1
|
El Mansouri M, Essaddouki S, Mouradi M, Oukerroum A, El Fatoiki FZ, Truchuelo MT, Vitale MA, González S, Chiheb S. Evaluation of the effectiveness and safety of combined oral and topical photoprotection with a standardized extract of Polypodium leucotomos (Fernblock®) in a Moroccan population with xeroderma pigmentosum. PHOTODERMATOLOGY, PHOTOIMMUNOLOGY & PHOTOMEDICINE 2023; 39:607-612. [PMID: 37584519 DOI: 10.1111/phpp.12904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/28/2023] [Accepted: 08/01/2023] [Indexed: 08/17/2023]
Abstract
BACKGROUND Xeroderma pigmentosum (XP) is a rare autosomal-recessive genodermatosis resulting from a DNA-repair defect syndrome. The purpose was to evaluate the prevention on new malignant lesions in patients taking a supplement with Fernblock® (Polypodium leucotomos extract [PLE]) and secondarily correlation with the photoprotective behavior. METHODS A prospective, single-center and open cohort study was conducted over a 12-month period. The study was performed in Morocco. Optimal photoprotection behavior was recommended. Patients were instructed to take one capsule containing 480 mg of Fernblock® and 5 mcg vitamin D and to apply sunscreen with a SPF50+ and Fernblock® every 2 h during sun exposure. The demographic, clinical, and dermatoscopic patient data were collected at baseline (T0) and following visits at 3 months (T3), 6 months (T6), and 12 months (T12) when it was assessed: Investigator Global Assessment (IGA), Patient/Guardian Global Assessment (PGA), Patient/Guardian Satisfaction Questionnaire, and Photographic and Adverse Events Registration. Pertinent statistical study was performed. RESULTS Eighteen patients completed the study. Eleven patients (61%) finished the study without new lesions. Seven patients developed new lesions by the end of the study. Among them, only 30% showed an ideal photoprotective behavior. The lack of an optimal photoprotective behavior increased the probability of developing lesions by 2.5 times with 95% confidence interval. CONCLUSIONS In our study, more than 60% of patients taking a supplement with Fernblock® did not develop new lesions, and furthermore, we detected that patients following almost ideal photoprotection were 2.5 times less likely to develop NMSC lesions.
Collapse
Affiliation(s)
- M El Mansouri
- Department of dermatology, University of Hassan II Casablanca, Ibn Rochd University Hospital, Casablanca, Morocco
| | - S Essaddouki
- Department of dermatology, University of Hassan II Casablanca, Ibn Rochd University Hospital, Casablanca, Morocco
| | - M Mouradi
- Department of dermatology, University of Hassan II Casablanca, Ibn Rochd University Hospital, Casablanca, Morocco
| | - A Oukerroum
- Department of maxillofacial surgery, University of Hassan II Casablanca, Ibn Rochd University Hospital, Casablanca, Morocco
| | - F Z El Fatoiki
- Department of dermatology, University of Hassan II Casablanca, Ibn Rochd University Hospital, Casablanca, Morocco
| | - M T Truchuelo
- Department of Dermatology, Vithas Madrid Arturo Soria Hospital, Madrid, Spain
| | - M A Vitale
- Medical Department, Cantabria labs, Madrid, Spain
| | - S González
- Medicine and Medical Specialties Department, University of Alcalá de Henares, Madrid, Spain
| | - S Chiheb
- Department of dermatology, University of Hassan II Casablanca, Ibn Rochd University Hospital, Casablanca, Morocco
| |
Collapse
|
2
|
Abbassi M, Sayel H, Senhaji N, Trhanint S, Bay Bay H, Bouguenouch L, Mernisi FZ. Clinical and molecular characterization of Xeroderma pigmentosum in Moroccan population: a case series of 40 patients. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2022. [DOI: 10.1186/s43042-022-00368-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Abstract
Background
Xeroderma pigmentosum (XP) is a rare autosomal recessive skin disorder characterized by hyperpigmentation, premature skin aging, ocular and cutaneous photosensitivity with increased risk of skin tumors. XP is caused by mutations in DNA repair genes that protect cells from UV-induced DNA damage. The current study aims to investigate, on clinical and genetic basis, Moroccan XP patients. We explored by direct sequencing the involvement of the prevalent XPA and XPC genes mutations: nonsense mutation (c.682C>T, p.Arg228X) and a two-base-pair (2 bp) deletion (c.1643 1644delTG or p.Val548Ala fsX25), respectively, in 40 index cases from 37 unrelated families in Moroccan population.
