1
|
Li J, Chang X, Zhao S, Zhang Y, Pu Q, Wang Y, Li J. Exudates of Microcystis aeruginosa on oxidative stress and inflammatory responses in gills of Sinocyclocheilus grahami. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 280:116587. [PMID: 38878336 DOI: 10.1016/j.ecoenv.2024.116587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/07/2024] [Accepted: 06/10/2024] [Indexed: 06/25/2024]
Abstract
Early cyanobacterial blooms studies observed that exposure to blue-green algae led to fish gills impairment. The objective of this work was to evaluate the toxic mechanisms of exudates of Microcystis aeruginosa (MaE) on fish gills. In this study, the toxic mechanism of MaE (2×106 cells/mL) and one of its main components phytosphingosine (PHS) with two concentrations 2.9 ng/mL and 145 ng/mL were conducted by integrating histopathology, biochemical biomarkers, and transcriptomics techniques in Sinocyclocheilus grahami (S. grahami) for 96 h exposure. Damaged gill tissue with epithelial hyperplasia and hypertrophy, remarkable Na+/K+-ATPase (NKA) enzyme activity, disrupted the redox homeostats including lipid peroxidation and inflammatory responses were observed in the fish of MaE exposure group. Compare to MaE exposure, two concentrations of PHS exposure appeared to be a trend of lower degree of tissue damage, NKA activity and oxidative stress, but induced obviously lipid metabolism disorder with higher triglycerides, total cholesterol and total bile acid, which might be responsible for inflammation responses in fish gill. By transcriptome analysis, MaE exposure were primarily enriched in pathways related to gill function and immune response. PHS exposure, with higher number of differentially expressed genes (DEGs), were enriched in Toll-like receptor (TLR), Mitogen-Activated Protein Kinase (MAPK) and NOD-like receptor protein 3 (NLRP3) pathways. We concluded that MaE and PHS were induced the inflammatory responses, with oxidative stress-induced inflammation for MaE exposure but lipid metabolism disorder-induced inflammation for PHS exposure. The present study provided two toxin-induced gill inflammation response pathways under cyanobacterial blooms, which could be a scientific basis for the ecological and health risk assessment in the aquatic environment.
Collapse
Affiliation(s)
- Jun Li
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, School of Ecology and Environmental Sciences, Yunnan University, Kunming, Yunnan 650500, China; Institute of International Rivers and Eco-security, Kunming, Yunnan 650500, China
| | - Xuexiu Chang
- Yunnan Collaborative Innovation Center for Plateau Lake Ecology and Environmental Health, College of Agronomy and Life Sciences, Kunming University, Kunming 650214, China
| | - Sen Zhao
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, School of Ecology and Environmental Sciences, Yunnan University, Kunming, Yunnan 650500, China
| | - Yuanwei Zhang
- Yunnan Key Laboratory of Plateau Fish Breeding, Yunnan Engineering Research Center for Plateau-Lake Health and Restoration, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Qi Pu
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, School of Ecology and Environmental Sciences, Yunnan University, Kunming, Yunnan 650500, China
| | - Yuting Wang
- Institute of International Rivers and Eco-security, Kunming, Yunnan 650500, China
| | - Jiaojiao Li
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, School of Ecology and Environmental Sciences, Yunnan University, Kunming, Yunnan 650500, China.
| |
Collapse
|
2
|
Wang B, Wang F, Qu L, Ma H, Cheng Y, Wu X, Liu J, He L. Prinsepia utilis Royle polysaccharides promote skin barrier repair through the Claudin family. Skin Res Technol 2024; 30:e13848. [PMID: 38978226 PMCID: PMC11231044 DOI: 10.1111/srt.13848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 06/16/2024] [Indexed: 07/10/2024]
Abstract
BACKGROUND Plant polysaccharides have various biological activities. However, few studies have been conducted on the skin barrier of Prinsepia utilis Royle polysaccharide extract (PURP). MATERIALS AND METHODS The proportions of polysaccharides, monosaccharides and proteins were determined by extracting polysaccharides from fruit meal using water. The healing rate was measured by cell scratch assays. SDS-damaged reconstructed human epidermal models, an acetone-ether-induced mouse model and an IL-4-induced cellular inflammation model were used to detect the effects of polysaccharides on the phenotype, HA, TEWL, and TEER, with further characterizations performed using QRT-PCR, Western blotting, immunofluorescence (IF) assays. RESULTS PURP contained 35.73% polysaccharides and 11.1% proteins. PURP promoted cell migration and increased skin thickness in a reconstructed human epidermis model. The TEWL significantly decreased, and the HA content significantly increased. PURP significantly increased the TEER and decreased the permeability of the SDS-damaged reconstructed human epidermis model. Claudin-3, Claudin-4, and Claudin-5 were significantly upregulated. IF and Western blot analysis revealed that the Claudin-4 level significantly increased after treatment with PURP. Claudin-1, Claudin-3, Claudin-4, and Claudin-5 gene expression and IF and immunohistochemical staining were significantly increased in mice treated with acetone-ether. PURP promoted the expression of Claudin-1, Claudin-3, Claudin-4, and Claudin-5 after treatment with 100 ng/mL IL-4. PURP also downregulated the expression of NO, IL6, TNFα and NFκB in Raw 264.7 cells and in a mouse model. CONCLUSION We hypothesize that PURP may repair the skin barrier by promoting the expression of the claudin family and can assist in skin therapy.
Collapse
Affiliation(s)
- Bo Wang
- Yunnan Botanee Biotechnology Group Co., Ltd., Yunnan, China
- Yunnan Characteristic Plant Extraction Laboratory, Yunnan Yunke Characteristic Plant Extraction Laboratory Co., Ltd., Kunming, China
| | - Feifei Wang
- Yunnan Botanee Biotechnology Group Co., Ltd., Yunnan, China
- Yunnan Characteristic Plant Extraction Laboratory, Yunnan Yunke Characteristic Plant Extraction Laboratory Co., Ltd., Kunming, China
| | - Liping Qu
- Yunnan Botanee Biotechnology Group Co., Ltd., Yunnan, China
- Yunnan Characteristic Plant Extraction Laboratory, Yunnan Yunke Characteristic Plant Extraction Laboratory Co., Ltd., Kunming, China
| | - Hongyu Ma
- Yunnan Botanee Biotechnology Group Co., Ltd., Yunnan, China
- Yunnan Characteristic Plant Extraction Laboratory, Yunnan Yunke Characteristic Plant Extraction Laboratory Co., Ltd., Kunming, China
| | - Yuying Cheng
- Yunnan Botanee Biotechnology Group Co., Ltd., Yunnan, China
- Yunnan Characteristic Plant Extraction Laboratory, Yunnan Yunke Characteristic Plant Extraction Laboratory Co., Ltd., Kunming, China
| | - Xinlang Wu
- Yunnan Botanee Biotechnology Group Co., Ltd., Yunnan, China
- Yunnan Characteristic Plant Extraction Laboratory, Yunnan Yunke Characteristic Plant Extraction Laboratory Co., Ltd., Kunming, China
| | - Junxi Liu
- Yunnan Botanee Biotechnology Group Co., Ltd., Yunnan, China
- Yunnan Characteristic Plant Extraction Laboratory, Yunnan Yunke Characteristic Plant Extraction Laboratory Co., Ltd., Kunming, China
| | - Li He
- Yunnan Characteristic Plant Extraction Laboratory, Yunnan Yunke Characteristic Plant Extraction Laboratory Co., Ltd., Kunming, China
| |
Collapse
|
3
|
Sanjaya A, Ishida A, Li X, Kim Y, Yamada H, Kometani T, Yamashita Y, Kim YI. Efficacy and Safety of Oral Administration of Wine Lees Extract (WLE)-Derived Ceramides and Glucosylceramides in Enhancing Skin Barrier Function: A Randomized, Double-Blind, Placebo-Controlled Study. Nutrients 2024; 16:2100. [PMID: 38999848 PMCID: PMC11243426 DOI: 10.3390/nu16132100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 06/27/2024] [Accepted: 06/28/2024] [Indexed: 07/14/2024] Open
Abstract
BACKGROUND Our search for plant-derived ceramides from sustainable sources led to the discovery of ceramides and glucosylceramides in wine lees. OBJECTIVE This study evaluated the efficacy and safety of wine lees extract (WLE)-derived ceramides and glucosylceramides in enhancing skin barrier function. METHODS A randomized, double-blind, placebo-controlled study was conducted with 30 healthy Japanese subjects aged 20-64. Subjects were allocated to receive either the WLE-derived ceramides and glucosylceramides (test group) or placebo for 12 weeks. The primary outcome was transepidermal water loss (TEWL), and secondary outcomes included skin hydration, visual analog scale (VAS) of itching sensation, and the Japanese Skindex-29. RESULTS One participant withdrew for personal reasons, resulting in 29 subjects for data analysis (placebo n = 15; test n = 14). The test group showed a tendency of lower TEWL compared to the placebo after 8 weeks (p = 0.07). Furthermore, after 12 weeks of administration, the test group had significantly lower TEWL than the placebo (p = 0.04). On the other hand, no significant differences were observed in the secondary outcome parameters. No adverse events related to the supplements were reported. CONCLUSIONS Oral supplementation of WLE-derived ceramides and glucosylceramides is a prominent and safe approach to enhancing skin barrier function and health. TRIAL REGISTRATION (UMIN000050422).
