases (IRCAD), Università del Piemonte Orientale, Novara, Italy.,Maggiore della Carità University Hospital, Novara, Italy
| |
Collapse
|
9
|
Beurier P, Ricard L, Eshagh D, Malard F, Siblany L, Fain O, Mohty M, Gaugler B, Mekinian A. TFH cells in systemic sclerosis. J Transl Med 2021; 19:375. [PMID: 34461933 PMCID: PMC8407089 DOI: 10.1186/s12967-021-03049-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 08/20/2021] [Indexed: 12/17/2022] Open
Abstract
Systemic sclerosis is an autoimmune disease characterized by excessive dermal fibrosis with progression to internal organs, vascular impairment and immune dysregulation evidenced by the infiltration of inflammatory cells in affected tissues and the production of auto antibodies. While the pathogenesis remains unclear, several data highlight that T and B cells deregulation is implicated in the disease pathogenesis. Over the last decade, aberrant responses of circulating T follicular helper cells, a subset of CD4 T cells which are able to localise predominantly in the B cell follicles through a high level of chemokine receptor CXCR5 expression are described in pathogenesis of several autoimmune diseases and chronic graft-versus-host-disease. In the present review, we summarized the observed alteration of number and frequency of circulating T follicular helper cells in systemic sclerosis. We described their role in aberrant B cell activation and differentiation though interleukine-21 secretion. We also clarified T follicular helper-like cells involvement in fibrogenesis in both human and mouse model. Finally, because T follicular helper cells are involved in both fibrosis and autoimmune abnormalities in systemic sclerosis patients, we presented the different strategies could be used to target T follicular helper cells in systemic sclerosis, the therapeutic trials currently being carried out and the future perspectives from other auto-immune diseases and graft-versus-host-disease models.
Collapse
Affiliation(s)
- Pauline Beurier
- INSERM UMRs 938, Centre de Recherche Saint-Antoine, AP-HP, Hôpital Saint-Antoine, Service de Médecine Interne and Inflammation-Immunopathology-Biotherapy Department (DHU i2B), Sorbonne Université, 75012, Paris, France.,Sorbonne Université, Paris, France
| | - Laure Ricard
- INSERM UMRs 938, Centre de Recherche Saint-Antoine, AP-HP, Hôpital Saint-Antoine, Service de Médecine Interne and Inflammation-Immunopathology-Biotherapy Department (DHU i2B), Sorbonne Université, 75012, Paris, France.,Sorbonne Université, Paris, France.,Service D'Hématologie Clinique, AP-HP, Hôpital Saint-Antoine, 75012, Paris, France
| | - Deborah Eshagh
- INSERM UMRs 938, Centre de Recherche Saint-Antoine, AP-HP, Hôpital Saint-Antoine, Service de Médecine Interne and Inflammation-Immunopathology-Biotherapy Department (DHU i2B), Sorbonne Université, 75012, Paris, France.,Sorbonne Université, Paris, France
| | - Florent Malard
- INSERM UMRs 938, Centre de Recherche Saint-Antoine, AP-HP, Hôpital Saint-Antoine, Service de Médecine Interne and Inflammation-Immunopathology-Biotherapy Department (DHU i2B), Sorbonne Université, 75012, Paris, France.,Sorbonne Université, Paris, France.,Service D'Hématologie Clinique, AP-HP, Hôpital Saint-Antoine, 75012, Paris, France
| | - Lama Siblany
- INSERM UMRs 938, Centre de Recherche Saint-Antoine, AP-HP, Hôpital Saint-Antoine, Service de Médecine Interne and Inflammation-Immunopathology-Biotherapy Department (DHU i2B), Sorbonne Université, 75012, Paris, France.,Sorbonne Université, Paris, France
| | - Olivier Fain
- INSERM UMRs 938, Centre de Recherche Saint-Antoine, AP-HP, Hôpital Saint-Antoine, Service de Médecine Interne and Inflammation-Immunopathology-Biotherapy Department (DHU i2B), Sorbonne Université, 75012, Paris, France.,Sorbonne Université, Paris, France
| | - Mohamad Mohty
- INSERM UMRs 938, Centre de Recherche Saint-Antoine, AP-HP, Hôpital Saint-Antoine, Service de Médecine Interne and Inflammation-Immunopathology-Biotherapy Department (DHU i2B), Sorbonne Université, 75012, Paris, France.,Sorbonne Université, Paris, France.,Service D'Hématologie Clinique, AP-HP, Hôpital Saint-Antoine, 75012, Paris, France
| | - Béatrice Gaugler
- INSERM UMRs 938, Centre de Recherche Saint-Antoine, AP-HP, Hôpital Saint-Antoine, Service de Médecine Interne and Inflammation-Immunopathology-Biotherapy Department (DHU i2B), Sorbonne Université, 75012, Paris, France
| | - Arsène Mekinian
- INSERM UMRs 938, Centre de Recherche Saint-Antoine, AP-HP, Hôpital Saint-Antoine, Service de Médecine Interne and Inflammation-Immunopathology-Biotherapy Department (DHU i2B), Sorbonne Université, 75012, Paris, France. .,Sorbonne Université, Paris, France. .,Service de Médecine Interne and Inflammation-Immunopathology-Biotherapy Department (DMU 3iD), AP-HP, Hôpital Saint-Antoine, 75012, Paris, France.
