1
|
Mayer Y, Shibli JA, Saada HA, Melo M, Gabay E, Barak S, Ginesin O. Pulsed Electromagnetic Therapy: Literature Review and Current Update. Braz Dent J 2024; 35:e246109. [PMID: 39476109 PMCID: PMC11506130 DOI: 10.1590/0103-6440202406109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 06/06/2024] [Indexed: 11/03/2024] Open
Abstract
This manuscript provides a comprehensive review of Pulsed Electromagnetic Fields (PEMFs), highlighting their therapeutic potential and historical evolution. PEMFs, recognized for their non-invasive and safe therapeutic benefits, interact with biological systems to influence processes such as DNA synthesis, gene expression, and cell migration. Clinically, PEMFs are applied in diverse treatments, including pain relief, inflammation management, and enhancing bone and wound healing. The manuscript delves into the historical development of PEMF technology, tracing its origins to the 19th century and exploring significant advancements, such as the discovery of the piezoelectric effect in bones. It presents detailed in-vitro and in-vivo studies demonstrating PEMFs' impact on cellular activities and their modulation of key biological pathways. Additionally, the review emphasizes PEMFs' applications in general medicine and dentistry, showcasing their role in promoting tissue healing, osseointegration in dental implants, and antimicrobial effects. The introduction of the Miniaturized Electromagnetic Device (MED) in dental implantology marks a significant advancement, enhancing implant stability and reducing inflammatory responses. Overall, the manuscript underscores PEMFs' promising applications in advancing patient care and treatment methodologies across medical and dental fields.
Collapse
Affiliation(s)
- Yaniv Mayer
- Department of Periodontology, school of graduate dentistry, Rambam Health Care Campus (RHCC), Haifa, Israel
- Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Jamil Awad Shibli
- Department of Periodontology and Oral Implantology, University of Guarulhos, Guarulhos, Brazil
| | - Haia Abu Saada
- Department of Periodontology, school of graduate dentistry, Rambam Health Care Campus (RHCC), Haifa, Israel
| | - Marcelo Melo
- Department of Periodontology and Oral Implantology, University of Guarulhos, Guarulhos, Brazil
| | - Eran Gabay
- Department of Periodontology, school of graduate dentistry, Rambam Health Care Campus (RHCC), Haifa, Israel
- Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Shlomo Barak
- Department of Periodontology and Oral Implantology, University of Guarulhos, Guarulhos, Brazil
| | - Ofir Ginesin
- Department of Periodontology, school of graduate dentistry, Rambam Health Care Campus (RHCC), Haifa, Israel
- Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
2
|
Lama SBC, Pérez-González LA, Kosoglu MA, Dennis R, Ortega-Quijano D. Physical Treatments and Therapies for Androgenetic Alopecia. J Clin Med 2024; 13:4534. [PMID: 39124800 PMCID: PMC11313483 DOI: 10.3390/jcm13154534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 07/25/2024] [Accepted: 07/30/2024] [Indexed: 08/12/2024] Open
Abstract
Androgenetic alopecia, the most common cause of hair loss affecting both men and women, is typically treated using pharmaceutical options, such as minoxidil and finasteride. While these medications work for many individuals, they are not suitable options for all. To date, the only non-pharmaceutical option that the United States Food and Drug Administration has cleared as a treatment for androgenetic alopecia is low-level laser therapy (LLLT). Numerous clinical trials utilizing LLLT devices of various types are available. However, a myriad of other physical treatments for this form of hair loss have been reported in the literature. This review evaluated the effectiveness of microneedling, pulsed electromagnetic field (PEMF) therapy, low-level laser therapy (LLLT), fractional laser therapy, and nonablative laser therapy for the treatment of androgenetic alopecia (AGA). It also explores the potential of multimodal treatments combining these physical therapies. The majority of evidence in the literature supports LLLT as a physical therapy for androgenetic alopecia. However, other physical treatments, such as nonablative laser treatments, and multimodal approaches, such as PEMF-LLLT, seem to have the potential to be equally or more promising and merit further exploration.
Collapse
Affiliation(s)
| | | | | | - Robert Dennis
- Biomedical Engineering Departments, UNC Chapel Hill and NC State University, Raleigh, NC 27695, USA;
| | - Daniel Ortega-Quijano
- Dermatology Department, University Hospital Ramón y Cajal, 28034 Madrid, Spain; (L.A.P.-G.); (D.O.-Q.)
- Hair Disorders Unit, Grupo Pedro Jaén, 28006 Madrid, Spain
| |
Collapse
|
3
|
Su DB, Zhao ZX, Yin DC, Ye YJ. Promising application of pulsed electromagnetic fields on tissue repair and regeneration. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2024; 187:36-50. [PMID: 38280492 DOI: 10.1016/j.pbiomolbio.2024.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 12/14/2023] [Accepted: 01/19/2024] [Indexed: 01/29/2024]
Abstract
Tissue repair and regeneration is a vital biological process in organisms, which is influenced by various internal mechanisms and microenvironments. Pulsed electromagnetic fields (PEMFs) are becoming a potential medical technology due to its advantages of effectiveness and non-invasiveness. Numerous studies have demonstrated that PEMFs can stimulate stem cell proliferation and differentiation, regulate inflammatory reactions, accelerate wound healing, which is of great significance for tissue regeneration and repair, providing a solid basis for enlarging its clinical application. However, some important issues such as optimal parameter system and potential deep mechanisms remain to be resolved due to PEMFs window effect and biological complexity. Thus, it is of great importance to comprehensively summarizing and analyzing the literature related to the biological effects of PEMFs in tissue regeneration and repair. This review expounded the biological effects of PEMFs on stem cells, inflammation response, wound healing and musculoskeletal disorders in order to improve the application value of PEMFs in medicine. It is believed that with the continuous exploration of biological effects of PEMFs, it will be applied increasingly widely to tissue repair and other diseases.