Collapse
Affiliation(s)
- Angga Sanjaya
- Pharma Foods International Co., Ltd., Kyoto 615-8245, Japan; (A.I.); (X.L.); (Y.K.); (H.Y.); (T.K.); (Y.Y.)
| | | | | | | | | | | | | | - Young-il Kim
- Pharma Foods International Co., Ltd., Kyoto 615-8245, Japan; (A.I.); (X.L.); (Y.K.); (H.Y.); (T.K.); (Y.Y.)
| |
Collapse
|
4
|
Adhikari N, Lee WJ, Park S, Kim S, Shim WS. A phytosphingosine derivative mYG-II-6 inhibits histamine-mediated TRPV1 activation and MRGPRX2-dependent mast cell degranulation. Int Immunopharmacol 2024; 133:112113. [PMID: 38657498 DOI: 10.1016/j.intimp.2024.112113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 04/15/2024] [Accepted: 04/16/2024] [Indexed: 04/26/2024]
Abstract
BACKGROUND Phytosphingosine and its derivative are known for their skin-protective properties. While mYG-II-6, a phytosphingosine derivative, has shown anti-inflammatory and antipsoriatic effects, its potential antipruritic qualities have yet to be explored. This study aimed to investigate mYG-II-6's antipruritic properties. METHODS The calcium imaging technique was employed to investigate the activity of ion channels and receptors. Mast cell degranulation was confirmed through the β-hexosaminidase assay. Additionally, in silico molecular docking and an in vivo mouse scratching behavior test were utilized. RESULTS Using HEK293T cells transfected with H1R and TRPV1, we examined the impact of mYG-II-6 on histamine-induced intracellular calcium rise, a key signal in itch-mediating sensory neurons. Pretreatment with mYG-II-6 significantly reduced histamine-induced calcium levels and inhibited TRPV1 activity, suggesting its role in blocking the calcium influx channel. Additionally, mYG-II-6 suppressed histamine-induced calcium increase in primary cultures of mouse dorsal root ganglia, indicating its potential antipruritic effect mediated by histamine. Interestingly, mYG-II-6 exhibited inhibitory effects on human MRGPRX2, a G protein-coupled receptor involved in IgE-independent mast cell degranulation. However, it did not inhibit mouse MrgprB2, the ortholog of human MRGPRX2. Molecular docking analysis revealed that mYG-II-6 selectively interacts with the binding pocket of MRGPRX2. Importantly, mYG-II-6 suppressed histamine-induced scratching behaviors in mice. CONCLUSIONS Our findings show that mYG-II-6 can alleviate histamine-induced itch sensation through dual mechanisms. This underscores its potential as a versatile treatment for various pruritic conditions.
Collapse
Affiliation(s)
- Nisha Adhikari
- College of Pharmacy, Gachon University, Hambangmoero 191, Yeonsu-gu, Incheon 21936, Republic of Korea; Gachon Institute of Pharmaceutical Sciences, Hambangmoero 191, Yeonsu-gu, Incheon 21936, Republic of Korea
| | - Wook-Joo Lee
- College of Pharmacy, Gachon University, Hambangmoero 191, Yeonsu-gu, Incheon 21936, Republic of Korea; Gachon Institute of Pharmaceutical Sciences, Hambangmoero 191, Yeonsu-gu, Incheon 21936, Republic of Korea
| | - Soojun Park
- College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Sanghee Kim
- College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Won-Sik Shim
- College of Pharmacy, Gachon University, Hambangmoero 191, Yeonsu-gu, Incheon 21936, Republic of Korea; Gachon Institute of Pharmaceutical Sciences, Hambangmoero 191, Yeonsu-gu, Incheon 21936, Republic of Korea.
| |
Collapse
|
5
|
Amin R, Rancan F, Hillmann K, Blume‐Peytavi U, Vogt A, Kottner J. Effects of a leave-on product on the strength of the dermoepidermal junction: An exploratory, intraindividual, randomized controlled trial in older adults with dry skin. Health Sci Rep 2024; 7:e1985. [PMID: 38505682 PMCID: PMC10949320 DOI: 10.1002/hsr2.1985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 02/08/2024] [Accepted: 03/03/2024] [Indexed: 03/21/2024] Open
Abstract
Background and Aims Skin aging is associated with dry skin and a decrease of the strength of the dermoepidermal adhesion, which increases the risk for lacerations (skin tears). Application of leave-on products improves dry skin and seems to reduce skin tear incidence. The aim of this study was to measure the effects of a humectant containing leave-on product on the strength of the dermoepidermal junction in older adult participants with dry skin. Methods A randomized controlled trial using a split body design was conducted. One forearm was randomly selected and treated with a lipophilic leave-on product containing 5% urea for 8 weeks. The other forearm was the control. The parameters stratum corneum hydration (SCH), transepidermal water loss, pH, roughness, epidermal thickness and skin stiffness were measured at the baseline, Weeks 4 and 8. At Week 8, suction blisters were created and time to blistering was measured. Blister roofs and interstitial fluid were analyzed for Interleukin-1α, 6 and 8. Results Twelve participants were included. After 8 weeks treatment, SCH was higher (median difference 11.6 AU), and the overall dry skin score (median difference -1) and median roughness (Rz difference -12.2 µm) were lower compared to the control arms. The median group difference for Interleukin-1α was -452 fg/µg total protein (TP) in the blister roofs and -2.2 fg/µg TP in the blister fluids. The median time to blister formation was 7.7 min higher compared to the control arms. Conclusion The regular application of humectant containing leave-on products improves dry skin and seems to lower inflammation and contribute to the strengthening of the dermoepidermal adhesion. This partly explains how the use of topical leave-on products helps to prevent skin tears.
Collapse
Affiliation(s)
- Ruhul Amin
- Department of Dermatology, Venereology and Allergology, Clinical Research Center for Hair and Skin Science, Charitéplatz 1, Charité—Universitätsmedizin Berlincorporate member of Freie Universität Berlin and Humboldt‐Universität zu BerlinBerlinGermany
- BCSIR Laboratories DhakaBangladesh Council of Scientific and Industrial ResearchDhakaBangladesh
| | - Fiorenza Rancan
- Department of Dermatology, Venereology and Allergology, Clinical Research Center for Hair and Skin Science, Charitéplatz 1, Charité—Universitätsmedizin Berlincorporate member of Freie Universität Berlin and Humboldt‐Universität zu BerlinBerlinGermany
| | - Kathrin Hillmann
- Department of Dermatology, Venereology and Allergology, Clinical Research Center for Hair and Skin Science, Charitéplatz 1, Charité—Universitätsmedizin Berlincorporate member of Freie Universität Berlin and Humboldt‐Universität zu BerlinBerlinGermany
| | - Ulrike Blume‐Peytavi
- Department of Dermatology, Venereology and Allergology, Clinical Research Center for Hair and Skin Science, Charitéplatz 1, Charité—Universitätsmedizin Berlincorporate member of Freie Universität Berlin and Humboldt‐Universität zu BerlinBerlinGermany
| | - Annika Vogt
- Department of Dermatology, Venereology and Allergology, Clinical Research Center for Hair and Skin Science, Charitéplatz 1, Charité—Universitätsmedizin Berlincorporate member of Freie Universität Berlin and Humboldt‐Universität zu BerlinBerlinGermany
| | - Jan Kottner
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt‐Universität zu Berlin, Institute of Clinical Nursing Science, Charitéplatz 1BerlinGermany
| |
Collapse
|
6
|
Cai Q, Chen M, Wang B, Wang J, Xia L, Li J. Phytosphingosine inhibits the growth of lung adenocarcinoma cells by inducing G2/M-phase arrest, apoptosis, and mitochondria-dependent pathway cell death in vitro and in vivo. Chem Biol Interact 2024; 387:110795. [PMID: 37956922 DOI: 10.1016/j.cbi.2023.110795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 10/23/2023] [Accepted: 11/03/2023] [Indexed: 11/21/2023]
Abstract
In order to search for novel antitumor drugs with high efficiency and low toxicity, the anti-lung cancer activity of phytosphingosine was studied. Phytosphingosine is widely distributed in fungi, plants, animals, and has several biological activities, including anti-inflammation and anti-tumor. However, its anti-lung cancer activity needs to be further investigated. The effects and pharmacological mechanisms of phytosphingosine on lung cancer treatment were investigated both in vitro and in vivo. The results showed that phytosphingosine inhibited the growth of lung cancer cell lines. Phytosphingosine induced apoptosis through a mitochondria-mediated pathway, phytosphingosine arrested the cell cycle at the G2/M phase and induced apoptosis in a dose-dependent manner by increasing Bax/Bcl-2 ratio, which caused the decrease of mitochondrial membrane potential to promote the release of cytochrome C, caspase 9 and 3, and degrade PARP in A549 cells. The results showed that phytosphingosine could damage the mitochondrial functions, increase ROS levels, and arrest the cell cycle at the G2/M stages. Finally, phytosphingosine also inhibited the growth of tumor in mice. Taken together, phytosphingosine suppressed the growth of lung cancer cells both in vitro and in vivo and had potential application in the research and development of antitumor drugs. The aim of the present study was to explain the theoretical basis of phytosphingosine therapy for lung cancer and providing new possibilities for lung cancer treatment.