| |
Collapse
|
10
|
McKinski K, McNulty D, Zappacosta F, Birchler M, Szapacs M, Evans C. Orthogonal quantification of soluble inducible T-cell costimulator (ICOS) in healthy and diseased human serum. J Pharm Anal 2021; 12:317-323. [PMID: 35582393 PMCID: PMC9091914 DOI: 10.1016/j.jpha.2021.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 06/02/2021] [Accepted: 06/24/2021] [Indexed: 12/04/2022] Open
Abstract
Inducible T-cell costimulator (ICOS), a homodimeric protein expressed on the surface of activated T-cells, is being investigated as a potential therapeutic target to treat various cancers. Recent studies have reported aberrant increases in the soluble form of ICOS (sICOS) in human serum in disease-state patients, primarily using commercial ELISA kits. However, results from our in-house immunoassay did not show these aberrant increases, leading us to speculate that commercial sICOS ELISAs may be prone to interference. We directly tested that hypothesis and found that one widely used commercial kit yields false-positives and is prone to human anti-mouse antibody interference. We then analyzed a panel of healthy, cancer, chronic hepatitis C virus, systemic lupus erythematosus, and diffuse cutaneous systemic sclerosis human serum using our in-house immunoassay and reported the measured sICOS concentrations in these populations. Since even well characterized immunoassay methods are prone to non-specific interference, we also developed a novel sICOS LC-MS/MS method to confirm the results. Using these orthogonal approaches, we show that sICOS is a low abundance soluble protein that cannot be measured above approximately 20 pg/mL in human serum. Soluble ICOS is a low-abundance protein that is not detectable above approximately 20 pg/mL in human serum. Commercial soluble ICOS kits may be prone to HAMA interference and thus false-positives. Off-the-shelf assay kits should be well characterized in order to minimize non-specific interferences.
Collapse
|
11
|
Worrell JC, O'Reilly S. Bi-directional communication: Conversations between fibroblasts and immune cells in systemic sclerosis. J Autoimmun 2020; 113:102526. [PMID: 32713676 DOI: 10.1016/j.jaut.2020.102526] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/13/2020] [Accepted: 07/14/2020] [Indexed: 02/09/2023]
Abstract
Systemic Sclerosis (SSc) is an autoimmune idiopathic connective tissue disease, characterized by aberrant fibro-proliferative and inflammatory responses, causing fibrosis of multiple organs. In recent years the interactions between innate and adaptive immune cells with resident fibroblasts have been uncovered. Cross-talk between immune and stromal cells mediates activation of stromal cells to myofibroblasts; key cells in the pathophysiology of fibrosis. These cells and their cytokines appear to mediate their effects in both a paracrine and autocrine fashion. This review examines the role of innate and adaptive immune cells in SSc, focusing on recent advances that have illuminated our understanding of ongoing bi-directional communication between immune and stromal cells. Finally, we appraise current and future therapies and how these may be useful in a disease that currently has no specific disease modifying treatment.