Collapse
Affiliation(s)
- Dan-Bo Su
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Zi-Xu Zhao
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Da-Chuan Yin
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Ya-Jing Ye
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, China.
| |
Collapse
|
4
|
Ozer AY, Keskin İ, Kelestemur T, Ayturk N, Ersavas C, Gunal MY. Efficacy of one-hour negative pressure wound therapy and magnetic field energy in wound healing. J Wound Care 2024; 33:i-ix. [PMID: 38197308 DOI: 10.12968/jowc.2024.33.sup1.i] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
OBJECTIVE Wound healing is an important aspect of health but needs further research to identify the effects and interactions of different treatment approaches on healing. The aims of this study were to investigate the effectiveness of one-hour negative pressure wound therapy (NPWT) and compare histological differences between one-hour NPWT and magnetic field energy (MFE) in rats on early-stage wound healing, wound size and angiogenesis. METHOD Standardised wounds were created on Wistar rats that were allocated and divided into NPWT, MFE and control groups. Both treatments were applied for 1 hour/day for 10 days. Wound size, histological changes and wound area blood flow were assessed. RESULTS The wound size of all groups was similar on days 0, 2 and 10. The MFE group's wound size was smaller than the NPWT group on days 4, 6 and 8 (p<0.05). Development of the granulation tissue in both the one-hour NPWT and MFE groups was greater than in the control group. Additionally, the inflammatory phase was shorter, and wounds entered the proliferative stage faster in the MFE group than both of the other groups. CONCLUSION Treatment with MFE may be more effective in terms of early stage wound closure and angiogenesis. On the other hand, the NPWT group's wound area blood flow was significantly greater than the other two groups. MFE is superior to one-hour NPWT in terms of wound area and angiogenesis. Furthermore, it is worthwhile to note that one-hour NPWT increases bloodflow in the wound area, which stimulates healing.
Collapse
Affiliation(s)
- Aysel Y Ozer
- Department of Physiotherapy and Rehabilitation, Health Sciences Faculty, Marmara University, Istanbul, Turkey
| | - İlknur Keskin
- Department of Histology and Embryology, School of Medicine, Istanbul Medipol University, Istanbul, Turkey
| | - Taha Kelestemur
- Department of Physiology, School of Medicine, Regenerative and Restorative Medical Research Center, Istanbul Medipol University, Istanbul, Turkey
| | - Nilufer Ayturk
- Department of Histology and Embryology, School of Medicine, Çanakkale Onsekiz Mart University, Çanakkale, Turkey
| | - Cenk Ersavas
- Department of General Surgery, School of Medicine, Istanbul Arel University, Istanbul, Turkey
| | - Mehmet Y Gunal
- Department of Physiology, School of Medicine, Alanya Alaaddin Keykubat University Antalya, Turkey
| |
Collapse
|
5
|
Savchenko L, Martinelli I, Marsal D, Zhdan V, Tao J, Kunduzova O. Myocardial capacity of mitochondrial oxidative phosphorylation in response to prolonged electromagnetic stress. Front Cardiovasc Med 2023; 10:1205893. [PMID: 37351281 PMCID: PMC10282661 DOI: 10.3389/fcvm.2023.1205893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 05/22/2023] [Indexed: 06/24/2023] Open
Abstract
Introduction Mitochondria are central energy generators for the heart, producing adenosine triphosphate (ATP) through the oxidative phosphorylation (OXPHOS) system. However, mitochondria also guide critical cell decisions and responses to the environmental stressors. Methods This study evaluated whether prolonged electromagnetic stress affects the mitochondrial OXPHOS system and structural modifications of the myocardium. To induce prolonged electromagnetic stress, mice were exposed to 915 MHz electromagnetic fields (EMFs) for 28 days. Results Analysis of mitochondrial OXPHOS capacity in EMF-exposed mice pointed to a significant increase in cardiac protein expression of the Complex I, II, III and IV subunits, while expression level of α-subunit of ATP synthase (Complex V) was stable among groups. Furthermore, measurement of respiratory function in isolated cardiac mitochondria using the Seahorse XF24 analyzer demonstrated that prolonged electromagnetic stress modifies the mitochondrial respiratory capacity. However, the plasma level of malondialdehyde, an indicator of oxidative stress, and myocardial expression of mitochondria-resident antioxidant enzyme superoxide dismutase 2 remained unchanged in EMF-exposed mice as compared to controls. At the structural and functional state of left ventricles, no abnormalities were identified in the heart of mice subjected to electromagnetic stress. Discussion Taken together, these data suggest that prolonged exposure to EMFs could affect mitochondrial oxidative metabolism through modulating cardiac OXPHOS system.
Collapse
Affiliation(s)
- Lesia Savchenko
- National Institute of Health and Medical Research (INSERM) U1297, Toulouse, France
- Toulouse University, Toulouse, Cedex 9, France
- Poltava State Medical University, Poltava, Ukraine
| | - Ilenia Martinelli
- National Institute of Health and Medical Research (INSERM) U1297, Toulouse, France
- Toulouse University, Toulouse, Cedex 9, France
| | - Dimitri Marsal
- National Institute of Health and Medical Research (INSERM) U1297, Toulouse, France
- Toulouse University, Toulouse, Cedex 9, France
| | | | - Junwu Tao
- Toulouse, INP-ENSEEIHT, LAPLACE, Toulouse, France
| | - Oksana Kunduzova
- National Institute of Health and Medical Research (INSERM) U1297, Toulouse, France
- Toulouse University, Toulouse, Cedex 9, France
| |
Collapse
|
6
|
Caliogna L, Bina V, Brancato AM, Gastaldi G, Annunziata S, Mosconi M, Grassi FA, Benazzo F, Pasta G. The Role of PEMFs on Bone Healing: An In Vitro Study. Int J Mol Sci 2022; 23:ijms232214298. [PMID: 36430775 PMCID: PMC9693979 DOI: 10.3390/ijms232214298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/10/2022] [Accepted: 11/16/2022] [Indexed: 11/19/2022] Open
Abstract
Bone responses to pulsed electromagnetic fields (PEMFs) have been extensively studied by using devices that expose bone cells to PEMFs to stimulate extracellular matrix (ECM) synthesis for bone and cartilage repair. The aim of this work was to highlight in which bone healing phase PEMFs exert their action. Specifically, we evaluated the effects of PEMFs both on human adipose mesenchymal stem cells (hASCs) and on primary human osteoblasts (hOBs) by testing gene and protein expression of early bone markers (on hASCs) and the synthesis of late bone-specific proteins (on hOBs) as markers of bone remodeling. Our results indicate that PEMFs seem to exert their action on bone formation, acting on osteogenic precursors (hASCs) and inducing the commitment towards the differentiation pathways, unlike mature and terminally differentiated cells (hOBs), which are known to resist homeostasis perturbation more and seem to be much less responsive than mesenchymal stem cells. Understanding the role of PEMFs on bone regenerative processes provides important details for their clinical application.