Collapse
Affiliation(s)
- Qi Cai
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, Xinjiang, China.
| | - Min Chen
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, Xinjiang, China.
| | - Bo Wang
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, Xinjiang, China.
| | - Jin Wang
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, Xinjiang, China.
| | - Lijie Xia
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, Xinjiang, China.
| | - Jinyao Li
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, Xinjiang, China.
| |
Collapse
|
7
|
Zhao Y, Xu J, Zhao C, Bao L, Wu K, Feng L, Sun H, Shang S, Hu X, Sun Q, Fu Y. Phytosphingosine alleviates Staphylococcus aureus-induced mastitis by inhibiting inflammatory responses and improving the blood-milk barrier in mice. Microb Pathog 2023; 182:106225. [PMID: 37419220 DOI: 10.1016/j.micpath.2023.106225] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/02/2023] [Accepted: 07/02/2023] [Indexed: 07/09/2023]
Abstract
Mastitis is one of the common diseases in dairy cows which threatens the health of cows and impacts on economic benefits seriously. Recent studies have been showed that Subacute Ruminal Acidosis (SARA) increased the susceptibility of cow mastitis. SARA leads the disturbance of the rumen microbiota, and the rumen bacterial disordered community is an important endogenous factor of cow mastitis. That is to say, cows which suffer from SARA have a disordered rumen microbiota, a prolonged decline in ruminal PH and a high level of lipopolysaccharide (LPS) in the rumen, blood. Therefore, ruminal metabolism is closely related to the rumen microbiota. However, the specific mechanism of SARA and mastitis still not clear. We found an intestinal metabolite according to the metabonomics, which is correlated to inflammation. Phytophingosine (PS), a product from rumen fluid and milk of the cows which suffer from SARA and mastitis. It has the effect of killing bacteria and anti-inflammatory. Emerging evidences indicate that PS can alleviate inflammatory diseases. However, how PS affects mastitis is largely unknown. In this study, we explored the concrete role of PS on Staphylococcus aureus (S. aureus) -induced mastitis in mice. We found that PS obviously decreased the level of the proinflammatory cytokines. Meanwhile, PS also significantly relieved the mammary gland inflammation caused by S. aureus and restored the function of the blood-milk barrier. Here, we showed that PS increased the expression of the classic Tight-junctions (TJs) proteins including ZO-1, Occludin and Claudin-3. Moreover, PS improves S. aureus-induced mastitis by inhibiting the activation of the NF-κB and NLRP3 signaling pathways. These data indicated that PS relieved S. aureus-induced mastitis effectively. This also provides a reference for exploring the correlation between the intestinal metabolism and inflammation.
Collapse
Affiliation(s)
- Yihong Zhao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province, 130062, China
| | - Jiawen Xu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province, 130062, China
| | - Caijun Zhao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province, 130062, China
| | - Lijuan Bao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province, 130062, China
| | - Keyi Wu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province, 130062, China
| | - Lianjun Feng
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province, 130062, China
| | - Hao Sun
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province, 130062, China
| | - Shan Shang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province, 130062, China
| | - Xiaoyu Hu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province, 130062, China
| | - Qingsong Sun
- Key Lab of Preventive Veterinary Medicine in Jilin Province, College of Animal Science and Technology, Jilin Agricultural Science and Technology University, Jilin, 132101, China.
| | - Yunhe Fu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province, 130062, China.
| |
Collapse
|
8
|
Rinnov MR, Halling AS, Gerner T, Ravn NH, Knudgaard MH, Trautner S, Goorden SMI, Ghauharali-van der Vlugt KJM, Stet FS, Skov L, Thomsen SF, Egeberg A, Rosted ALL, Petersen T, Jakasa I, Riethmüller C, Kezic S, Thyssen JP. Skin biomarkers predict development of atopic dermatitis in infancy. Allergy 2023; 78:791-802. [PMID: 36112082 DOI: 10.1111/all.15518] [Citation(s) in RCA: 38] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 07/14/2022] [Accepted: 08/08/2022] [Indexed: 11/29/2022]
Abstract
BACKGROUND There is currently no insight into biomarkers that can predict the onset of pediatric atopic dermatitis (AD). METHODS Nested in a prospective birth cohort study that examined the occurrence of physician-diagnosed AD in 300 children, 44 random children with onset of AD in the first year of life were matched on sex and season of birth with 44 children who did not develop AD. Natural moisturizing factor (NMF), corneocyte surface protrusions, cytokines, free sphingoid bases (SBs) of different chain lengths and their ceramides were analyzed from tape strips collected at 2 months of age before onset of AD using liquid chromatography, atomic force microscopy, multiplex immunoassay, and liquid chromatography mass spectrometry, respectively. RESULTS Significant alterations were observed for four lipid markers, with phytosphingosine ([P]) levels being significantly lower in children who developed AD compared with children who did not (median 240 pmol/mg vs. 540 pmol/mg, p < 0.001). The two groups of children differed in the relative amounts of SB of different chain lengths (C17, C18 and C20). Thymus- and activation-regulated chemokine (TARC/CCL17) was slightly higher in children who developed AD, whereas NMF and corneocyte surface texture were similar. AD severity assessed by the eczema area and severity index (EASI) at disease onset was 4.2 (2.0;7.2). [P] had the highest prediction accuracy among the biomarkers (75.6%), whereas the combination of 5 lipid ratios gave an accuracy of 89.4%. CONCLUSION This study showed that levels and SB chain length were altered in infants who later developed AD, and that TARC/CCL17 levels were higher.
Collapse
Affiliation(s)
- Maria Rasmussen Rinnov
- Department of Dermatology and Allergy, Herlev and Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
| | - Anne-Sofie Halling
- Department of Dermatology and Allergy, Herlev and Gentofte Hospital, University of Copenhagen, Hellerup, Denmark.,Department of Dermatology and Venereology, Bispebjerg Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Trine Gerner
- Department of Dermatology and Allergy, Herlev and Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
| | - Nina Haarup Ravn
- Department of Dermatology and Allergy, Herlev and Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
| | - Mette Hjorslev Knudgaard
- Department of Dermatology and Allergy, Herlev and Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
| | - Simon Trautner
- Department of Neonatology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Susan M I Goorden
- Laboratory Genetic Metabolic Diseases, Department of Clinical Chemistry, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Karen J M Ghauharali-van der Vlugt
- Laboratory Genetic Metabolic Diseases, Department of Clinical Chemistry, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Femke S Stet
- Department of Dermatology and Venereology, Bispebjerg Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Lone Skov
- Department of Dermatology and Allergy, Herlev and Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
| | - Simon Francis Thomsen
- Department of Dermatology and Venereology, Bispebjerg Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Alexander Egeberg
- Department of Dermatology and Venereology, Bispebjerg Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Aske L L Rosted
- Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark
| | - Troels Petersen
- Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark
| | - Ivone Jakasa
- Laboratory for Analytical Chemistry, Department of Chemistry and Biochemistry, Faculty of Food Technology and Biotechnology, University of Zagreb, Zagreb, Croatia
| | | | - Sanja Kezic
- Amsterdam Public Health research institute, Department of Public and Occupational Health Amsterdam UMC, Department of Public and Occupational Health, University of Amsterdam, Amsterdam Public Health Research Institute, Amsterdam, The Netherlands
| | - Jacob P Thyssen
- Department of Dermatology and Venereology, Bispebjerg Hospital, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
9
|
Bergera-Virassamynaïk S, Ardiet N, Sayag M. Evaluation of the Efficacy of an Ecobiological Dermo-Cosmetic Product to Help Manage and Prevent Relapses of Eyelid Atopic Dermatitis. Clin Cosmet Investig Dermatol 2023; 16:677-686. [PMID: 36969386 PMCID: PMC10032143 DOI: 10.2147/ccid.s401576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 03/05/2023] [Indexed: 03/20/2023]
Abstract
Purpose Atopic dermatitis (AD) is a chronic relapsing, inflammatory disease which causes eczematous lesions. Itching and symptoms visibility can have a significant impact on quality of life. This is the case when eyelids are affected. Therefore, we evaluated a dermo-cosmetic product designed to care AD on eyelids. Subjects and Methods An initial analysis of the product included 20 healthy women with no AD signs. A clinical evaluation of the effect of the product on AD sign severity was performed on 33 subjects presenting AD symptoms on eyelids. We also analyzed the product's capacity to prevent relapses in a parallel group clinical evaluation performed on 66 subjects. Results First, on the forearm skin of healthy subjects, the product reduces erythema and decreases transepidermal water loss when used for 28 days. Second, when clinically evaluated on subjects with eyelid symptoms undergoing a corticoid treatment, the product leads to reduced AD signs scored by a dermatologist, better self-evaluation of symptoms by subjects, and improved quality of life. Besides, upon assessment in a randomized controlled clinical evaluation with subjects prone to AD relapses but without symptoms, the product also drastically reduces relapse frequency. If erythema reduction is the only sign identified by a dermatologist, the product greatly and rapidly improves the quality of life of subjects. Conclusion These effects can be explained by the known actions of the product's ingredients. Rich in hydrating compounds, fatty acids and anti-inflammatory compounds, it aims at maintaining and restoring the epidermis structure and function to preserve it from irritants. It effectively shows that a daily care and hygiene routine with a dermo-cosmetic product designed according to an ecobiological approach leads to objective improvement of AD and subjective perception of quality of life.