Collapse
Affiliation(s)
- Julie C Worrell
- Insititute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK
| | - Steven O'Reilly
- Durham University, Biosciences, Faculty of Science, Durham, UK. steven.o'
| |
Collapse
|
12
|
Ricard L, Jachiet V, Malard F, Ye Y, Stocker N, Rivière S, Senet P, Monfort JB, Fain O, Mohty M, Gaugler B, Mekinian A. Circulating follicular helper T cells are increased in systemic sclerosis and promote plasmablast differentiation through the IL-21 pathway which can be inhibited by ruxolitinib. Ann Rheum Dis 2019; 78:539-550. [PMID: 30760472 DOI: 10.1136/annrheumdis-2018-214382] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 12/18/2018] [Accepted: 12/19/2018] [Indexed: 12/29/2022]
Abstract
OBJECTIVES Systemic sclerosis (SSc) is an autoimmune disease characterised by widespread fibrosis, microangiopathy and autoantibodies. Follicular helper T (Tfh) cells CD4+CXCR5+PD-1+ cooperate with B lymphocytes to induce the differentiation of plasmocytes secreting immunoglobulins (Ig). Circulating Tfh (cTfh) cells are increased in several autoimmune diseases. However, there are no data about cTfh cells and their interaction with B cells in SSc. The aim of this study was to perform a quantitative and functional analysis of cTfh cells in SSc. METHODS Using flow cytometry, we analysed cTfh cells from 50 patients with SSc and 32 healthy controls (HC). In vitro coculture experiments of sorted cTfh and B cells were performed for functional analysis. IgG and IgM production were measured by ELISA. RESULTS We observed that cTfh cell numbers are increased in patients with SSc compared with HC. Furthermore, the increase in cTfh cells was more potent in patients with severe forms of SSc such as diffuse SSc and in the presence of arterial pulmonary hypertension. cTfh cells from patients with SSc present an activated Tfh phenotype, with high expression of BCL-6, increased capacity to produce IL-21 in comparison with healthy controls. In vitro, cTfh cells from patients with SSc had higher capacity to stimulate the differentiation of CD19+CD27+CD38hi B cells and their secretion of IgG and IgM through the IL-21 pathway than Tfh cells from healthy controls. Blocking IL-21R or using the JAK1/2 inhibitor ruxolitinib reduced the Tfh cells' capacity to stimulate the plasmablasts and decreased the Ig production. CONCLUSIONS Circulating Tfh cells are increased in SSc and correlate with SSc severity. The IL-21 pathway or JAK1/2 blockade by ruxolitinib could be a promising strategy in the treatment of SSc.
Collapse
Affiliation(s)
- Laure Ricard
- Centre de Recherche Saint-Antoine (CRSA), Sorbonne Université, INSERM U938, Paris, France.,Service de Médecine Interne et de l'Inflammation (DHU i2B), AP-HP, Hôpital Saint-Antoine, Paris, France
| | - Vincent Jachiet
- Centre de Recherche Saint-Antoine (CRSA), Sorbonne Université, INSERM U938, Paris, France.,Service de Médecine Interne et de l'Inflammation (DHU i2B), AP-HP, Hôpital Saint-Antoine, Paris, France
| | - Florent Malard
- Centre de Recherche Saint-Antoine (CRSA), Sorbonne Université, INSERM U938, Paris, France.,Service d'Hématologie Clinique et Thérapie Cellulaire, AP-HP, Hôpital Saint-Antoine, Paris, France
| | - Yishan Ye
- Centre de Recherche Saint-Antoine (CRSA), Sorbonne Université, INSERM U938, Paris, France
| | - Nicolas Stocker
- Centre de Recherche Saint-Antoine (CRSA), Sorbonne Université, INSERM U938, Paris, France
| | - Sébastien Rivière
- Service de Médecine Interne et de l'Inflammation (DHU i2B), AP-HP, Hôpital Saint-Antoine, Paris, France
| | - Patricia Senet
- Service de Dermatologie, AP-HP, Hôpital Tenon, Paris, France
| | | | - Olivier Fain
- Service de Médecine Interne et de l'Inflammation (DHU i2B), AP-HP, Hôpital Saint-Antoine, Paris, France
| | - Mohamad Mohty
- Centre de Recherche Saint-Antoine (CRSA), Sorbonne Université, INSERM U938, Paris, France.,Service d'Hématologie Clinique et Thérapie Cellulaire, AP-HP, Hôpital Saint-Antoine, Paris, France
| | - Béatrice Gaugler
- Centre de Recherche Saint-Antoine (CRSA), Sorbonne Université, INSERM U938, Paris, France.,Service d'Hématologie Clinique et Thérapie Cellulaire, AP-HP, Hôpital Saint-Antoine, Paris, France
| | - Arsène Mekinian
- Centre de Recherche Saint-Antoine (CRSA), Sorbonne Université, INSERM U938, Paris, France .,Service de Médecine Interne et de l'Inflammation (DHU i2B), AP-HP, Hôpital Saint-Antoine, Paris, France
| |
Collapse
|
13
|