Results
Early skin and ocular manifestations were detected with high rate of malignancy. Cutaneous lesions progressed to malignant skin tumor in 70% of cases. Ocular tumors were also observed in 11 patients including BCC in eight cases, SCC in three cases and melanoma in four cases. Among the 40 patients, there were 20 homozygous cases for the 2 bp deletion in the XPC gene and 9 homozygous cases carrying the nonsense XPA mutation.
Conclusion
These findings obtained in the present study revealed that the XPC gene mutation (c.1643 1644delTG, p.Val548AlafsX25) is the major cause of Xeroderma pigmentosum in our population. The c.682C>T (p.Arg228X) mutation is relatively associated with moderate phenotype in XP group A Moroccan families. This result will also contribute to improving the molecular diagnosis of XP disease and will have a significant impact on improving the care of Moroccan patients and their relatives.
Collapse
|
3
|
Quintero-Ruiz N, Corradi C, Moreno NC, de Souza TA, Pereira Castro L, Rocha CRR, Menck CFM. Mutagenicity Profile Induced by UVB Light in Human Xeroderma Pigmentosum Group C Cells †. Photochem Photobiol 2021; 98:713-731. [PMID: 34516658 DOI: 10.1111/php.13516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 09/07/2021] [Indexed: 11/29/2022]
Abstract
Nucleotide excision repair (NER) is one of the main pathways for genome protection against structural DNA damage caused by sunlight, which in turn is extensively related to skin cancer development. The mutation spectra induced by UVB were investigated by whole-exome sequencing of randomly selected clones of NER-proficient and XP-C-deficient human skin fibroblasts. As a model, a cell line unable to recognize and remove lesions (XP-C) was used and compared to the complemented isogenic control (COMP). As expected, a significant increase of mutagenesis was observed in irradiated XP-C cells, mainly C>T transitions, but also CC>TT and C>A base substitutions. Remarkably, the C>T mutations occur mainly at the second base of dipyrimidine sites in pyrimidine-rich sequence contexts, with 5'TC sequence the most mutated. Although T>N mutations were also significantly increased, they were not directly related to pyrimidine dimers. Moreover, the large-scale study of a single UVB irradiation on XP-C cells allowed recovering the typical mutation spectrum found in human skin cancer tumors. Eventually, the data may be used for comparison with the mutational profiles of skin tumors obtained from XP-C patients and may help to understand the mutational process in nonaffected individuals.
Collapse
Affiliation(s)
- Nathalia Quintero-Ruiz
- Laboratorio de reparo de DNA, Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Camila Corradi
- Laboratorio de reparo de DNA, Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Natália Cestari Moreno
- Laboratorio de reparo de DNA, Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil.,Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Tiago Antonio de Souza
- Laboratorio de reparo de DNA, Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil.,Tau GC Bioinformatics, São Paulo, Brazil
| | - Ligia Pereira Castro
- Laboratorio de reparo de DNA, Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Clarissa Ribeiro Reily Rocha
- Laboratorio de reparo de DNA, Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil.,Drug resistance and mutagenesis Laboratory, Departmento de Oncologia Clínica e Experimental, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Carlos Frederico Martins Menck
- Laboratorio de reparo de DNA, Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
4
|
Clinical and Mutational Spectrum of Xeroderma Pigmentosum in Egypt: Identification of Six Novel Mutations and Implications for Ancestral Origins. Genes (Basel) 2021; 12:genes12020295. [PMID: 33672602 PMCID: PMC7924063 DOI: 10.3390/genes12020295] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 02/08/2021] [Accepted: 02/09/2021] [Indexed: 12/11/2022] Open
Abstract
Xeroderma pigmentosum is a rare autosomal recessive skin disorder characterized by freckle-like dry pigmented skin, photosensitivity, and photophobia. Skin and ocular symptoms are confined to sun exposed areas of the body. Patients have markedly increased risk for UV-induced skin, ocular, and oral cancers. Some patients develop neurodegenerative symptoms, including diminished tendon reflexes and microcephaly. In this study, we describe clinical and genetic findings of 36 XP patients from Egypt, a highly consanguineous population from North Africa. Thorough clinical evaluation followed by Sanger sequencing of XPA and XPC genes were done. Six novel and seven previously reported mutations were identified. Phenotype-genotype correlation was investigated. We report clinical and molecular findings consistent with previous reports of countries sharing common population structure, and geographical and historical backgrounds with implications on common ancestral origins and historical migration flows. Clinical and genetic profiling improves diagnosis, management, counselling, and implementation of future targeted therapies.