Collapse
Affiliation(s)
- Sandrine Bergera-Virassamynaïk
- NAOS Group, Research and Development Department, Aix-en-Provence, 13290, France
- Correspondence: Sandrine Bergera-Virassamynaïk, NAOS Group, Research and Development Department, Aix-en-Provence, 13290, France, Tel +33 (0)4 26 20 65 04, Email
| | - Nathalie Ardiet
- NAOS Group, Research and Development Department, Aix-en-Provence, 13290, France
| | - Michèle Sayag
- NAOS Group, Research and Development Department, Aix-en-Provence, 13290, France
| |
Collapse
|
10
|
Lu Y, Zhang W, Zhou L, Xiong Y, Liu Q, Shi X, Tian J. The moisturizing effect of Capparis spinosa fruit extract targeting filaggrin synthesis and degradation. J Cosmet Dermatol 2023; 22:651-660. [PMID: 36221990 DOI: 10.1111/jocd.15461] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 09/08/2022] [Accepted: 10/10/2022] [Indexed: 12/01/2022]
Abstract
BACKGROUND Small molecular natural products, such as betaine, have unique moisturizing advantages. Capparis spinosa L. fruit is rich in quaternary ammonium alkaloids such as betaine and stachydrine. However, few studies investigated its efficacy and mechanism on human skin. OBJECTIVE Polysaccharides-free C. spinosa fruit extract (CS) was obtained to study its moisturizing effect and mechanisms focusing on filaggrin (FLG) synthesis and degradation. METHODS The clinical moisturizing test was carried out on human arms, calves, and faces after CS treatment for 0.5-6 h. The change in the level of FLG, caspase 14, loricrin, and transglutaminase 5 (TGM 5) was measured by immunofluorescence after CS treatment for 4 and 24 h in a reconstructed epidermis model. Also, the content of pyrrolidone carboxylic acid (PCA) in the stratum corneum was tested by high-performance liquid chromatography (HPLC) both in the epidermis model and human calves. RESULTS Compared with glycerin (positive control), 5% CS showed a strong skin hydration effect on arms and calves when applied for 0.5-6 h. Also, the face hydration increased at 0.5 and 4 h. In addition, 3% CS applied to the recombinant epidermis model under low humidity promoted the immunodetected levels of caspase 14 and PCA content but reduced the levels of FLG at 4 h, however, the levels of FLG, loricrin, and TGM 5 were promoted at 24 h. Meanwhile, CS treatment for 4 h in human calves increased the PCA content in the stratum corneum by 29.9%. CONCLUSIONS Topical application of CS on human skin showed an instant and long-lasting increase in skin hydration by regulating the FLG network. It promoted FLG degradation to form PCA at 4 h both in vivo and in vitro, increasing FLG synthesis after 24 h, potentially reforming the FLG monomer reservoir to alleviate the skin's dry condition.
Collapse
Affiliation(s)
- Yina Lu
- Research and Development Center, Shanghai JAKA Biotech. Co. LTD, Shanghai, China
| | - Wenhuan Zhang
- Research and Development Center, Shanghai JAKA Biotech. Co. LTD, Shanghai, China
| | - Lidan Zhou
- Research and Development Center, Shanghai JAKA Biotech. Co. LTD, Shanghai, China
| | - Yue Xiong
- Research and Development Center, Shanghai JAKA Biotech. Co. LTD, Shanghai, China
| | - Qing Liu
- Research and Development Center, Shanghai JAKA Biotech. Co. LTD, Shanghai, China
| | - Xuemei Shi
- Research and Development Center, Shanghai JAKA Biotech. Co. LTD, Shanghai, China
| | - Jun Tian
- Research and Development Center, Shanghai JAKA Biotech. Co. LTD, Shanghai, China
| |
Collapse
|
11
|
Li J, Wen J, Sun C, Zhou Y, Xu J, MacIsaac HJ, Chang X, Cui Q. Phytosphingosine-induced cell apoptosis via a mitochondrially mediated pathway. Toxicology 2022; 482:153370. [DOI: 10.1016/j.tox.2022.153370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 10/27/2022] [Accepted: 10/31/2022] [Indexed: 11/11/2022]
|
12
|
Tsukui K, Kakiuchi T, Suzuki M, Sakurai H, Tokudome Y. The ion balance of Shotokuseki extract promotes filaggrin fragmentation and increases amino acid production and pyrrolidone carboxylic acid content in three-dimensional cultured human epidermis. NATURAL PRODUCTS AND BIOPROSPECTING 2022; 12:37. [PMID: 36245006 PMCID: PMC9573832 DOI: 10.1007/s13659-022-00353-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 06/14/2022] [Indexed: 06/16/2023]
Abstract
Natural moisturizing factor (NMF) in the stratum corneum contributes to the retention of moisture there. The purpose of this study was to determine the penetration of ions in Shotokuseki extract (SE) into the three-dimensional cultured epidermis and the effect of NMF on the biosynthesis of amino acids and pyrrolidone carboxylic acid formation. Various ions, amino acids and pyrrolidone carboxylic acid were quantified by inductively coupled plasma mass spectrometry, fully automatic amino acid analyzer or high-performance liquid chromatography (HPLC) in three-dimensional cultured epidermis after application of SE. Gene expression levels of profilaggrin, calpain1, caspase14, and bleomycin hydrolase, which are involved in NMF production, were determined by reverse-transcription qPCR and bleomycin hydrolase activity was determined by aminopeptidase assay. The application of SE increased Na, K, Mg, Ca, Al, and Fe levels in three-dimensional cultured epidermis. The mRNA levels of the starting material of amino acid synthesis profilaggrin, and calpain1 and bleomycin hydrolase, which are involved in its fragmentation, increased. The activity of bleomycin hydrolase also increased. Furthermore, the levels of amino acids and pyrrolidone carboxylic acid increased in the three-dimensional cultured epidermis. This suggests that the ionic composition of SE may be involved in its moisturizing effect on the stratum corneum.
Collapse
Affiliation(s)
- Kei Tsukui
- Laboratory of Cosmetic Sciences, Graduate School of Advanced Health Sciences, Saga University, 1 Honjo, Saga, 840-8502, Japan
- Laboratory of Dermatological Physiology, Faculty of Pharmacy and Pharmaceutical Sciences, Josai University, 1-1 Keyakidai, Sakado, Saitama, 350-0295, Japan
| | - Takuya Kakiuchi
- Zeria Pharmaceutical Co., Ltd., 10-11 Nihonbashi, Kobuna-cho, Chuo-ku, Tokyo, 103-8351, Japan
| | - Masamitsu Suzuki
- Zeria Pharmaceutical Co., Ltd., 10-11 Nihonbashi, Kobuna-cho, Chuo-ku, Tokyo, 103-8351, Japan
| | - Hidetomo Sakurai
- Zeria Pharmaceutical Co., Ltd., 10-11 Nihonbashi, Kobuna-cho, Chuo-ku, Tokyo, 103-8351, Japan
| | - Yoshihiro Tokudome
- Laboratory of Cosmetic Sciences, Graduate School of Advanced Health Sciences, Saga University, 1 Honjo, Saga, 840-8502, Japan.
- Laboratory of Dermatological Physiology, Faculty of Pharmacy and Pharmaceutical Sciences, Josai University, 1-1 Keyakidai, Sakado, Saitama, 350-0295, Japan.
- Laboratory of Cosmetic Sciences, Regional Innovation Center, Saga University, 1 Honjo, Saga, 840-8502, Japan.
| |
Collapse
|
13
|
Morais EM, Silva AAR, de Sousa FWA, de Azevedo IMB, Silva HF, Santos AMG, Beserra Júnior JEA, de Carvalho CP, Eberlin MN, Porcari AM, Araújo FDDS. Endophytic Trichoderma strains isolated from forest species of the Cerrado-Caatinga ecotone are potential biocontrol agents against crop pathogenic fungi. PLoS One 2022; 17:e0265824. [PMID: 35427356 PMCID: PMC9012399 DOI: 10.1371/journal.pone.0265824] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 03/08/2022] [Indexed: 11/19/2022] Open
Abstract
The indiscriminate use of chemical pesticides increasingly harms the health of living beings and the environment. Thus, biological control carried out by microorganisms has gained prominence, since it consists of an environmentally friendly alternative to the use of pesticides for controlling plant diseases. Herein, we evaluated the potential role of endophytic Trichoderma strains isolated from forest species of the Cerrado-Caatinga ecotone as biological control agents of crop pathogenic fungi. Nineteen Trichoderma strains were used to assess the antagonistic activity by in vitro bioassays against the plant pathogens Colletotrichum truncatum, Lasiodiplodia theobromae, Macrophomina phaseolina, and Sclerotium delphinii isolated from soybean, cacao, fava bean, and black pepper crops, respectively. All Trichoderma strains demonstrated inhibitory activity on pathogen mycelial growth, with maximum percent inhibition of 70% against C. truncatum, 78% against L. theobromae, 78% against M. phaseolina, and 69% against S. delphinii. Crude methanol extracts (0.5 to 2.0 mg mL-1) of Trichoderma strains were able to inhibit the growth of C. truncatum, except Trichoderma sp. T3 (UFPIT06) and T. orientale (UFPIT09 and UFPIT17) at 0.5 mg mL-1, indicating that the endophytes employ a biocontrol mechanism related to antibiosis, together with multiple mechanisms. Discriminant metabolites of Trichoderma extracts were unveiled by liquid chromatography-tandem mass spectrometry-based metabolomics combined with principal component analysis (PCA), which included antifungal metabolites and molecules with other bioactivities. These results highlight the biocontrol potential of Trichoderma strains isolated from the Cerrado-Caatinga ecotone against crop pathogenic fungi, providing support for ongoing research on disease control in agriculture.