Boleto G, Allanore Y, Avouac J. Targeting Costimulatory Pathways in Systemic Sclerosis. Front Immunol 2018; 9:2998. [PMID: 30619351 PMCID: PMC6305435 DOI: 10.3389/fimmu.2018.02998] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 12/04/2018] [Indexed: 01/04/2023] Open
Abstract
Systemic sclerosis (SSc) is an autoimmune T-cell disease that is characterized by pathological fibrosis of the skin and internal organs. SSc is considered a prototype condition for studying the links between autoimmunity and fibrosis. Costimulatory pathways such as CD28/CTLA-4, ICOS-B7RP1, CD70-CD27, CD40-CD154, or OX40-OX40L play an essential role in the modulation of T-cell and inflammatory immune responses. A growing body of evidence suggests that T-cell costimulation signals might be implicated in the pathogenesis of SSc. CD28, CTLA-4, ICOS, and OX40L are overexpressed in patients with SSc, particularly in patients with cutaneous diffuse forms. In pre-clinical models of SSc, T-cell costimulation blockade with abatacept (CTLA-4-Ig) prevented and induced the regression of inflammation-driven dermal fibrosis, improved digestive involvement, prevented lung fibrosis, and attenuated pulmonary hypertension in complementary models of SSc. Likewise, potent anti-fibrotic effects were seen with the blockade of OX40L by reducing the infiltration of inflammatory cells into lesional tissues leading to decreased fibroblast activation. Concerning clinical effects, a preliminary observational study suggested some effectiveness of abatacept on inflammatory joint involvement, whereas clinical improvement of skin fibrosis was observed in a small placebo-controlled randomized trial. Currently there is one ongoing phase II clinical trial assessing the efficacy of abatacept in SSc (ASSET trial, NCT02161406). Overall, given the lack of available effective agents and the known toxic effects of immunosuppressive agents approved for use in SSc, costimulatory pathways offer the advantage of a targeted approach to costimulatory signals and potentially a better safety profile.
Collapse
Affiliation(s)
- Gonçalo Boleto
- Université Paris Descartes, Sorbonne Paris Cité, INSERM U1016, Institut Cochin, CNRS UMR8104, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Service de Rhumatologie A, Hôpital Cochin, Paris, France
| | - Yannick Allanore
- Université Paris Descartes, Sorbonne Paris Cité, INSERM U1016, Institut Cochin, CNRS UMR8104, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Service de Rhumatologie A, Hôpital Cochin, Paris, France
| | - Jérôme Avouac
- Université Paris Descartes, Sorbonne Paris Cité, INSERM U1016, Institut Cochin, CNRS UMR8104, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Service de Rhumatologie A, Hôpital Cochin, Paris, France
| |
Collapse
|
14
|
Taylor DK, Mittereder N, Kuta E, Delaney T, Burwell T, Dacosta K, Zhao W, Cheng LI, Brown C, Boutrin A, Guo X, White WI, Zhu J, Dong H, Bowen MA, Lin J, Gao C, Yu L, Ramaswamy M, Gaudreau MC, Woods R, Herbst R, Carlesso G. T follicular helper–like cells contribute to skin fibrosis. Sci Transl Med 2018. [DOI: 10.1126/scitranslmed.aaf5307] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
15
|
Wang D, Du Q, Luo G, Wang Q, Wang G, Zhang G, Leng Z, Guo X. Aberrant production of soluble inducible T cell co‑stimulator and soluble programmed cell death protein 1 in patients with chronic hepatitis B. Mol Med Rep 2017; 16:8556-8562. [PMID: 28983583 DOI: 10.3892/mmr.2017.7630] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2016] [Accepted: 08/16/2017] [Indexed: 11/05/2022] Open
Abstract
Previous studies demonstrated that immune dysregulation is an important cause of hepatitis B virus (HBV)‑mediated liver damage. Co‑stimulators including programmed cell death protein 1 (PD‑1) and inducible T cell co‑stimulator (ICOS) are involved in the pathogenesis of HBV. In the present study, the serum levels of soluble (s)PD‑1 and sICOS in patients with chronic HBV infections, were investigated, and the association between sPD‑1 and sICOS levels and liver injury degree was investigated. Serum sPD‑1 and sICOS levels were increased in the HBV‑patient group particularly in the HBV external core antigen positive group. In the immune clearance group, sPD‑1 and sICOS were increased compared with the tolerance group. Furthermore, the relative mRNA expression levels were also increased in patients with HBV. However there was no correlation between sPD‑1 and sICOS levels and HBV antibodies or PD‑1/ICOS mRNA copies. The altered sPD‑1 and sICOS serum levels in the different HBV groups may reflect the dysregulation of T cell activation, and may be associated with the HBV pathological process.