Collapse
Affiliation(s)
- Laura Caliogna
- Orthopedics and Traumatology Clinic, IRCCS Policlinico San Matteo Foundation, 27100 Pavia, Italy
| | - Valentina Bina
- Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy
- Correspondence: (V.B.); (A.M.B.)
| | - Alice Maria Brancato
- Orthopedics and Traumatology Clinic, IRCCS Policlinico San Matteo Foundation, 27100 Pavia, Italy
- Correspondence: (V.B.); (A.M.B.)
| | - Giulia Gastaldi
- Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy
- Centre for Health Technologies, University of Pavia, 27100 Pavia, Italy
| | - Salvatore Annunziata
- Orthopedics and Traumatology Clinic, IRCCS Policlinico San Matteo Foundation, 27100 Pavia, Italy
| | - Mario Mosconi
- Orthopedics and Traumatology Clinic, IRCCS Policlinico San Matteo Foundation, 27100 Pavia, Italy
- Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, 27100 Pavia, Italy
| | - Federico Alberto Grassi
- Orthopedics and Traumatology Clinic, IRCCS Policlinico San Matteo Foundation, 27100 Pavia, Italy
- Centre for Health Technologies, University of Pavia, 27100 Pavia, Italy
- Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, 27100 Pavia, Italy
| | - Francesco Benazzo
- Sezione di Chirurgia Protesica ad Indirizzo Robotico-Unità di Traumatologia dello Sport, U.O. Ortopedia e Traumatologia Fondazione Poliambulanza, 25124 Brescia, Italy
| | - Gianluigi Pasta
- Orthopedics and Traumatology Clinic, IRCCS Policlinico San Matteo Foundation, 27100 Pavia, Italy
| |
Collapse
|
7
|
Mayrovitz HN, Maqsood R, Tawakalzada AS. Do Magnetic Fields Have a Place in Treating Vascular Complications in Diabetes? Cureus 2022; 14:e24883. [PMID: 35698680 PMCID: PMC9184174 DOI: 10.7759/cureus.24883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 05/09/2022] [Indexed: 11/18/2022] Open
Abstract
The use of electromagnetic field therapy (EMFT) is a non-invasive, potential alternative or complementary choice in the treatment of wounds, chronic pain, neuropathy, and other medical conditions, including tissue repair and cell proliferation. Static magnetic fields (SMFs) have been reported to increase microcirculatory blood flow by mediating vasodilation via nitric oxide. Studies report that SMF exposure causes homeostatic, normalizing effects on the vascular tone that may have beneficial effects in situations where tissue perfusion is limited, such as may be present in diabetes. Pulsed electromagnetic fields (PEMFs) have also shown promise in treating diabetic wounds by improving wound healing rates and other attributes. Our purpose was to critically review prior applications of EMFT for relevancy and effectiveness in treating diabetic complications. The goal was to provide information to allow for informed decisions on the possible use of these modalities in the treatment of persons with diabetic complications. The focus was on the following major areas: wound healing, neuropathy, blood glucose control, blood flow, inflammation and oxidative stress.
Collapse
Affiliation(s)
- Harvey N Mayrovitz
- Medical Education, Nova Southeastern University Dr. Kiran C. Patel College of Allopathic Medicine, Davie, USA
| | - Raneem Maqsood
- Medical School, Nova Southeastern University Dr. Kiran C. Patel College of Osteopathic Medicine, Fort Lauderdale, USA
| | - Aneil S Tawakalzada
- College of Osteopathic Medicine, Nova Southeastern University Dr. Kiran C. Patel College of Osteopathic Medicine, Fort Lauderdale, USA
| |
Collapse
|
8
|
Latrach R, Ben Chehida N, Allous A, Redid H, Rejeb A, Abdelmelek H. Effects of sub-acute co-exposure to WIFI (2.45 GHz) and Pistacia lentiscus oil treatment on wound healing by primary intention in male rabbits. Vet Med Sci 2022; 8:1085-1095. [PMID: 35120283 PMCID: PMC9122460 DOI: 10.1002/vms3.753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Background The bioeffects of WIFI on cutaneous wound healing remains unexplored. In addition, several medicinal plant products including lentisk oil have been shown to interfere with wound healing process. Since the use of this oil is increasing, the co‐exposure (WIFI‐Lentisk oil) assessment is of paramount importance. Objectives We aimed in the present study to investigate the effects of WIFI exposure as well as the application of Pistacia lentiscus oil on sutured wounds (SW). Methods New Zealand male rabbits (n = 24) were used and randomly divided into four groups of six animals each: a control group (SW) and three experimental groups (i) a first group exposed to WIFI (2.45 GHz, 6 h/day) during 16 days (SWW); (ii) a second group exposed to WIFI (2.45 GHz, 6 h/day) during 16 days and treated with lentisk oil (SWWL) and (iii) a third group not exposed to WIFI but treated with lentisk oil (SWL). The wound healing was evaluated by monitoring clinical parameters (temperature, food intake, relative weight variation, and macroscopic aspect) and histology. Results The mean food intake was higher in the SWWL group compared to the three other groups (p < 0.001) and higher in the SWL group compared to the SW group (p = 0.014). The exposition to WIFI (SWW group) or lentisk oil application (SWL group) can promote the collagen deposition and ameliorate the general aspect of wounds. By contrast, the co‐exposure to WIFI and lentisk oil (SWWL) results in antagonist effects and extends the inflammatory phase of wound healing. Conclusions Wounds treated topically with Pistacia lentiscus oil should not be exposed to WIFI.
Collapse
Affiliation(s)
- R Latrach
- Surgery Service, Clinical Department, National School of Veterinary Medicine of Sidi Thabet, Sidi Thabet, Tunisia
| | - N Ben Chehida
- Surgery Service, Clinical Department, National School of Veterinary Medicine of Sidi Thabet, Sidi Thabet, Tunisia
| | - A Allous
- Surgery Service, Clinical Department, National School of Veterinary Medicine of Sidi Thabet, Sidi Thabet, Tunisia
| | - H Redid
- Surgery Service, Clinical Department, National School of Veterinary Medicine of Sidi Thabet, Sidi Thabet, Tunisia
| | - A Rejeb
- Pathological Anatomy Service, Clinical Department, National School of Veterinary Medicine of Sidi Thabet, Sidi Thabet, Tunisia
| | - H Abdelmelek
- Laboratory of Integrated Physiology, Faculty of Sciences of Bizerte, University of Carthage, Tunis, Tunisia
| |
Collapse
|
9
|
Lee JW, Kim JY, Lee NR, Lee YH. Effect of pulsed electromagnetic fields stimulation on ischemic skin model. Electromagn Biol Med 2022; 41:15-24. [PMID: 34380341 DOI: 10.1080/15368378.2021.1963763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 05/01/2021] [Indexed: 10/20/2022]
Abstract
This study aimed to evaluate the effect of Pulsed Electromagnetic Fields (PEMF) in improving blood flow reduction and tissue necrosis of ischemic animal induced by skin flap. In each experiment, twenty rats (280-320 g) were randomly divided into control group (n = 10) and PEMF (n = 10) group. All of the rats were performed skin flap in back. In the PEMF group, PEMF (1 Hz, 10 mT) was performed in each experiment. In Experiment-1 (n = 20), PEMF was performed for 90 minutes. In Experiment-2 (n = 20), additionally, a blocking film was inserted, and suture was performed to induce necrosis. PEMF was performed for 30 minutes each day for 7 days. As a result of Speckle-Flow Index (SFI) analysis, in the control group, blood flow continued to decrease immediately after the procedure. In the PEMF group, blood flow was remained constant after 30 minutes and increased after 60 minutes. The blood flow in a specific region substantially increased from the initial state. As a result of skin necrosis analysis, the progression rate in the PEMF group was slower than that of the control group. The rate of necrosis in the PEMF group decreased dramatically from the 6th day, and there was a statistically significant difference between the two groups at the 7th day (p < .05). In this study, it was confirmed that PEMF (1 Hz, 10 mT) has a blood flow improvement and skin tissue necrosis alleviation in the ischemic flap animal model.