Collapse
|
5
|
Ben Haj Ali A, Messaoud O, Elouej S, Talmoudi F, Ayed W, Mellouli F, Ouederni M, Hadiji S, De Sandre-Giovannoli A, Delague V, Lévy N, Bogliolo M, Surrallés J, Abdelhak S, Amouri A. FANCA Gene Mutations in North African Fanconi Anemia Patients. Front Genet 2021; 12:610050. [PMID: 33679882 PMCID: PMC7933650 DOI: 10.3389/fgene.2021.610050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 01/22/2021] [Indexed: 11/27/2022] Open
Abstract
Populations in North Africa (NA) are characterized by a high rate of consanguinity. Consequently, the proportion of founder mutations might be higher than expected and could be a major cause for the high prevalence of recessive genetic disorders like Fanconi anemia (FA). We report clinical, cytogenetic, and molecular characterization of FANCA in 29 North African FA patients from Tunisia, Libya, and Algeria. Cytogenetic tests revealed high rates of spontaneous chromosome breakages for all patients except two of them. FANCA molecular analysis was performed using three different molecular approaches which allowed us to identify causal mutations as homozygous or compound heterozygous forms. It included a nonsense mutation (c.2749C > T; p.Arg917Ter), one reported missense mutation (c.1304G > A; p.Arg435His), a novel missense variant (c.1258G > A; p.Asp409Glu), and the FANCA most common reported mutation (c.3788_3790delTCT; p.Phe1263del). Furthermore, three founder mutations were identified in 86.7% of the 22 Tunisian patients: (1) a deletion of exon 15, in 36.4% patients (8/22); (2), a deletion of exons 4 and 5 in 23% (5/22) and (3) an intronic mutation c.2222 + 166G > A, in 27.3% (6/22). Despite the relatively small number of patients studied, our results depict the mutational landscape of FA among NA populations and it should be taken into consideration for appropriate genetic counseling.
Collapse
Affiliation(s)
- Abir Ben Haj Ali
- Department of Histology and Cytogenetics, Institut Pasteur de Tunis, Université Tunis El Manar, Tunis, Tunisia.,Laboratory of Biomedical Genomics and Oncogenetics, Institut Pasteur de Tunis, Université Tunis El Manar, Tunis, Tunisia
| | - Olfa Messaoud
- Laboratory of Biomedical Genomics and Oncogenetics, Institut Pasteur de Tunis, Université Tunis El Manar, Tunis, Tunisia
| | - Sahar Elouej
- Laboratory of Biomedical Genomics and Oncogenetics, Institut Pasteur de Tunis, Université Tunis El Manar, Tunis, Tunisia.,INSERM, MMG, UMR 1251, Aix Marseille University, Marseille, France
| | - Faten Talmoudi
- Department of Histology and Cytogenetics, Institut Pasteur de Tunis, Université Tunis El Manar, Tunis, Tunisia.,Laboratory of Biomedical Genomics and Oncogenetics, Institut Pasteur de Tunis, Université Tunis El Manar, Tunis, Tunisia
| | - Wiem Ayed
- Department of Histology and Cytogenetics, Institut Pasteur de Tunis, Université Tunis El Manar, Tunis, Tunisia.,Laboratory of Biomedical Genomics and Oncogenetics, Institut Pasteur de Tunis, Université Tunis El Manar, Tunis, Tunisia
| | - Fethi Mellouli
- Department of Peadiatric Immuno-Haematology, National Bone Marrow Transplantation, Tunis, Tunisia
| | - Monia Ouederni
- Department of Peadiatric Immuno-Haematology, National Bone Marrow Transplantation, Tunis, Tunisia
| | - Sondes Hadiji
- Haematology Department, Hedi Chaker Hospital, University of Sfax, Sfax, Tunisia
| | | | - Valérie Delague
- INSERM, MMG, UMR 1251, Aix Marseille University, Marseille, France
| | - Nicolas Lévy
- INSERM, MMG, UMR 1251, Aix Marseille University, Marseille, France
| | - Massimo Bogliolo
- Research Institute IIB Sant Pau, Hospital de la Santa Creu i Sant Pau, Universitat Autonoma de Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Jordi Surrallés
- Research Institute IIB Sant Pau, Hospital de la Santa Creu i Sant Pau, Universitat Autonoma de Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Sonia Abdelhak