Collapse
Affiliation(s)
- Dongsheng Wang
- Department of Laboratory Medicine, The Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
| | - Qin Du
- Department of Laboratory Medicine, The Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
| | - Guangcheng Luo
- Department of Laboratory Medicine, The Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
| | - Qiang Wang
- Department of Laboratory Medicine, The Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
| | - Guangrong Wang
- Department of Laboratory Medicine, The Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
| | - Guoyuan Zhang
- Department of Laboratory Medicine, The Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
| | - Zhengwei Leng
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430074, P.R. China
| | - Xiaolan Guo
- Department of Laboratory Medicine, The Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
| |
Collapse
|
16
|
Effects of ICOS+ T cell depletion via afucosylated monoclonal antibody MEDI-570 on pregnant cynomolgus monkeys and the developing offspring. Reprod Toxicol 2017; 74:116-133. [PMID: 28916434 DOI: 10.1016/j.reprotox.2017.08.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 08/15/2017] [Accepted: 08/29/2017] [Indexed: 01/11/2023]
Abstract
MEDI-570 is a fully human afucosylated monoclonal antibody (MAb) against Inducible T-cell costimulator (ICOS), highly expressed on CD4+ T follicular helper (TFH) cells. Effects of MEDI-570 were evaluated in an enhanced pre-postnatal development toxicity (ePPND) study in cynomolgus monkeys. Administration to pregnant monkeys did not cause any abortifacient effects. Changes in hematology and peripheral blood T lymphocyte subsets in maternal animals and infants and the attenuated infant IgG immune response to keyhole limpet hemocyanin (KLH) were attributed to MEDI-570 pharmacology. Adverse findings included aggressive fibromatosis in one dam and two infant losses in the high dose group with anatomic pathology findings suggestive of atypical lymphoid hyperplasia. The margin of safety relative to the no observed adverse effect level (NOAEL) for the highest planned clinical dose in the Phase 1a study was 7. This study suggests that women of child bearing potential employ effective methods of contraception while being treated with MEDI-570.
Collapse
|
17
|
Sanges S, Guerrier T, Launay D, Lefèvre G, Labalette M, Forestier A, Sobanski V, Corli J, Hauspie C, Jendoubi M, Yakoub-Agha I, Hatron PY, Hachulla E, Dubucquoi S. Role of B cells in the pathogenesis of systemic sclerosis. Rev Med Interne 2016; 38:113-124. [PMID: 27020403 DOI: 10.1016/j.revmed.2016.02.016] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 02/17/2016] [Accepted: 02/27/2016] [Indexed: 12/28/2022]
Abstract
Systemic sclerosis (SSc) is an orphan disease characterized by progressive fibrosis of the skin and internal organs. Aside from vasculopathy and fibrotic processes, its pathogenesis involves an aberrant activation of immune cells, among which B cells seem to play a significant role. Indeed, B cell homeostasis is disturbed during SSc: the memory subset is activated and displays an increased susceptibility to apoptosis, which is responsible for their decreased number. This chronic loss of B cells enhances bone marrow production of the naïve subset that accounts for their increased number in peripheral blood. This permanent activation state can be explained mainly by two mechanisms: a dysregulation of B cell receptor (BCR) signaling, and an overproduction of B cell survival signals, B cell activating factor (BAFF) and a proliferation-inducing ligand (APRIL). These disturbances of B cell homeostasis induce several functional anomalies that participate in the inflammatory and fibrotic events observed during SSc: autoantibody production (some being directly pathogenic); secretion of pro-inflammatory and pro-fibrotic cytokines (interleukin-6); direct cooperation with other SSc-involved cells [fibroblasts, through transforming growth factor-β (TGF-β) signaling, and T cells]. These data justify the evaluation of anti-B cell strategies as therapeutic options for SSc, such as B cell depletion or blockage of B cell survival signaling.