Collapse
Affiliation(s)
| | - Alex Ap. Rosini Silva
- MS4Life Laboratory of Mass Spectrometry, Health Sciences Postgraduate Program, São Francisco University, Braganca Paulista, São Paulo, SP, Brazil
| | | | | | - Helane França Silva
- Campus Professora Cinobelina Elvas, Federal University of Piauí, Bom Jesus, PI, Brazil
| | | | | | - Caroline Pais de Carvalho
- School of Material Engineering an Nanotechnology, MackMass Laboratory, Mackenzie Presbyterian University, São Paulo, SP, Brazil
| | - Marcos Nogueira Eberlin
- School of Material Engineering an Nanotechnology, MackMass Laboratory, Mackenzie Presbyterian University, São Paulo, SP, Brazil
| | - Andreia M. Porcari
- MS4Life Laboratory of Mass Spectrometry, Health Sciences Postgraduate Program, São Francisco University, Braganca Paulista, São Paulo, SP, Brazil
| | | |
Collapse
|
14
|
Yoo HY, Lee KC, Woo JE, Park SH, Lee S, Joo J, Bae JS, Kwon HJ, Park BJ. A Genome-Wide Association Study and Machine-Learning Algorithm Analysis on the Prediction of Facial Phenotypes by Genotypes in Korean Women. Clin Cosmet Investig Dermatol 2022; 15:433-445. [PMID: 35313536 PMCID: PMC8933694 DOI: 10.2147/ccid.s339547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 01/12/2022] [Indexed: 12/03/2022]
Abstract
Purpose Changes in facial appearance are affected by various intrinsic and extrinsic factors, which vary from person to person. Therefore, each person needs to determine their skin condition accurately to care for their skin accordingly. Recently, genetic identification by skin-related phenotypes has become possible using genome-wide association studies (GWAS) and machine-learning algorithms. However, because most GWAS have focused on populations with American or European skin pigmentation, large-scale GWAS are needed for Asian populations. This study aimed to evaluate the correlation of facial phenotypes with candidate single-nucleotide polymorphisms (SNPs) to predict phenotype from genotype using machine learning. Materials and Methods A total of 749 Korean women aged 30-50 years were enrolled in this study and evaluated for five facial phenotypes (melanin, gloss, hydration, wrinkle, and elasticity). To find highly related SNPs with each phenotype, GWAS analysis was used. In addition, phenotype prediction was performed using three machine-learning algorithms (linear, ridge, and linear support vector regressions) using five-fold cross-validation. Results Using GWAS analysis, we found 46 novel highly associated SNPs (p < 1×10-05): 3, 20, 12, 6, and 5 SNPs for melanin, gloss, hydration, wrinkle, and elasticity, respectively. On comparing the performance of each model based on phenotypes using five-fold cross-validation, the ridge regression model showed the highest accuracy (r2 = 0.6422-0.7266) in all skin traits. Therefore, the optimal solution for personal skin diagnosis using GWAS was with the ridge regression model. Conclusion The proposed facial phenotype prediction model in this study provided the optimal solution for accurately predicting the skin condition of an individual by identifying genotype information of target characteristics and machine-learning methods. This model has potential utility for the development of customized cosmetics.
Collapse
Affiliation(s)
- Hye-Young Yoo
- Skin & Natural Products Lab, Kolmar Korea Co., Ltd., Seoul, 06800, Republic of Korea
| | - Ki-Chan Lee
- R&D Department, Eone Diagnomics Genome Center Co., Ltd, Songdo Incheon, 22014, Republic of Korea
| | - Ji-Eun Woo
- Skin & Natural Products Lab, Kolmar Korea Co., Ltd., Seoul, 06800, Republic of Korea
| | - Sung-Ha Park
- Skin & Natural Products Lab, Kolmar Korea Co., Ltd., Seoul, 06800, Republic of Korea
| | - Sunghoon Lee
- R&D Department, Eone Diagnomics Genome Center Co., Ltd, Songdo Incheon, 22014, Republic of Korea
| | - Joungsu Joo
- R&D Department, Eone Diagnomics Genome Center Co., Ltd, Songdo Incheon, 22014, Republic of Korea
| | - Jin-Sik Bae
- R&D Department, Eone Diagnomics Genome Center Co., Ltd, Songdo Incheon, 22014, Republic of Korea
| | - Hyuk-Jung Kwon
- R&D Department, Eone Diagnomics Genome Center Co., Ltd, Songdo Incheon, 22014, Republic of Korea
| | - Byoung-Jun Park
- Skin & Natural Products Lab, Kolmar Korea Co., Ltd., Seoul, 06800, Republic of Korea
| |
Collapse
|
15
|
Choi HK, Hwang K, Hong YD, Cho YH, Kim JW, Lee EO, Park WS, Park CS. Ceramide NPs Derived from Natural Oils of Korean Traditional Plants Enhance Skin Barrier Functions and Stimulate Expressions of Genes for Epidermal Homeostasis. J Cosmet Dermatol 2022; 21:4931-4941. [PMID: 35262269 DOI: 10.1111/jocd.14905] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 02/06/2022] [Accepted: 03/01/2022] [Indexed: 11/29/2022]
Abstract
BACKGROUND New ceramide (CER) NPs were prepared by linking fatty acids derived from oils of Korean traditional plants to phytosphingosine(PHS). The oils of Korean traditional plants were extracted from the seeds of Panax ginseng, Camellia sinensis, Glycine max napjakong, Glycine max seoritae and Camellia japonica as sources of diverse fatty acids AIMS: To investigate signaling bioactivities of HP-C. sinensis ceramide NP that was column purified to remove any residual PHS and to evaluate the skin barrier functions of the HP-C. sinensis ceramide NP in human skin. METHODS The expressions of genes related with epidermal differentiation was analyzed in vitro by qPCR. Human studies were also performed to determine the skin barrier functions with respect of TEWL and SC cohesion. RESULTS The HP-C. sinensis CER NP significantly enhanced the expressions of FLG, CASP14 and INV indicates that the signaling biological activities of oil-derived ceramide NPs could be different depend on the natural oils. The control ceramide, C18-CER NP had no effect on the expression of the three genes. HP-C. sinensis CER NP was selected for the in vivo human studies. Application of 0.5% HP-C. sinensis CER NP cream stimulated significantly faster recovery of a disrupted skin barrier than that of the control C18-CER NP. A significant enhancement of SC cohesion of the skin treated with 0.5% HP-C. sinensis CER NP was also observed. CONCLUSION Taken all together, our results clearly demonstrate that HP-C. sinensis CER NP, P. ginseng CER NP and other oil-derived CER NP could be a better choice for developing moisturizers to improve skin barrier function as they more closely mimic the endogenous CER composition of the actual human skin barrier.