Collapse
Affiliation(s)
- Ja-Woo Lee
- Department of Biomedical Engineering, Yonsei University, Wonju, Republic of Korea
| | - Jun-Young Kim
- Department of Biomedical Engineering, Yonsei University, Wonju, Republic of Korea
| | - Na-Ra Lee
- Department of Biomedical Engineering, Yonsei University, Wonju, Republic of Korea
| | - Yong-Heum Lee
- Department of Biomedical Engineering, Yonsei University, Wonju, Republic of Korea
| |
Collapse
|
10
|
Wan R, Weissman JP, Grundman K, Lang L, Grybowski DJ, Galiano RD. Diabetic wound healing: The impact of diabetes on myofibroblast activity and its potential therapeutic treatments. Wound Repair Regen 2021; 29:573-581. [PMID: 34157786 DOI: 10.1111/wrr.12954] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 06/04/2021] [Accepted: 06/07/2021] [Indexed: 12/12/2022]
Abstract
Diabetes is a systemic disease in which the body cannot regulate the amount of sugar, namely glucose, in the blood. High glucose toxicity has been implicated in the dysfunction of diabetic wound healing, following insufficient production (Type 1) or inadequate usage (Type 2) of insulin. Chronic non-healing diabetic wounds are one of the major complications of both types of diabetes, which are serious concerns for public health and can impact the life quality of patients significantly. In general, diabetic wounds are characterized by deficient chemokine production, an unusual inflammatory response, lack of angiogenesis and epithelialization, and dysfunction of fibroblasts. Increasing scientific evidence from available experimental studies on animal and cell models strongly associates impaired wound healing in diabetes with dysregulated fibroblast differentiation to myofibroblasts, interrupted myofibroblast activity, and inadequate extracellular matrix production. Myofibroblasts play an important role in tissue repair by producing and organizing extracellular matrix and subsequently promoting wound contraction. Based on these studies, hyperglycaemic conditions can interfere with cytokine signalling pathways (such as growth factor-β pathway) affecting fibroblast differentiation, alter fibroblast apoptosis, dysregulate dermal lipolysis, and enhance hypoxia damage, thus leading to damaged microenvironment for myofibroblast formation, inappropriate extracellular matrix modulation, and weakened wound contraction. In this review, we will focus on the current available studies on the impact of diabetes on fibroblast differentiation and myofibroblast function, as well as potential treatments related to the affected pathways.
Collapse
Affiliation(s)
- Rou Wan
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Joshua P Weissman
- Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Kendra Grundman
- Department of Surgery, Franciscan Health, Chicago, Illinois, USA
| | - Lin Lang
- Department of Surgery, Shanghai New Hongqiao Medical Center, Shanghai, China
| | - Damian J Grybowski
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Robert D Galiano
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| |
Collapse
|
11
|
Choi HMC, Cheung AKK, Ng MCH, Zheng Y, Jan YK, Cheing GLY. Indentation Stiffness Measurement by an Optical Coherence Tomography-Based Air-Jet Indentation System Can Reflect Type I Collagen Abundance and Organisation in Diabetic Wounds. Front Bioeng Biotechnol 2021; 9:648453. [PMID: 33748093 PMCID: PMC7969662 DOI: 10.3389/fbioe.2021.648453] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 02/09/2021] [Indexed: 11/13/2022] Open
Abstract
There is a lack of quantitative and non-invasive clinical biomechanical assessment tools for diabetic foot ulcers. Our previous study reported that the indentation stiffness measured by an optical coherence tomography-based air-jet indentation system in a non-contact and non-invasive manner may reflect the tensile properties of diabetic wounds. As the tensile properties are known to be contributed by type I collagen, this study was aimed to establish the correlations between the indentation stiffness, and type I collagen abundance and organisation, in order to further justify and characterise the in vivo indentation stiffness measurement in diabetic wounds. In a male streptozotocin-induced diabetic rat model, indentation stiffness, and type I collagen abundance and organisation of excisional wounds were quantified and examined using the optical coherence tomography-based air-jet indentation system and picrosirius red polarised light microscopy, respectively, on post-wounding days 3, 5, 7, 10, 14, and 21. The results showed significant negative correlations between indentation stiffness at the wound centre, and the collagen abundance and organisation. The correlations between the indentation stiffness, as well as collagen abundance and organisation of diabetic wounds suggest that the optical coherence tomography-based air-jet indentation system can potentially be used to quantitatively and non-invasively monitor diabetic wound healing in clinical settings, clinical research or preclinical research.
Collapse
Affiliation(s)
- Harry Ming Chun Choi
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Alex Kwok-Kuen Cheung
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Michelle Chun Har Ng
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Yongping Zheng
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Yih-Kuen Jan
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Gladys Lai Ying Cheing
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| |
Collapse
|
12
|
Lv H, Liu J, Zhen C, Wang Y, Wei Y, Ren W, Shang P. Magnetic fields as a potential therapy for diabetic wounds based on animal experiments and clinical trials. Cell Prolif 2021; 54:e12982. [PMID: 33554390 PMCID: PMC7941227 DOI: 10.1111/cpr.12982] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 11/26/2020] [Accepted: 12/22/2020] [Indexed: 02/06/2023] Open
Abstract
Diabetes mellitus (DM) is a chronic metabolic disorder with various complications that poses a huge worldwide healthcare burden. Wounds in diabetes, especially diabetic foot ulcers (DFUs), are difficult to manage, often leading to prolonged wound repair and even amputation. Wound management in people with diabetes is an extremely clinical and social concern. Nowadays, physical interventions gain much attention and have been widely developed in the fields of tissue regeneration and wound healing. Magnetic fields (MFs)-based devices are translated into clinical practice for the treatment of bone diseases and neurodegenerative disorder. This review attempts to give insight into the mechanisms and applications of MFs in wound care, especially in improving the healing outcomes of diabetic wounds. First, we discuss the pathological conditions associated with chronic diabetic wounds. Next, the mechanisms involved in MFs' effects on wounds are explored. At last, studies and reports regarding the effects of MFs on diabetic wounds from both animal experiments and clinical trials are reviewed. MFs exhibit great potential in promoting wound healing and have been practised in the management of diabetic wounds. Further studies on the exact mechanism of MFs on diabetic wounds and the development of suitable MF-based devices could lead to their increased applications into clinical practice.