- Laboratory of Biomedical Genomics and Oncogenetics, Institut Pasteur de Tunis, Université Tunis El Manar, Tunis, Tunisia
| | - Ahlem Amouri
- Department of Histology and Cytogenetics, Institut Pasteur de Tunis, Université Tunis El Manar, Tunis, Tunisia.,Laboratory of Biomedical Genomics and Oncogenetics, Institut Pasteur de Tunis, Université Tunis El Manar, Tunis, Tunisia
| |
Collapse
|
6
|
Fayyad N, Kobaisi F, Beal D, Mahfouf W, Ged C, Morice-Picard F, Fayyad-Kazan M, Fayyad-Kazan H, Badran B, Rezvani HR, Rachidi W. Xeroderma Pigmentosum C (XPC) Mutations in Primary Fibroblasts Impair Base Excision Repair Pathway and Increase Oxidative DNA Damage. Front Genet 2020; 11:561687. [PMID: 33329698 PMCID: PMC7728722 DOI: 10.3389/fgene.2020.561687] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 10/28/2020] [Indexed: 12/16/2022] Open
Abstract
Xeroderma Pigmentosum C (XPC) is a multi-functional protein that is involved not only in the repair of bulky lesions, post-irradiation, via nucleotide excision repair (NER) per se but also in oxidative DNA damage mending. Since base excision repair (BER) is the primary regulator of oxidative DNA damage, we characterized, post-Ultraviolet B-rays (UVB)-irradiation, the detailed effect of three different XPC mutations in primary fibroblasts derived from XP-C patients on mRNA, protein expression and activity of different BER factors. We found that XP-C fibroblasts are characterized by downregulated expression of different BER factors including OGG1, MYH, APE1, LIG3, XRCC1, and Polβ. Such a downregulation was also observed at OGG1, MYH, and APE1 protein levels. This was accompanied with an increase in DNA oxidative lesions, as evidenced by 8-oxoguanine levels, immediately post-UVB-irradiation. Unlike in normal control cells, these oxidative lesions persisted over time in XP-C cells having lower excision repair capacities. Taken together, our results indicated that an impaired BER pathway in XP-C fibroblasts leads to longer persistence and delayed repair of oxidative DNA damage. This might explain the diverse clinical phenotypes in XP-C patients suffering from cancer in both photo-protected and photo-exposed areas. Therapeutic strategies based on reinforcement of BER pathway might therefore represent an innovative path for limiting the drawbacks of NER-based diseases, as in XP-C case.
Collapse
Affiliation(s)
- Nour Fayyad
- University Grenoble Alpes, SyMMES/CIBEST UMR 5819 UGA-CNRS-CEA, Grenoble, France
| | - Farah Kobaisi
- University Grenoble Alpes, SyMMES/CIBEST UMR 5819 UGA-CNRS-CEA, Grenoble, France.,Laboratory of Cancer Biology and Molecular Immunology, Faculty of Sciences I, Lebanese University, Hadath, Lebanon.,University Grenoble Alpes, CEA, Inserm, BIG-BGE U1038, Grenoble, France
| | - David Beal
- University Grenoble Alpes, SyMMES/CIBEST UMR 5819 UGA-CNRS-CEA, Grenoble, France
| | - Walid Mahfouf
- Université de Bordeaux, Inserm, BMGIC, U1035, Bordeaux, France
| | - Cécile Ged
- Université de Bordeaux, Inserm, BMGIC, U1035, Bordeaux, France.,Centre de Référence pour les Maladies Rares de la Peau, CHU de Bordeaux, Bordeaux, France
| | - Fanny Morice-Picard
- Centre de Référence pour les Maladies Rares de la Peau, CHU de Bordeaux, Bordeaux, France
| | - Mohammad Fayyad-Kazan
- Laboratory of Cancer Biology and Molecular Immunology, Faculty of Sciences I, Lebanese University, Hadath, Lebanon
| | - Hussein Fayyad-Kazan
- Laboratory of Cancer Biology and Molecular Immunology, Faculty of Sciences I, Lebanese University, Hadath, Lebanon
| | - Bassam Badran
- Laboratory of Cancer Biology and Molecular Immunology, Faculty of Sciences I, Lebanese University, Hadath, Lebanon
| | - Hamid R Rezvani
- Université de Bordeaux, Inserm, BMGIC, U1035, Bordeaux, France.,Centre de Référence pour les Maladies Rares de la Peau, CHU de Bordeaux, Bordeaux, France