Collapse
Affiliation(s)
- Hyun Kyung Choi
- Department of Chemical Engineering, Dongguk University, 3-26, Pil-dong, Chung-gu, Seoul, 100-715, Republic of Korea
| | - Kyeonghwan Hwang
- Department of Chemical Engineering, Dongguk University, 3-26, Pil-dong, Chung-gu, Seoul, 100-715, Republic of Korea.,Department of R&D center, Amorepacific, Republic of Korea
| | | | - Young Hoon Cho
- Department of Chemical Engineering, Dongguk University, 3-26, Pil-dong, Chung-gu, Seoul, 100-715, Republic of Korea
| | - Jin Wook Kim
- SNU Business Incubator, 5-105, 89 Sehoro, Gwonseon-gu, Suwon, Gyeonggi-do, 16614, Republic of Korea
| | - Eun Ok Lee
- SNU Business Incubator, 5-105, 89 Sehoro, Gwonseon-gu, Suwon, Gyeonggi-do, 16614, Republic of Korea
| | - Won-Seok Park
- Department of R&D center, Amorepacific, Republic of Korea
| | - Chang Seo Park
- Department of Chemical Engineering, Dongguk University, 3-26, Pil-dong, Chung-gu, Seoul, 100-715, Republic of Korea.,SNU Business Incubator, 5-105, 89 Sehoro, Gwonseon-gu, Suwon, Gyeonggi-do, 16614, Republic of Korea
| |
Collapse
|
16
|
Kalasariya HS, Patel NB, Yadav A, Perveen K, Yadav VK, Munshi FM, Yadav KK, Alam S, Jung YK, Jeon BH. Characterization of Fatty Acids, Polysaccharides, Amino Acids, and Minerals in Marine Macroalga Chaetomorpha crassa and Evaluation of Their Potentials in Skin Cosmetics. Molecules 2021; 26:molecules26247515. [PMID: 34946597 PMCID: PMC8706032 DOI: 10.3390/molecules26247515] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 11/18/2021] [Accepted: 11/26/2021] [Indexed: 11/16/2022] Open
Abstract
Cosmetic industries are highly committed to finding natural sources of functional active constituents preferable to safer materials to meet consumers' demands. Marine macroalgae have diversified bioactive constituents and possess potential benefits in beauty care products. Hence, the present study was carried out to characterize the biochemical profile of marine macroalga Chaetomorpha crassa by using different techniques for revealing its cosmetic potentials. In results, the FTIR study characterized the presence of different bioactive functional groups that are responsible for many skin-beneficial compounds whereas six and fifteen different important phycocompounds were found in GCMS analysis of ethanolic and methanolic extracts, respectively. In the saccharide profile of C. crassa, a total of eight different carbohydrate derivatives were determined by the HRLCMS Q-TOF technique, which showed wide varieties of cosmetic interest. In ICP AES analysis, Si was found to be highest whereas Cu was found to be lowest among other elements. A total of twenty-one amino acids were measured by the HRLCMS-QTOF technique, which revealed the highest amount of the amino acid, Aspartic acid (1207.45 nmol/mL) and tyrosine (106.77 nmol/mL) was found to be the lowest in amount among other amino acids. Their cosmetic potentials have been studied based on previous research studies. The incorporation of seaweed-based bioactive components in cosmetics has been extensively growing due to its skin health-promoting effects.
Collapse
Affiliation(s)
- Haresh S. Kalasariya
- Microbiology Department, Sankalchand Patel University, Visnagar 384315, India; (H.S.K.); (N.B.P.)
| | - Nikunj B. Patel
- Microbiology Department, Sankalchand Patel University, Visnagar 384315, India; (H.S.K.); (N.B.P.)
| | - Akanksha Yadav
- Department of Home Science, Institute of Science, MMV, Banaras Hindu University, Varanasi 221005, India;
| | - Kahkashan Perveen
- Department of Botany & Microbiology, College of Science, King Saud University, Riyadh 11495, Saudi Arabia;
| | - Virendra Kumar Yadav
- School of Sciences, P P Savani University, NH 8, GETCO, Near Biltech, Village, Dhamdod, Kosamba 394125, India;
| | - Faris M. Munshi
- Department of Civil Engineering, College of Engineering, King Saud University, P.O. Box 800, Riyadh 11421, Saudi Arabia; (F.M.M.); (S.A.)
| | - Krishna Kumar Yadav
- Faculty of Science and Technology, Madhyanchal Professional University, Ratibad, Bhopal 462044, India;
| | - Shamshad Alam
- Department of Civil Engineering, College of Engineering, King Saud University, P.O. Box 800, Riyadh 11421, Saudi Arabia; (F.M.M.); (S.A.)
| | - You-Kyung Jung
- Department of Chemistry, Yonsei University, Wonju 26493, Korea;
| | - Byong-Hun Jeon
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul 04763, Korea
- Correspondence:
| |
Collapse
|
17
|
Cha SY, Park SY, Lee JS, Lee KH, Kim JH, Fang Y, Shin SS. Efficacy of Dendrobium candidum polysaccharide extract as a moisturizer. J Cosmet Dermatol 2021; 21:3117-3126. [PMID: 34841665 DOI: 10.1111/jocd.14586] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 10/20/2021] [Indexed: 12/25/2022]
Abstract
INTRODUCTION This study investigated the role of natural polymers as moisturizers with low toxicity and biodegradability in the cosmetic and pharmaceutical industries. We isolated a polysaccharide extract from Dendrobium candidum (D. candidum) and determined its efficacy in skin hydration when used as an active cosmetic ingredient. METHODS The molecular weight distribution of D. candidum polysaccharides was analyzed via gel permeation chromatography (GPC). We performed real-time reverse transcription PCR (RT-PCR) and western blotting assays to investigate the physiological mechanism of the polysaccharides extracted from D. candidum (PDC). Based on in vitro data, the efficacy of PDC in improving skin condition was tested on the face of 21 volunteers. RESULTS The expression of filaggrin (FLG), caspase-14, and bleomycin hydrolase, which are the major components contributing to skin hydration, was significantly increased in the PDC-treated group. Further, the PDC upregulated the mRNA expression of occludin and claudin-1, which play a key role in epidermal barrier function. In addition, a topical application of PDC markedly increased skin hydration and improved trans-epidermal water loss (TEWL) and skin elasticity after 2 weeks. CONCLUSIONS It is the first study reporting the efficacy of PDC-mediated FLG mechanism associated with positive skin hydration. PDC can be used as an active ingredient in moisturizers. Long-term application of PDC-based moisturizers may result in significant improvement in elasticity and barrier function.
Collapse
Affiliation(s)
- So Yoon Cha
- HYUNDAI BIOLAND. Co., Ltd., Cheongju-si, Republic of Korea
| | - So Yeon Park
- HYUNDAI BIOLAND. Co., Ltd., Cheongju-si, Republic of Korea
| | - Jae Seok Lee
- HYUNDAI BIOLAND. Co., Ltd., Cheongju-si, Republic of Korea
| | - Kang Hyuk Lee
- HYUNDAI BIOLAND. Co., Ltd., Cheongju-si, Republic of Korea
| | | | | | - Song Seok Shin
- HYUNDAI BIOLAND. Co., Ltd., Cheongju-si, Republic of Korea
| |
Collapse
|
18
|
Li X, Gu W, Chen B, Zhu Z, Zhang B. Functional modification of HHCB: Strategy for obtaining environmentally friendly derivatives. JOURNAL OF HAZARDOUS MATERIALS 2021; 416:126116. [PMID: 34492911 DOI: 10.1016/j.jhazmat.2021.126116] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 04/23/2021] [Accepted: 05/10/2021] [Indexed: 06/13/2023]
Abstract
Galaxolide (HHCB), one of the most widely used synthetic musks in personal care products (PCPs), has been recognized as an emerging contaminant with potential human health concerns. To overcome such adverse effects, a systematic molecular design, screening and performance evaluation approach was developed to generate functionally improved and environmentally friendly HHCB derivatives. Among the 90 designed HHCB derivatives, 15 were screened with improved functional properties (i.e., odor stability and intensity) and less environmental impacts (i.e., lower bio-toxicity, bio-accumulation ability, and mobility) using 3D-QSAR models and density functional theory methods. Their human health risks were then assessed by toxicokinetic analysis, which narrowed the candidates to four. Derivative 7, the designed molecule with the least dermal adsorption potential, was evaluated for its interaction with other PCPs additives (i.e., anti-photosensitivity materials and moisturizer) and such impacts on human health risks using molecular docking and molecular dynamic simulation. The environmental fate of Derivative 7 after transformation (i.e., photodegradation, biotransformation, and chlorination) was also discussed. Biotransformation and chlorination were recognized as optimum options for Derivative 7 mitigation. This study provided the theoretical basis for the design of functionally improved and environmentally friendly HHCB alternatives and advanced the understanding of their environmental behaviors and health risks.
Collapse
Affiliation(s)
- Xixi Li
- Northern Region Persistent Organic Pollution Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University, St. John's, Newfoundland, Canada A1B 3X5.
| | - Wenwen Gu
- MOE Key Laboratory of Resources and Environmental Systems Optimization, North China Electric Power University, Beijing 102206, China.
| | - Bing Chen
- Northern Region Persistent Organic Pollution Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University, St. John's, Newfoundland, Canada A1B 3X5.
| | - Zhiwen Zhu
- Northern Region Persistent Organic Pollution Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University, St. John's, Newfoundland, Canada A1B 3X5.
| | - Baiyu Zhang
- Northern Region Persistent Organic Pollution Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University, St. John's, Newfoundland, Canada A1B 3X5.
| |
Collapse
|
19
|
Dong X, Wang X, Xu X, Song Y, Nie X, Jia W, Guo W, Zhang F. An untargeted metabolomics approach to identify markers to distinguish duck eggs that come from different poultry breeding systems by ultra high performance liquid chromatography-high resolution mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2021; 1179:122820. [PMID: 34325310 DOI: 10.1016/j.jchromb.2021.122820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 04/06/2021] [Accepted: 05/29/2021] [Indexed: 11/26/2022]
Abstract
Untargeted metabolomics approach based on ultra high performance liquid chromatography coupled with high resolution mass spectrometry (UHPLC-HRMS) was used to investigate the differences in cage duck eggs and sea duck eggs that from different poultry breeding system, which could help to combat fraud within the egg industry. High dimensions and complex data collected by UHPLC-HRMS were analyzed by multivariate statistical analysis. Identification model of sea duck eggs based on was established. After matching with the chemical databases, four potential markers were putatively matched. Further analysis showed that three of them were confirmed by reference standards. All these three markers (n-behenoyl-d-erythro-sphingosine, 1,2-dipalmitoyl-sn-glycero-3-phosphocholine and n-nervonoyl-d-erythro-sphingosine) have higher content in sea duck eggs. The quantitative analysis showed that the content difference of three markers in farm samples were in highly consistent with the concentration changes measured in experimental samples, which indicate that these three markers are reliable.