Collapse
Affiliation(s)
- Huanhuan Lv
- School of Life SciencesNorthwestern Polytechnical UniversityXi’anChina
- Heye Health Technology Co., Ltd.AnjiZhejiangChina
- Research & Development InstituteNorthwestern Polytechnical UniversityShenzhenChina
- Key Laboratory for Space Bioscience and BiotechnologyNorthwestern Polytechnical UniversityXi’anChina
| | - Junyu Liu
- School of Life SciencesNorthwestern Polytechnical UniversityXi’anChina
- Research & Development InstituteNorthwestern Polytechnical UniversityShenzhenChina
- Key Laboratory for Space Bioscience and BiotechnologyNorthwestern Polytechnical UniversityXi’anChina
| | - Chenxiao Zhen
- School of Life SciencesNorthwestern Polytechnical UniversityXi’anChina
- Research & Development InstituteNorthwestern Polytechnical UniversityShenzhenChina
- Key Laboratory for Space Bioscience and BiotechnologyNorthwestern Polytechnical UniversityXi’anChina
| | - Yijia Wang
- School of Life SciencesNorthwestern Polytechnical UniversityXi’anChina
- Research & Development InstituteNorthwestern Polytechnical UniversityShenzhenChina
- Key Laboratory for Space Bioscience and BiotechnologyNorthwestern Polytechnical UniversityXi’anChina
| | - Yunpeng Wei
- Research & Development InstituteNorthwestern Polytechnical UniversityShenzhenChina
| | - Weihao Ren
- School of Life SciencesNorthwestern Polytechnical UniversityXi’anChina
- Research & Development InstituteNorthwestern Polytechnical UniversityShenzhenChina
- Key Laboratory for Space Bioscience and BiotechnologyNorthwestern Polytechnical UniversityXi’anChina
| | - Peng Shang
- School of Life SciencesNorthwestern Polytechnical UniversityXi’anChina
- Research & Development InstituteNorthwestern Polytechnical UniversityShenzhenChina
- Key Laboratory for Space Bioscience and BiotechnologyNorthwestern Polytechnical UniversityXi’anChina
| |
Collapse
|
13
|
Liu Y, Hao L, Jiang L, Li H. Therapeutic effect of pulsed electromagnetic field on bone wound healing in rats. Electromagn Biol Med 2021; 40:26-32. [PMID: 33251878 DOI: 10.1080/15368378.2020.1851252] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 11/10/2020] [Indexed: 10/22/2022]
Abstract
This study aimed to investigate the therapeutic effect of pulsed electromagnetic field (PEMF) on bone wound in rats as a potential therapy for bone fracture-related conditions. Male rats, aged 3 months, were used to construct model of bone wounding. Wound models were randomly selected to receive PEMF therapy at 1 to 10 mT intensity. Models that did not receive PEMF therapy were used as control. The serum concentrations of calcium (Ca), phosphorus (P) and alkaline phosphatase (ALP) were determined. Bone density and biomechanical properties of callus were measured using a tensile tester. Compared with control, rats subjected to PEMF therapy had similar weight gain, but significantly higher levels of serum Ca and ALP (P < .05) at 5 and 10 mT, while the serum level of P remained unchanged after PEMF therapy. The bone mineral density of callus increased after the therapy, particularly, after 5 and 10 mT therapy (P < .05). Biomechanical measurements showed that 21 days after the therapy, the maximum load, fracture load, elastic load and bending energy were significantly greater in rats receiving 5 and 10 mT PEMF therapy as compared with control (P < .05). Our experiments demonstrate that PEMF at 5 and 10 mT can significantly accelerate wound healing and enhance the repairing ability of bone tissue.
Collapse
Affiliation(s)
- Yingxin Liu
- Department of Hand and Foot Surgery, Yidu Central Hospital , Weifang, China
| | - Lijuan Hao
- Department of Urology, Yidu Central Hospital , Weifang, China
| | - Liyan Jiang
- Department of Hand and Foot Surgery, Yidu Central Hospital , Weifang, China
| | - Haitao Li
- Department of Surgery, Yidu Central Hospital , Weifang, China
| |
Collapse
|
14
|
Shen T, Dai K, Yu Y, Wang J, Liu C. Sulfated chitosan rescues dysfunctional macrophages and accelerates wound healing in diabetic mice. Acta Biomater 2020; 117:192-203. [PMID: 33007486 DOI: 10.1016/j.actbio.2020.09.035] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 08/31/2020] [Accepted: 09/22/2020] [Indexed: 12/13/2022]
Abstract
Emerging evidence suggests that dysfunctional macrophages can cause chronic inflammation and impair tissue regeneration in diabetic wounds. Therefore, improving macrophage behaviors and functions may improve therapeutic outcomes of current treatments in diabetic wounds. Herein, we present a sulfated chitosan (SCS)-doped Collagen type I (Col I/SCS) hydrogel as a candidate for diabetic wound treatments, and assess its efficacy using streptozocin (STZ)-induced diabetic wound model. Results showed that Col I/SCS hydrogel significantly improved wound closure rate, collagen deposition, and revascularization in diabetic wounds. Flow cytometry analysis and immunofluorescent staining analysis showed that the Col I/SCS hydrogel accelerated the resolution of excessive inflammation by reducing the polarization of M1-like macrophages in chronic diabetic wounds. In addition, ELISA analysis revealed that the Col I/SCS hydrogel reduced the production of pro-inflammatory interleukin (IL)-6 and increased the production of anti-inflammatory cytokines including IL-4 and transforming growth factor-beta 1 (TGF-β1) during wound healing. Moreover, the Col I/SCS hydrogel enhanced the transdifferentiation of macrophages into fibroblasts, which enhanced the formation of collagen and the extracellular matrix (ECM) in wound tissue. We highlight a potential application of manipulating macrophages behaviors in the pathological microenvironment via materials strategy. STATEMENT OF SIGNIFICANCE: Improving the chronic inflammatory microenvironment of diabetic wounds by regulating macrophage behaviors has been of wide concern in recent years. We designed a Col I/SCS hydrogel based on Collagen type I and sulfated chitosan (SCS) without exogenous cells or cytokines, which could significantly improve angiogenesis and resolve chronic inflammation in diabetic wounds, and hence accelerate diabetic wound healing. The Col I/SCS hydrogel could facilitate the polarization of M1-to-M2 macrophages and activate the transdifferentiation of macrophages to fibroblasts. Additionally, the Col I/SCS hydrogel also equilibrated the content of pro-inflammatory and anti-inflammatory cytokines. This strategy may afford a new avenue to improve macrophage functions and accelerate diabetic chronic wound healing.