Collapse
Affiliation(s)
- S Sanges
- Université de Lille, U995, Lille Inflammation Research International Center (LIRIC), 59000 Lille, France; Inserm, U995, 59000 Lille, France; CHU de Lille, département de médecine interne et immunologie clinique, 59000 Lille, France; Centre national de référence maladies systémiques et auto-immunes rares (sclérodermie systémique), 59000 Lille, France; FHU Immune-Mediated Inflammatory Diseases and Targeted Therapies, 59000 Lille, France
| | - T Guerrier
- Université de Lille, U995, Lille Inflammation Research International Center (LIRIC), 59000 Lille, France; Inserm, U995, 59000 Lille, France; CHU de Lille, Centre de biologie-pathologie-génétique, institut d'Immunologie, 59000 Lille, France
| | - D Launay
- Université de Lille, U995, Lille Inflammation Research International Center (LIRIC), 59000 Lille, France; Inserm, U995, 59000 Lille, France; CHU de Lille, département de médecine interne et immunologie clinique, 59000 Lille, France; Centre national de référence maladies systémiques et auto-immunes rares (sclérodermie systémique), 59000 Lille, France; FHU Immune-Mediated Inflammatory Diseases and Targeted Therapies, 59000 Lille, France.
| | - G Lefèvre
- Université de Lille, U995, Lille Inflammation Research International Center (LIRIC), 59000 Lille, France; Inserm, U995, 59000 Lille, France; CHU de Lille, département de médecine interne et immunologie clinique, 59000 Lille, France; Centre national de référence maladies systémiques et auto-immunes rares (sclérodermie systémique), 59000 Lille, France; FHU Immune-Mediated Inflammatory Diseases and Targeted Therapies, 59000 Lille, France; CHU de Lille, Centre de biologie-pathologie-génétique, institut d'Immunologie, 59000 Lille, France
| | - M Labalette
- Université de Lille, U995, Lille Inflammation Research International Center (LIRIC), 59000 Lille, France; Inserm, U995, 59000 Lille, France; FHU Immune-Mediated Inflammatory Diseases and Targeted Therapies, 59000 Lille, France; CHU de Lille, Centre de biologie-pathologie-génétique, institut d'Immunologie, 59000 Lille, France
| | - A Forestier
- Université de Lille, U995, Lille Inflammation Research International Center (LIRIC), 59000 Lille, France; Inserm, U995, 59000 Lille, France; CHU de Lille, département de médecine interne et immunologie clinique, 59000 Lille, France; Centre national de référence maladies systémiques et auto-immunes rares (sclérodermie systémique), 59000 Lille, France; FHU Immune-Mediated Inflammatory Diseases and Targeted Therapies, 59000 Lille, France
| | - V Sobanski
- Université de Lille, U995, Lille Inflammation Research International Center (LIRIC), 59000 Lille, France; Inserm, U995, 59000 Lille, France; CHU de Lille, département de médecine interne et immunologie clinique, 59000 Lille, France; Centre national de référence maladies systémiques et auto-immunes rares (sclérodermie systémique), 59000 Lille, France; FHU Immune-Mediated Inflammatory Diseases and Targeted Therapies, 59000 Lille, France
| | - J Corli
- Université de Lille, U995, Lille Inflammation Research International Center (LIRIC), 59000 Lille, France; Inserm, U995, 59000 Lille, France; FHU Immune-Mediated Inflammatory Diseases and Targeted Therapies, 59000 Lille, France; CHU de Lille, département de rhumatologie, 59000 Lille, France
| | - C Hauspie
- Université de Lille, U995, Lille Inflammation Research International Center (LIRIC), 59000 Lille, France; Inserm, U995, 59000 Lille, France; CHU de Lille, Centre de biologie-pathologie-génétique, institut d'Immunologie, 59000 Lille, France
| | - M Jendoubi
- Université de Lille, U995, Lille Inflammation Research International Center (LIRIC), 59000 Lille, France; Inserm, U995, 59000 Lille, France
| | - I Yakoub-Agha