| | - Walid Rachidi
- University Grenoble Alpes, SyMMES/CIBEST UMR 5819 UGA-CNRS-CEA, Grenoble, France.,University Grenoble Alpes, CEA, Inserm, BIG-BGE U1038, Grenoble, France
| |
Collapse
|
7
|
Chikhaoui A, Elouej S, Nabouli I, Jones M, Lagarde A, Ben Rekaya M, Messaoud O, Hamdi Y, Zghal M, Delague V, Levy N, De Sandre-Giovannoli A, Abdelhak S, Yacoub-Youssef H. Identification of a ERCC5 c.2333T>C (L778P) Variant in Two Tunisian Siblings With Mild Xeroderma Pigmentosum Phenotype. Front Genet 2019; 10:111. [PMID: 30838033 PMCID: PMC6383105 DOI: 10.3389/fgene.2019.00111] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 01/30/2019] [Indexed: 11/22/2022] Open
Abstract
Xeroderma pigmentosum (XP) is a rare autosomal recessive disorder due to a defect in the nucleotide excision repair (NER) DNA repair pathway, characterized by severe sunburn development of freckles, premature skin aging, and susceptibility to develop cancers at an average age of eight. XP is an example of accelerated photo-aging. It is a genetically and clinically heterogeneous disease. Eight complementation groups have been described worldwide. In Tunisia, five groups have been already identified. In this work, we investigated the genetic etiology in a family with an atypically mild XP phenotype. Two Tunisian siblings born from first-degree consanguineous parents underwent clinical examination in the dermatology department of the Charles Nicolle Hospital on the basis of acute sunburn reaction and mild neurological disorders. Blood samples were collected from two affected siblings after written informed consent. As all mutations reported in Tunisia have been excluded using Sanger sequencing, we carried out mutational analysis through a targeted panel of gene sequencing using the Agilent HaloPlex target enrichment system. Our clinical study shows, in both patients, the presence of achromic macula in sun exposed area with dermatological feature suggestive of Xeroderma pigmentosum disease. No developmental and neurological disorders were observed except mild intellectual disability. Genetic investigation shows that both patients were carriers of an homozygous T to C transition at the nucleotide position c.2333, causing the leucine to proline amino acid change at the position 778 (p.Leu778Pro) of the ERCC5 gene, and resulting in an XP-G phenotype. The same variation was previously reported at the heterozygous state in a patient cell line in Europe, for which no clinical data were available and was suggested to confer an XP/CS phenotype based on functional tests. This study contributes to further characterization of the mutation spectrum of XP in consanguineous Tunisian families and is potentially helpful for early diagnosis. It also indicates that the genotype-phenotype correlation is not always coherent for patients with mild clinical features. These data therefore suggest that targeted NGS is a highly informative diagnostic strategy, which can be used for XP molecular etiology determination.
Collapse
Affiliation(s)
- Asma Chikhaoui
- Laboratoire de Génomique Biomédicale et Oncogénétique, Institut Pasteur de Tunis, Université de Tunis El Manar, Tunis, Tunisia
| | - Sahar Elouej
- Laboratoire de Génomique Biomédicale et Oncogénétique, Institut Pasteur de Tunis, Université de Tunis El Manar, Tunis, Tunisia.,Aix Marseille Univ, Inserm, MMG, U 1251, Marseille, France
| | - Imen Nabouli
- Laboratoire de Génomique Biomédicale et Oncogénétique, Institut Pasteur de Tunis, Université de Tunis El Manar, Tunis, Tunisia
| | - Meriem Jones
- Laboratoire de Génomique Biomédicale et Oncogénétique, Institut Pasteur de Tunis, Université de Tunis El Manar, Tunis, Tunisia.,Service de Dermatologie, Hôpital Charles Nicolle, Tunis, Tunisia
| | - Arnaud Lagarde
- Aix Marseille Univ, Inserm, MMG, U 1251, Marseille, France
| | - Meriem Ben Rekaya