Collapse
Affiliation(s)
- Tong Shen
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, PR. China; Engineering Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, PR. China
| | - Kai Dai
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, PR. China; Engineering Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, PR. China
| | - Yuanman Yu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, PR. China; Engineering Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, PR. China
| | - Jing Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, PR. China; Engineering Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, PR. China.
| | - Changsheng Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, PR. China; Engineering Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, PR. China.
| |
Collapse
|
15
|
Effects of Low-Frequency Pulsed Electromagnetic Fields on High-Altitude Stress Ulcer Healing in Rats. BIOMED RESEARCH INTERNATIONAL 2019; 2019:6354054. [PMID: 31309108 PMCID: PMC6594348 DOI: 10.1155/2019/6354054] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 05/26/2019] [Indexed: 11/29/2022]
Abstract
High-altitude stress ulcer (HSU) has constantly been a formidable clinical challenge for high-altitude and severe hypoxia. Pulsed electromagnetic fields (PEMFs) have been verified to have the ability to penetrate tissues, and the biological effects have been confirmed effective on various tissue restorations. However, the therapeutic effect of PEMFs on HSU has been rarely reported. This study aimed to evaluate the effects of PEMFs on HSU healing systematically. Sprague–Dawley rats were assigned to control, HSU, and HSU+PEMF groups. The HSU models were induced by restraint stress under low-pressure hypoxia. The HSU+PEMF group was subjected to PEMF exposure. During the HSU healing, gastric juice pH values, ulcer index (UI), and histopathologic changes were investigated. Furthermore, tumor necrosis factor-α (TNF-α) was determined to analyze the severity of gastric membrane inflammations. Norepinephrine (NE), which influences gastric acid secretion, was measured. Results indicated the UI of the HSU+PEMF decreased faster than that of the HSU group. Histopathologic observation suggested that the ulcer tissue healing is faster in the HSU+PEMF group than in the HSU group. The TNF-α/total protein results revealed that the inflammation of the HSU+PEMF group is suppressed effectively. The pH values are higher in the HSU+PEMF group than in the HSU, as confirmed by NE examination. The results indicated that low-frequency PEMFs can penetrate stomach tissues to relieve the symptoms of HSU and promote the regeneration of disturbed tissues, thus implying the clinical potential of PEMF therapy for HSU treatment.
Collapse
|
16
|
Li Y, Zhang Y, Wang W, Zhang Y, Yu Y, Cheing GLY, Pan W. Effects of pulsed electromagnetic fields on learning and memory abilities of STZ-induced dementia rats. Electromagn Biol Med 2019; 38:123-130. [DOI: 10.1080/15368378.2019.1591437] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Yue Li
- Beijing Key Laboratory of Bioelectromagnetics, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing, China
| | - Yingchao Zhang
- Beijing Key Laboratory of Bioelectromagnetics, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing, China
| | - Weihong Wang
- Beijing Key Laboratory of Bioelectromagnetics, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing, China
| | - Yuxia Zhang
- Beijing Key Laboratory of Bioelectromagnetics, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing, China
| | - Yang Yu
- Beijing Key Laboratory of Bioelectromagnetics, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing, China
| | - Gladys Lai-Ying Cheing
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong, SAR, China
| | - Weidong Pan
- Beijing Key Laboratory of Bioelectromagnetics, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
17
|
Efficacy of Biophysical Energies on Healing of Diabetic Skin Wounds in Cell Studies and Animal Experimental Models: A Systematic Review. Int J Mol Sci 2019; 20:ijms20020368. [PMID: 30654555 PMCID: PMC6359711 DOI: 10.3390/ijms20020368] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 01/04/2019] [Accepted: 01/14/2019] [Indexed: 12/22/2022] Open
Abstract
We have systematically assessed published cell studies and animal experimental reports on the efficacy of selected biophysical energies (BPEs) in the treatment of diabetic foot ulcers. These BPEs include electrical stimulation (ES), pulsed electromagnetic field (PEMF), extracorporeal shockwave (ECSW), photo energies and ultrasound (US). Databases searched included CINAHL, MEDLINE and PubMed from 1966 to 2018. Studies reviewed include animal and cell studies on treatment with BPEs compared with sham, control or other BPEs. Information regarding the objective measures of tissue healing and data was extracted. Eighty-two studies were eventually selected for the critical appraisal: five on PEMF, four each on ES and ECSW, sixty-six for photo energies, and three about US. Based on the percentage of original wound size affected by the BPEs, both PEMF and low-level laser therapy (LLL) demonstrated a significant clinical benefit compared to the control or sham treatment, whereas the effect of US did not reveal a significance. Our results indicate potential benefits of selected BPEs in diabetic wound management. However, due to the heterogeneity of the current clinical trials, comprehensive studies using well-designed trials are warranted to confirm the results.