- Université de Lille, U995, Lille Inflammation Research International Center (LIRIC), 59000 Lille, France; Inserm, U995, 59000 Lille, France; FHU Immune-Mediated Inflammatory Diseases and Targeted Therapies, 59000 Lille, France; CHU de Lille, département des maladies du sang, 59000 Lille, France
| | - P-Y Hatron
- Université de Lille, U995, Lille Inflammation Research International Center (LIRIC), 59000 Lille, France; CHU de Lille, département de médecine interne et immunologie clinique, 59000 Lille, France; Centre national de référence maladies systémiques et auto-immunes rares (sclérodermie systémique), 59000 Lille, France; FHU Immune-Mediated Inflammatory Diseases and Targeted Therapies, 59000 Lille, France
| | - E Hachulla
- Université de Lille, U995, Lille Inflammation Research International Center (LIRIC), 59000 Lille, France; Inserm, U995, 59000 Lille, France; CHU de Lille, département de médecine interne et immunologie clinique, 59000 Lille, France; Centre national de référence maladies systémiques et auto-immunes rares (sclérodermie systémique), 59000 Lille, France; FHU Immune-Mediated Inflammatory Diseases and Targeted Therapies, 59000 Lille, France
| | - S Dubucquoi
- Université de Lille, U995, Lille Inflammation Research International Center (LIRIC), 59000 Lille, France; Inserm, U995, 59000 Lille, France; FHU Immune-Mediated Inflammatory Diseases and Targeted Therapies, 59000 Lille, France; CHU de Lille, Centre de biologie-pathologie-génétique, institut d'Immunologie, 59000 Lille, France
| |
Collapse
|
18
|
Weng J, Lai P, Geng S, Luo C, Wu S, Ling W, Deng C, Huang X, Lu Z, Du X. Role of Toll-like receptor 4 signaling in cutaneous chronic graft-versus-host disease. Clin Transplant 2015; 29:547-54. [PMID: 25845646 DOI: 10.1111/ctr.12551] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/30/2015] [Indexed: 12/31/2022]
Abstract
Cutaneous damage is one of the characterized manifestations in chronic graft-versus-host disease (cGVHD). When local effective immunity in the skin is altered to a dysimmune reaction, cutaneous injuries occur. Toll-like receptor 4 signaling is regarded as a central mediator of inflammation and organ injury. In this study, we found that TLR4 mRNA in peripheral blood from patients with cutaneous cGVHD was markedly increased compared with that from non-GVHD patients and healthy controls. In addition, NF-κB expression, TLR4 downstream signaling, and TLR4-mediated cytokines, including IL-6 and ICAM-1, were upregulated. Moreover, ICAM-1 was widely distributed in skin biopsies from patients with cutaneous cGVHD. We also found that LPS induced TLR4-mediated NF-κB activation and IL-6 and ICAM-1 secretion in human fibroblasts in vitro. Thus, TLR4, NF-κB, IL-6, and ICAM-1 contribute to the inflammatory response that occurs in cutaneous cGVHD, indicating the TLR4 pathway may be a novel target for cutaneous cGVHD therapy.
Collapse
Affiliation(s)
- Jianyu Weng
- Department of Hematology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Peilong Lai
- Department of Hematology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Suxia Geng
- Department of Hematology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Chenwei Luo
- Department of Hematology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Suijing Wu
- Department of Hematology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Wei Ling
- Department of Hematology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Chengxin Deng
- Department of Hematology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Xin Huang
- Department of Hematology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Zesheng Lu
- Department of Hematology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Xin Du
- Department of Hematology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| |
Collapse
|