Collapse
Affiliation(s)
- Xuyang Dong
- Institute of Food Safety, Chinese Academy of Inspection & Quarantine, Beijing 100176, China; School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Xiujuan Wang
- Institute of Food Safety, Chinese Academy of Inspection & Quarantine, Beijing 100176, China
| | - Xiuli Xu
- Institute of Food Safety, Chinese Academy of Inspection & Quarantine, Beijing 100176, China
| | - Yaxuan Song
- Institute of Food Safety, Chinese Academy of Inspection & Quarantine, Beijing 100176, China
| | - Xuemei Nie
- Institute of Food Safety, Chinese Academy of Inspection & Quarantine, Beijing 100176, China
| | - Wei Jia
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Wei Guo
- Institute of Food Safety, Chinese Academy of Inspection & Quarantine, Beijing 100176, China
| | - Feng Zhang
- Institute of Food Safety, Chinese Academy of Inspection & Quarantine, Beijing 100176, China.
| |
Collapse
|
20
|
Lim SH, Kim EJ, Lee CH, Park GH, Yoo KM, Nam SJ, Shin KO, Park K, Choi EH. A Lipid Mixture Enriched by Ceramide NP with Fatty Acids of Diverse Chain Lengths Contributes to Restore the Skin Barrier Function Impaired by Topical Corticosteroid. Skin Pharmacol Physiol 2021; 35:112-123. [PMID: 34348350 DOI: 10.1159/000518517] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 07/10/2021] [Indexed: 11/19/2022]
Abstract
INTRODUCTION The stratum corneum (SC) is a skin barrier that consists of corneocytes, intercellular lipids, and corneodesmosomes. Ceramides are composed of sphingoid bases linked with various types of fatty acids (FAs), and they are an essential constituent of SC intercellular lipids. Among their subtypes, ceramide NP with a phytosphingosine base is especially important. Most of the previous studies on barrier recovery have focused on a specific ceramide with a single chain FA, not with diverse chain lengths. Skin barrier function is impaired by various factors, including topical corticosteroid. OBJECTIVE We evaluated whether a lipid mixture enriched by ceramide NP with FAs of diverse chain lengths (CER [NP]*) can restore the skin barrier function impaired by topical corticosteroid. METHODS Twenty-seven healthy adult male volunteers were recruited. Topical corticosteroid was applied on both volar forearms of volunteers. Then, the test cream containing a lipid mixture with CER (NP)* was applied on the left forearm, and a vehicle cream without a lipid mixture was applied on the right forearm of each subject. The functional parameters of the skin barrier were compared before and after the treatment. Epidermal differentiation markers, hyaluronic acid synthase 3 (HAS3), cytokine levels, and the lipid profiles in the SC were analyzed. RESULTS The functional parameters of the skin barrier, such as barrier recovery rate, SC integrity, and SC hydration were significantly improved in the test cream-applied site compared to the vehicle cream-applied sites. Filaggrin and HAS3 levels were significantly higher in the sites applied with the test cream. Interleukin (IL)-1α levels were also significantly increased in these sites. IL-2, IL-6, IL-10, and IL-13 levels were significantly decreased in the test cream-applied sites. Lipid analyses showed that C18, C20, and total ceramide NP levels significantly increased in the sites where the test cream was applied. Also, C16, C18, C20, C24, and total ceramide NP levels were significantly elevated in the test cream-applied sites after acute barrier disruption. CONCLUSION Our results demonstrate that a lipid mixture enriched by CER (NP)* could recover the barrier function impaired by topical corticosteroid.
Collapse
Affiliation(s)
- Sung Ha Lim
- Department of Dermatology, Yonsei University Wonju College of Medicine, Wonju, Republic of Korea
| | - Eun Jung Kim
- Department of Dermatology, Yonsei University Wonju College of Medicine, Wonju, Republic of Korea
| | - Chung Hyuk Lee
- Department of Dermatology, Yonsei University Wonju College of Medicine, Wonju, Republic of Korea
| | | | | | | | - Kyong-Oh Shin
- The Korean Institute of Nutrition, Department of Food Science and Nutrition, Convergence Program of Material Science for Medicine and Pharmaceutics, Hallym University, Chuncheon, Republic of Korea
| | - Kyungho Park
- The Korean Institute of Nutrition, Department of Food Science and Nutrition, Convergence Program of Material Science for Medicine and Pharmaceutics, Hallym University, Chuncheon, Republic of Korea
| | - Eung Ho Choi
- Department of Dermatology, Yonsei University Wonju College of Medicine, Wonju, Republic of Korea
| |
Collapse
|
21
|
Otsuka M, Tamane T, Tokudome Y. Effect of Lactic Fermentation Products on Human Epidermal Cell Differentiation, Ceramide Content, and Amino Acid Production. Skin Pharmacol Physiol 2021; 34:103-114. [PMID: 33721861 DOI: 10.1159/000514119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Accepted: 12/24/2020] [Indexed: 11/19/2022]
Abstract
INTRODUCTION Lactic fermentation products (LFPs) are thought to affect "good" bacteria in the gut. We previously reported that oral administration of LFPs has beneficial therapeutic effects in a mouse model of atopic dermatitis. However, it is unclear how LFPs affect human epidermal cell differentiation, ceramide (Cer), and amino acid production. OBJECTIVE The aim of this study was to determine the effects of LFPs on epidermal cell differentiation, by assessing amino acid and Cer production. METHODS A 3-dimensional cultured human epidermis model and normal human epidermal keratinocytes were used. Cytotoxicity tests were performed using alamar Blue. Transepidermal water loss (TEWL) was used as an index to assess barrier function. Keratin 1 (K1), keratin 5 (K5), keratin 10 (K10), involucrin (INV), calpain 1, and transglutaminase (TGase) (markers of differentiation) and profilaggrin (proFLG) and bleomycin hydrolase (amino acid synthesis-related genes) expression levels were quantified by RT-PCR. In addition, TGase protein levels were measured by Western blotting. The intercellular lipid content of the stratum corneum was measured by high-performance thin-layer chromatography. Amino acids were quantified using an amino acid analyzer. Finally, bound water content in the stratum corneum was measured by differential scanning calorimetry. RESULTS Cell viability did not change, but TEWL was significantly decreased in the cells treated with LFPs compared with the control cells. Treatment with LFPs significantly increased expression of the late-differentiation markers INV and TGase at the RNA level. Furthermore, TGase protein expression was significantly increased by treatment with LFPs. Treating a 3-dimensional cultured epidermis model with LFPs significantly increased the intercellular lipid content of the stratum corneum and production of the amino acid arginine (Arg). The amount of bound water in the stratum corneum was increased significantly in the LFP application group. CONCLUSION Treatment with LFPs promotes human epidermal cell differentiation and increases the intercellular content of the free fatty acid, Chol, Cer [NS], Cer [AS], and Cer [AP]. This may result in improved skin barrier function. The increased amount of Arg observed in keratinocytes may help improve water retention.
Collapse
Affiliation(s)
- Moe Otsuka
- Laboratory of Dermatological Physiology, Faculty of Pharmacy and Pharmaceutical Sciences, Josai University, Saitama, Japan
| | - Tsuyoshi Tamane
- Laboratory of Dermatological Physiology, Faculty of Pharmacy and Pharmaceutical Sciences, Josai University, Saitama, Japan.,Koei Science Laboratory Co., Ltd., Saitama, Japan
| | - Yoshihiro Tokudome
- Laboratory of Dermatological Physiology, Faculty of Pharmacy and Pharmaceutical Sciences, Josai University, Saitama, Japan,
| |
Collapse
|
22
|
Lam BWS, Yam TYA, Chen CP, Lai MKP, Ong WY, Herr DR. The noncanonical chronicles: Emerging roles of sphingolipid structural variants. Cell Signal 2020; 79:109890. [PMID: 33359087 DOI: 10.1016/j.cellsig.2020.109890] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 12/15/2020] [Accepted: 12/16/2020] [Indexed: 02/08/2023]
Abstract
Sphingolipids (SPs) are structurally diverse and represent one of the most quantitatively abundant classes of lipids in mammalian cells. In addition to their structural roles, many SP species are known to be bioactive mediators of essential cellular processes. Historically, studies have focused on SP species that contain the canonical 18‑carbon, mono-unsaturated sphingoid backbone. However, increasingly sensitive analytical technologies, driven by advances in mass spectrometry, have facilitated the identification of previously under-appreciated, molecularly distinct SP species. Many of these less abundant species contain noncanonical backbones. Interestingly, a growing number of studies have identified clinical associations between these noncanonical SPs and disease, suggesting that there is functional significance to the alteration of SP backbone structure. For example, associations have been found between SP chain length and cardiovascular disease, pain, diabetes, and dementia. This review will provide an overview of the processes that are known to regulate noncanonical SP accumulation, describe the clinical correlations reported for these molecules, and review the experimental evidence for the potential functional implications of their dysregulation. It is likely that further scrutiny of noncanonical SPs may provide new insight into pathophysiological processes, serve as useful biomarkers for disease, and lead to the design of novel therapeutic strategies.