Collapse
|
18
|
Lee N, Park J, Choi Y, Kim J, Jung B, Lee Y. Effect of pulsed electromagnetic fields on the blood circulation in ischemic skin models: A pilot study. Electromagn Biol Med 2018. [DOI: 10.1080/15368378.2018.1523798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Nara Lee
- Biomedical Electromagnetic System Laboratory, Department of Biomedical Engineering, Yonsei University, Republic of Korea
| | - Jihoon Park
- Biomedical Optics Laboratory, Department of Biomedical Engineering, Yonsei University, Republic of Korea
| | - Yebin Choi
- Biomedical Electromagnetic System Laboratory, Department of Biomedical Engineering, Yonsei University, Republic of Korea
| | - Jinju Kim
- Biomedical Electromagnetic System Laboratory, Department of Biomedical Engineering, Yonsei University, Republic of Korea
| | - Byungjo Jung
- Biomedical Optics Laboratory, Department of Biomedical Engineering, Yonsei University, Republic of Korea
| | - Yongheum Lee
- Biomedical Electromagnetic System Laboratory, Department of Biomedical Engineering, Yonsei University, Republic of Korea
| |
Collapse
|
19
|
Effect of High-Induction Magnetic Stimulation on Elasticity of the Patellar Tendon. JOURNAL OF HEALTHCARE ENGINEERING 2018; 2018:7172034. [PMID: 30154991 PMCID: PMC6093077 DOI: 10.1155/2018/7172034] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 06/17/2018] [Accepted: 06/28/2018] [Indexed: 11/17/2022]
Abstract
Nowadays, a high-induction magnetic stimulation is starting to be increasingly applied as a biophysical stimulation in the conservative treatment of the degenerative locomotor system diseases. These are mainly in correlation with the changes in soft tissue elasticity, which should be positively influenced by the flow-induced electrical currents of high current density during high-induction magnetic stimulation. This assumption was verified within the interventional and prospective study using the ultrasound elastography. The group consisted of 6 volunteers, whose elasticity of the patellar tendons was measured using the 2D shear-wave ultrasound elastography. The volunteers were then exposed to a 20-minute high-induction magnetic stimulation session with a frequency of 20 Hz, in 2 s package intervals, with a 5 s pause, and a induced electric current density of 100 Am−2 in the tendons area. A tendon tension was measured five times for all volunteers, where mean tension at the marked area of the tendon, as well as the highest point tension indicated by the Q-Box, was monitored. The measurement results show that high-induction magnetic stimulation has an influence on the patellar tendon tension change, which occurred in the case of all involved volunteers when the patellar tension was decreased.
Collapse
|
20
|
Rosado MM, Simkó M, Mattsson MO, Pioli C. Immune-Modulating Perspectives for Low Frequency Electromagnetic Fields in Innate Immunity. Front Public Health 2018; 6:85. [PMID: 29632855 PMCID: PMC5879099 DOI: 10.3389/fpubh.2018.00085] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 03/05/2018] [Indexed: 12/21/2022] Open
Abstract
In recent years, the effects of electromagnetic fields (EMFs) on the immune system have received a considerable interest, not only to investigate possible negative health impact but also to explore the possibility to favorably modulate immune responses. To generate beneficial responses, the immune system should eradicate pathogens while “respecting” the organism and tolerating irrelevant antigens. According to the current view, damage-associated molecules released by infected or injured cells, or secreted by innate immune cells generate danger signals activating an immune response. These signals are also relevant to the subsequent activation of homeostatic mechanisms that control the immune response in pro- or anti-inflammatory reactions, a feature that allows modulation by therapeutic treatments. In the present review, we describe and discuss the effects of extremely low frequency (ELF)-EMF and pulsed EMF on cell signals and factors relevant to the activation of danger signals and innate immunity cells. By discussing the EMF modulating effects on cell functions, we envisage the use of EMF as a therapeutic agent to regulate immune responses associated with wound healing.
Collapse
Affiliation(s)
| | | | - Mats-Olof Mattsson
- AIT Austrian Institute of Technology, Center for Energy, Environmental Resources and Technologies, Tulln, Austria
| | - Claudio Pioli
- Laboratory of Biomedical Technologies, Division of Health Protection Technologies, ENEA, Rome, Italy
| |
Collapse
|
21
|
Deng H, Gao X, Peng H, Wang J, Hou X, Xu H, Yang F. Effect of liposome‑mediated HSP27 transfection on collagen synthesis in alveolar type II epithelial cells. Mol Med Rep 2018; 17:7319-7324. [PMID: 29568951 DOI: 10.3892/mmr.2018.8744] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 01/15/2018] [Indexed: 11/05/2022] Open
Abstract
To investigate the effect of liposome Lipofectamine® 2000‑mediated HSP27 plasmid transfection in A549 human alveolar type II epithelial cell line on collagen synthesis during transforming growth factor‑β1 (TGF‑β1)‑induced type II epithelial cell transition to myofibroblasts. Cells were transfected with varying ratios of the Lipofectamine® 2000‑mediated heat shock protein 27 (HSP27) plasmid and the transfection efficiency was determined using flow cytometry. The maximum transfection efficacy was confirmed by laser confocal microscopy. HSP gene expression and the most efficient HSP27 plasmid were determined using reverse transcription‑quantitative polymerase chain reaction. Western blot analysis was used to examine HSP27 and collagen expression levels. With a transfection efficiency of 83%, the 8 µg:20 µl ratio of liposome: Plasmid had the highest transfection levels. Among the four different interference sequences in the HSP27 plasmid, the D sequence had the highest interference effect with 70% silencing of the HSP27 gene. The expression of type I and III collagen in TGF‑β1‑induced transition of A549 human alveolar type II epithelial cell line to myofibroblasts was significantly downregulated by the successful transfection with HSP27‑interfering plasmid. The expression of type I and III collagen in the TGF‑β1‑induced transition of A549 cells to myofibroblasts was significantly downregulated by transfection of A549 cells with HSP27 plasmid D‑interfering sequence and optimal ratio of Lipofectamine® 2000 and HSP27 plasmid.