- Laboratoire de Génomique Biomédicale et Oncogénétique, Institut Pasteur de Tunis, Université de Tunis El Manar, Tunis, Tunisia
| | - Olfa Messaoud
- Laboratoire de Génomique Biomédicale et Oncogénétique, Institut Pasteur de Tunis, Université de Tunis El Manar, Tunis, Tunisia
| | - Yosr Hamdi
- Laboratoire de Génomique Biomédicale et Oncogénétique, Institut Pasteur de Tunis, Université de Tunis El Manar, Tunis, Tunisia
| | - Mohamed Zghal
- Service de Dermatologie, Hôpital Charles Nicolle, Tunis, Tunisia
| | | | - Nicolas Levy
- Aix Marseille Univ, Inserm, MMG, U 1251, Marseille, France.,Département de Génétique Médicale, AP-HM, Hôpital la Timone, Marseille, France
| | - Annachiara De Sandre-Giovannoli
- Aix Marseille Univ, Inserm, MMG, U 1251, Marseille, France.,Département de Génétique Médicale, AP-HM, Hôpital la Timone, Marseille, France
| | - Sonia Abdelhak
- Laboratoire de Génomique Biomédicale et Oncogénétique, Institut Pasteur de Tunis, Université de Tunis El Manar, Tunis, Tunisia
| | - Houda Yacoub-Youssef
- Laboratoire de Génomique Biomédicale et Oncogénétique, Institut Pasteur de Tunis, Université de Tunis El Manar, Tunis, Tunisia
| |
Collapse
|
8
|
Kindil Z, Senhaji MA, Bakhchane A, Charoute H, Chihab S, Nadifi S, Barakat A. Genetic investigation of XPA gene: high frequency of the c.682C>T mutation in Moroccan XP patients with moderate clinical profile. BMC Res Notes 2017; 10:704. [PMID: 29208038 PMCID: PMC5718079 DOI: 10.1186/s13104-017-3042-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 11/30/2017] [Indexed: 01/19/2023] Open
Abstract
OBJECTIVE Xeroderma pigmentosum (XP) is a genetically and clinically heterogeneous disease, associated with an inherited defect in one of eight different genes (XPA to XPG and XPV). In addition to the early onset of the skin manifestations, the XP group A is marked by the presence of a mild to severe neural disorders which appear tardily and worsens with age. In this study, 9 patients with moderate clinical profile belonging to 6 XP families were recruited to determine the XPA mutational spectrum in Morocco, using the direct sequencing of the whole coding region of the XPA gene. RESULTS The genetic investigation of the XPA gene showed that 7 from 9 patients were homozygous for the c.682C>T, p.Arg228X mutation, while all their investigated family members were heterozygous. The frequency of this mutation was estimated to be 83.33% (5/6 families) .The molecular analysis of the 5 other exons of the XPA gene, showed that the 2 negative siblings carried no mutation in the XPA gene. This finding suggests that c.682C>T (p.Arg228X) mutation is relatively associated with moderate phenotype in XP group A Moroccan families; this result will also contribute to improve the molecular diagnosis of XP disease in Moroccan patients.
Collapse
Affiliation(s)
- Zineb Kindil
- Human Molecular Genetics Laboratory, Institut Pasteur du Maroc, 1, Place Louis Pasteur, 20360, Casablanca, Morocco.,Laboratory of Genetics and Molecular Pathology, Faculty of Medicine, Hassan II University, Casablanca, Morocco
| | - Mohamed Amine Senhaji
- Human Molecular Genetics Laboratory, Institut Pasteur du Maroc, 1, Place Louis Pasteur, 20360, Casablanca, Morocco
| | - Amina Bakhchane
- Human Molecular Genetics Laboratory, Institut Pasteur du Maroc, 1, Place Louis Pasteur, 20360, Casablanca, Morocco
| | - Hicham Charoute
- Human Molecular Genetics Laboratory, Institut Pasteur du Maroc, 1, Place Louis Pasteur, 20360, Casablanca, Morocco
| | - Soumia Chihab
- Department of Dermatology, Hospital University Ibn Rochd, Casablanca, Morocco
| | - Sellama Nadifi
- Laboratory of Genetics and Molecular Pathology, Faculty of Medicine, Hassan II University, Casablanca, Morocco
| | - Abdelhamid Barakat
- Human Molecular Genetics Laboratory, Institut Pasteur du Maroc, 1, Place Louis Pasteur, 20360, Casablanca, Morocco.