Collapse
Affiliation(s)
- Brenda Wan Shing Lam
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Ting Yu Amelia Yam
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Christopher P Chen
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Memory Aging and Cognition Centre, Department of Psychological Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Mitchell K P Lai
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Memory Aging and Cognition Centre, Department of Psychological Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Wei-Yi Ong
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Deron R Herr
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Department of Biology, San Diego State University, San Diego, CA, USA; American University of Health Sciences, Long Beach, CA, USA.
| |
Collapse
|
23
|
Zong J, Cheng J, Fu Y, Song J, Pan W, Yang L, Zhang T, Zhou M. Serum Metabolomic Profiling Reveals the Amelioration Effect of Methotrexate on Imiquimod-Induced Psoriasis in Mouse. Front Pharmacol 2020; 11:558629. [PMID: 33364938 PMCID: PMC7751755 DOI: 10.3389/fphar.2020.558629] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Accepted: 10/12/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND The imiquimod (IMQ)-induced psoriasis mouse model has been used as a model for pathogenic mechanism research, and methotrexate (MTX) is widely employed to treat various clinical manifestations of psoriasis. We explored the underlying pathogenesis of psoriasis and the treatment mechanism of the conventional drugs from the metabolic perspective of the psoriasis mouse model. METHODS Male BALB/c mice were smeared IMQ for 7 days to induce treatment-resistant psoriasis and intragastrically administered 1 mg/kg MTX. We evaluated inflammation of psoriasis-like lesions and therapeutic effects of MTX based on histological changes and immunohistochemistry. Based on gas chromatography-mass spectrometer detection of serum samples, a comprehensive metabolomics analysis was carried out to identify alterations of metabolites. RESULTS It was found that MTX ameliorated psoriatic lesions (representative erythema, scaling, and thickening) by inhibiting proliferation and differentiation of keratinocytes. Using multivariate statistical analysis to process metabolomics data, the results displayed alterations in serum metabolites among mice of the control group, IMQ group, and MTX group. Compared with group, psoriasis mice had the higher level of d-galactose and lower expression of myo-inositol, 9,12-octadecadienoic acid, and cholesterol. In contrast with the model set, serum levels of glycine, pyrrolidone carboxylic acid, d-galactose, and d-mannose were significantly decreased in the MTX group. CONCLUSION The differential metabolites, reflecting the perturbation in the pathways of inositol phosphate metabolism; galactose metabolism; glyoxylate and dicarboxylate metabolism; glycine, serine, and threonine metabolism; and glutathione metabolism, may lead to the pathogenesis of psoriasis, and they are also related to the pharmacological treatment effect of MTX on psoriasis. This study established the foundation for further research on the mechanism and therapeutic targets of psoriasis.
Collapse
Affiliation(s)
- Jiaxin Zong
- Murad Research Center for Modernized Chinese Medicine, Institute for Interdisciplinary Medicine Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jieyi Cheng
- Center for Chinese Medicine Therapy and Systems Biology, Institute for Interdisciplinary Medicine Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yuanfeng Fu
- Murad Research Center for Modernized Chinese Medicine, Institute for Interdisciplinary Medicine Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jing Song
- Center for Chinese Medicine Therapy and Systems Biology, Institute for Interdisciplinary Medicine Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Weisong Pan
- Guangzhou Institute for Drug Control, Guangzhou, China
| | - Li Yang
- Center for Chinese Medicine Therapy and Systems Biology, Institute for Interdisciplinary Medicine Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ting Zhang
- Murad Research Center for Modernized Chinese Medicine, Institute for Interdisciplinary Medicine Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Mingmei Zhou
- Center for Chinese Medicine Therapy and Systems Biology, Institute for Interdisciplinary Medicine Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
24
|
Lueangarun S, Tragulplaingam P, Sugkraroek S, Tempark T. The 24‐hr, 28‐day, and 7‐day post‐moisturizing efficacy of ceramides 1, 3, 6‐II containing moisturizing cream compared with hydrophilic cream on skin dryness and barrier disruption in senile xerosis treatment. Dermatol Ther 2019; 32:e13090. [DOI: 10.1111/dth.13090] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 09/23/2019] [Indexed: 12/19/2022]
Affiliation(s)
- Suparuj Lueangarun
- Division of Dermatology, Chulabhorn International College of MedicineThammasat University Pathumthani Thailand
| | - Piyanuch Tragulplaingam
- Division of Dermatology, Chulabhorn International College of MedicineThammasat University Pathumthani Thailand
| | - Supanee Sugkraroek
- Division of Dermatology and AestheticBumrungrad International Hospital Bangkok Thailand
| | - Therdpong Tempark
- Department of Pediatrics, Faculty of Medicine, King Chulalongkorn Memorial HospitalChulalongkorn University Bangkok Thailand
| |
Collapse
|
25
|
Choi HK, Kim HJ, Liu KH, Park CS. Phytosphingosine Increases Biosynthesis of Phytoceramide by Uniquely Stimulating the Expression of Dihydroceramide C4-desaturase (DES2) in Cultured Human Keratinocytes. Lipids 2019; 53:909-918. [PMID: 30460697 DOI: 10.1002/lipd.12097] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 10/01/2018] [Accepted: 10/01/2018] [Indexed: 12/11/2022]
Abstract
Ceramide NP is known to be the most abundant class of 12 ceramide (CER) families that form a permeability barrier in the human skin barrier. However, not many studies have been reported on the regulation of the biosynthesis of ceramide NP. Recently, it has been reported that phytosphingosine (PHS) treatment in the cultured keratinocytes (KC) notably increased the content of ceramide NP. However, the mechanism behind the PHS-induced enhancement of ceramide NP has not been elucidated. In this study, we investigated the effects of PHS on the expression of several essential genes for the biosynthesis of CER. Also, we determined the molecular mechanism behind the unique enhancement of ceramide NP upon treatment of PHS in the cultured KC. The expressions of all of the three genes (SPT, ceramide synthase 3 [CERS3], and ELOVL4) and their respective proteins were markedly increased in PHS-treated KC. In addition, the expression of the dihydroceramide C4-desaturase (DES2) responsible for conversion of dihydroceramide into ceramide NP was uniquely enhanced only by PHS treatment. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis revealed that more than 20-fold increase of ceramide NP by PHS was observed while no significant enhancement of ceramide NS and NDS was observed. This study demonstrates that PHS plays a fundamental role in strengthening the epidermal permeability barrier by stimulating the overall processes of biosynthesis of all classes of CER in epidermis. The dramatic increase of ceramide NP upon PHS treatment seemed to be the outcome of transformation of dihydroceramide and/or ceramide NS by C4-hydroxylase activity.
Collapse
Affiliation(s)
- Hyun Kyung Choi
- Department of Chemical Engineering, Dongguk University, 3-26, Pil-dong, Chung-gu, Seoul, 100-715, Republic of Korea
| | - Hyun-Ji Kim
- BK21 Plus Multi-Omics based Creative Drug Research Team, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, 80, Daehak-ro, Buk-gu, Daegu, 41566, Republic of Korea
| | - Kwang-Hyeon Liu
- BK21 Plus Multi-Omics based Creative Drug Research Team, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, 80, Daehak-ro, Buk-gu, Daegu, 41566, Republic of Korea
| | - Chang Seo Park
- Department of Chemical Engineering, Dongguk University, 3-26, Pil-dong, Chung-gu, Seoul, 100-715, Republic of Korea
| |
Collapse
|
26
|
Masaki H, Doi M. [Function of Sacran as an Artificial Skin Barrier and the Development of Skincare Products]. YAKUGAKU ZASSHI 2019; 139:371-379. [PMID: 30828013 DOI: 10.1248/yakushi.18-00177-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Sacran, a large molecular-weight polysaccharide isolated from algae, is composed of 11 types of saccharides, including sulfate and carboxylic acid groups. Because of its unique structure, sacran can form a gel-like sheet in the presence of polyols such as 1,3-butanediol. In addition, those sacran gel-like sheets prevent the evaporation of water and the penetration of chemicals. The results of our previous study suggested that sacran can work as an artificial barrier against external stimuli such as air pollutants which increase the stress on humans. Topically applied sacran was localized at the surface of reconstructed human epidermal equivalents. Those results suggested that sacran inhibits excessive water evaporation from the skin and protects against environmental stimuli by forming an artificial barrier at the skin surface. Then, in a clinical study, we examined the activity of sacran in improving skin problems caused by an impaired epidermal barrier. First, we conducted a use test on a serum formulated with sacran on human volunteers who had impaired skin barrier function. The results showed that sacran provided excellent benefits to improve the maturation of corneocytes. These results suggest that sacran could play an important role in providing optimal skin conditions for keratinocytes to progress through their differentiation.
Collapse
Affiliation(s)
- Hitoshi Masaki
- School of Bioscience and Biotechnology, Tokyo University of Technology
| | | |
Collapse
|