Collapse
Affiliation(s)
- Haijing Deng
- School of Basic Medical Sciences, North China University of Science and Technology, Tangshan, Hebei 063210, P.R. China
| | - Xuemin Gao
- International Science and Technology Cooperation Base of Geriatric Medicine, North China University of Science and Technology, Tangshan, Hebei 063210, P.R. China
| | - Haibing Peng
- School of Basic Medical Sciences, North China University of Science and Technology, Tangshan, Hebei 063210, P.R. China
| | - Jin Wang
- School of Basic Medical Sciences, North China University of Science and Technology, Tangshan, Hebei 063210, P.R. China
| | - Xiaoli Hou
- School of Basic Medical Sciences, North China University of Science and Technology, Tangshan, Hebei 063210, P.R. China
| | - Hong Xu
- International Science and Technology Cooperation Base of Geriatric Medicine, North China University of Science and Technology, Tangshan, Hebei 063210, P.R. China
| | - Fang Yang
- School of Basic Medical Sciences, North China University of Science and Technology, Tangshan, Hebei 063210, P.R. China
| |
Collapse
|
22
|
Choi HMC, Cheing AKK, Ng GYF, Cheing GLY. Effects of pulsed electromagnetic field (PEMF) on the tensile biomechanical properties of diabetic wounds at different phases of healing. PLoS One 2018; 13:e0191074. [PMID: 29324868 PMCID: PMC5764361 DOI: 10.1371/journal.pone.0191074] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 12/26/2017] [Indexed: 12/30/2022] Open
Abstract
The present study investigated the effects of pulsed electromagnetic field (PEMF) on the tensile biomechanical properties of diabetic wounds at different phases of healing. Two intensities of PEMF were adopted for comparison. We randomly assigned 111 10-week-old male streptozotocin-induced diabetic Sprague-Dawley rats to two PEMF groups and a sham control group. Six-millimetre biopsy punched full thickness wounds were made on the lateral side of their hindlimbs. The PEMF groups received active PEMF delivered at 25 Hz with intensity of either 2 mT or 10 mT daily, while the sham group was handled in a similar way except they were not exposed to PEMF. Wound tissues were harvested for tensile testing on post-wounding days 3, 5, 7, 10, 14 and 21. Maximum load, maximum stress, energy absorption capacity, Young’s modulus and thickness of wound tissue were measured. On post-wounding day 5, the PEMF group that received 10-mT intensity had significantly increased energy absorption capacity and showed an apparent increase in the maximum load. However, the 10-mT PEMF group demonstrated a decrease in Young’s modulus on day 14. The 10-mT PEMF groups showed a significant increase in the overall thickness of wound tissue whereas the 2-mT group showed a significant decrease in the overall maximum stress of the wounds tissue. The present findings demonstrated that the PEMF delivered at 10 mT can improve energy absorption capacity of diabetic wounds in the early healing phase. However, PEMF (both 2-mT and 10-mT) seemed to impair the material properties (maximum stress and Young’s modulus) in the remodelling phase. PEMF may be a useful treatment for promoting the recovery of structural properties (maximum load and energy absorption capacity), but it might not be applied at the remodelling phase to avoid impairing the recovery of material properties.
Collapse
Affiliation(s)
- Harry M. C. Choi
- Department of Rehabilitation Sciences, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Alex K. K. Cheing
- Department of Rehabilitation Sciences, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Gabriel Y. F. Ng
- Department of Rehabilitation Sciences, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Gladys L. Y. Cheing
- Department of Rehabilitation Sciences, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
- * E-mail:
| |
Collapse
|
23
|
Jiao M, Lou L, Jiao L, Hu J, Zhang P, Wang Z, Xu W, Geng X, Song H. Effects of low-frequency pulsed electromagnetic fields on plateau frostbite healing in rats. Wound Repair Regen 2016; 24:1015-1022. [PMID: 27685089 DOI: 10.1111/wrr.12487] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 09/24/2016] [Indexed: 11/29/2022]
Abstract
Plateau frostbite (PF) treatments have remained a clinical challenge because this condition injures tissues in deep layers and affected tissues exhibit unique pathological characteristics. For instance, low-frequency pulsed electromagnetic field (PEMF) can affect tissue restoration and penetrate tissues. Therefore, the effect of PEMF on PF healing should be investigated. This study aimed to evaluate the effects of low-frequency PEMF on PF healing systematically. Ninety-six Sprague-Dawley rats were randomly and equally divided into three groups: normal control, partial thickness plateau frostbite (PTPF), and PTPF with low-frequency PEMF exposure (PTPF + PEMF). PTPF wounds were induced in the dorsum of the rats. The PTPF + PEMF group was exposed to low-frequency PEMF daily. During PF healing, wound microcirculation in each group was monitored through contrast ultrasonography. Wound appearance, histological observation, and wound tensile strength were also evaluated. Results showed that the rate of the microcirculation restoration of the PTPF + PEMF group was nearly 25% faster than that of the PTPF group, and wound appearance suggested that the healing of the PTPF group was slower than that of the PTPF + PEMF group. Histological observation revealed that PEMF accelerated the growth of different deep tissues, as confirmed by tensile strength examination. Low-frequency PEMF could penetrate PF tissues, promote their restoration, and provide a beneficial effect on PF healing. Therefore, this technique may be a potential alternative to treat PF.
Collapse
Affiliation(s)
- Mingke Jiao
- The Department of Medical Engineering, General Hospital of Xinjiang Military Region, Urumchi
| | - Lin Lou
- The Department of Medical Engineering, General Hospital of Xinjiang Military Region, Urumchi
| | - Lin Jiao
- The Department of Medical Engineering, General Hospital of Xinjiang Military Region, Urumchi
| | - Jie Hu
- The Department of Echocardiography, Affiliated Traditional Chinese Medicine Hospital, Xinjiang Medical University, Urumqi, and
| | - Peng Zhang
- The Department of Medical Engineering, General Hospital of Xinjiang Military Region, Urumchi
| | - Zhongming Wang
- The Department of Medical Engineering, General Hospital of Xinjiang Military Region, Urumchi
| | - Wenjuan Xu
- The Department of Medical Engineering, General Hospital of Xinjiang Military Region, Urumchi
| | - Xiliang Geng
- The Department of Medical Engineering, General Hospital of Xinjiang Military Region, Urumchi
| | - Hongping Song
- The Department of Ultrasound, Xijing Hospital, The Fourth Military Medical University, Xi'an, People's Republic of China
| |
Collapse
|
24
|
Han X, Liu H, Chen M, Gong L, Pang H, Deng X, Jin Y. Acellular dermal matrix from one-day-old mouse skin on adult scarless cutaneous wound repair by second harmonic generation microscopic imaging. RSC Adv 2016. [DOI: 10.1039/c6ra11179c] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The impacts of two types of acellular dermal matrix (ADM), ADM-1D and ADM-20W (ADM from 1-day-old and 20-week-old mouse skin), are evaluated on collagen density, orientation and the stiffness of new born dermis in adult cutaneous wound healing.
Collapse
Affiliation(s)
- Xue Han
- MOE Key Laboratory of Laser Life Science
- College of Biophotonics
- South China Normal University
- Guangzhou
- China
| | - Hanping Liu
- MOE Key Laboratory of Laser Life Science
- College of Biophotonics
- South China Normal University
- Guangzhou
- China
| | - Maosheng Chen
- MOE Key Laboratory of Laser Life Science
- College of Biophotonics
- South China Normal University
- Guangzhou
- China
| | - Li Gong
- Instrumental Analysis and Research Center
- Sun Yat-Sen University
- Guangzhou
- China
| | - Hongwen Pang
- Guangzhou Institutes of Biomedicine and Health
- Chinese Academy of Sciences
- Guangzhou
- China
| | - Xiaoyuan Deng
- MOE Key Laboratory of Laser Life Science
- College of Biophotonics
- South China Normal University
- Guangzhou
- China
| | - Ying Jin
- MOE Key Laboratory of Laser Life Science
- College of Biophotonics
- South China Normal University
- Guangzhou
- China
| |
Collapse
|