| |
Collapse
|
9
|
Diagnosis of Xeroderma Pigmentosum Groups A and C by Detection of Two Prevalent Mutations in West Algerian Population: A Rapid Genotyping Tool for the Frequent XPC Mutation c.1643_1644delTG. BIOMED RESEARCH INTERNATIONAL 2016; 2016:2180946. [PMID: 27413738 PMCID: PMC4931069 DOI: 10.1155/2016/2180946] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 11/13/2015] [Accepted: 01/28/2016] [Indexed: 11/18/2022]
Abstract
Xeroderma pigmentosum (XP) is a rare autosomal recessive disorder. Considering that XP patients have a defect of the nucleotide excision repair (NER) pathway which enables them to repair DNA damage caused by UV light, they have an increased risk of developing skin and eyes cancers. In the present study, we investigated the involvement of the prevalent XPA and XPC genes mutations—nonsense mutation (c.682C>T, p.Arg228X) and a two-base-pair (2 bp) deletion (c.1643_1644delTG or p.Val548Ala fsX25), respectively—in 19 index cases from 19 unrelated families in the West of Algeria. For the genetic diagnosis of XPA gene, we proceeded to PCR-RFLP. For the XPC gene, we validated a routine analysis which includes a specific amplification of a short region surrounding the 2 bp deletion using a fluorescent primer and fragment sizing (GeneScan size) on a sequencing gel. Among the 19 index cases, there were 17 homozygous patients for the 2 bp deletion in the XPC gene and 2 homozygous patients carrying the nonsense XPA mutation. Finally, XPC appears to be the major disease-causing gene concerning xeroderma pigmentosum in North Africa. The use of fragment sizing is the simplest method to analyze this 2 bp deletion for the DNA samples coming from countries where the mutation c.1643_1644delTG of XPC gene is prevalent.
Collapse
|
10
|
Further evidence of mutational heterogeneity of the XPC gene in Tunisian families: a spectrum of private and ethnic specific mutations. BIOMED RESEARCH INTERNATIONAL 2013; 2013:316286. [PMID: 23984341 PMCID: PMC3741899 DOI: 10.1155/2013/316286] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Revised: 05/27/2013] [Accepted: 07/02/2013] [Indexed: 11/24/2022]
Abstract
Xeroderma Pigmentosum (XP) is a rare recessive autosomal cancer prone disease, characterized by UV hypersensitivity and early appearance of cutaneous and ocular malignancies. We investigated four unrelated patients suspected to be XP-C. To confirm linkage to XPC gene, genotyping and direct sequencing of XPC gene were performed. Pathogenic effect of novel mutations was confirmed by reverse Transciptase PCR. Mutation screening revealed the presence of two novel mutations g.18246G>A and g.18810G>T in the XPC gene (NG_011763.1). The first is present in one patient XP50NEF, but the second is present in three unrelated patients (XP16KEB, XP28SFA, and XP45GB). These 3 patients are from three different cities of Southern Tunisia and bear the same haplotype, suggesting a founder effect. Reverse Transciptase PCR revealed the absence of the XPC mRNA. In Tunisia, as observed in an other severe genodermatosis, the mutational spectrum of XP-C group seems to be homogeneous with some clusters of heterogeneity that should be taken into account to improve molecular diagnosis of this disease.
Collapse
|
11
|
The Moroccan Genetic Disease Database (MGDD): a database for DNA variations related to inherited disorders and disease susceptibility. Eur J Hum Genet 2013; 22:322-6. [PMID: 23860041 DOI: 10.1038/ejhg.2013.151] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Revised: 05/28/2013] [Accepted: 06/11/2013] [Indexed: 11/09/2022] Open
Abstract
National and ethnic mutation databases provide comprehensive information about genetic variations reported in a population or an ethnic group. In this paper, we present the Moroccan Genetic Disease Database (MGDD), a catalogue of genetic data related to diseases identified in the Moroccan population. We used the PubMed, Web of Science and Google Scholar databases to identify available articles published until April 2013. The Database is designed and implemented on a three-tier model using Mysql relational database and the PHP programming language. To date, the database contains 425 mutations and 208 polymorphisms found in 301 genes and 259 diseases. Most Mendelian diseases in the Moroccan population follow autosomal recessive mode of inheritance (74.17%) and affect endocrine, nutritional and metabolic physiology. The MGDD database provides reference information for researchers, clinicians and health professionals through a user-friendly Web interface. Its content should be useful to improve researches in human molecular genetics, disease diagnoses and design of association studies. MGDD can be publicly accessed at http://mgdd.pasteur.ma.
Collapse
|