1
|
Zhang J, Li S, Kuang C, Shen Y, Yu H, Chen F, Tang R, Mao S, Lv L, Qi M, Zhang J, Yuan K. CD74 + fibroblasts proliferate upon mechanical stretching to promote angiogenesis in keloids. FASEB J 2024; 38:e70103. [PMID: 39400419 DOI: 10.1096/fj.202401302r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 09/07/2024] [Accepted: 09/30/2024] [Indexed: 10/15/2024]
Abstract
The healing of human skin wounds is susceptible to perturbation caused by excessive mechanical stretching, resulting in enlarged scars, hypertrophic scars, or even keloids in predisposed individuals. Keloids are fibro-proliferative scar tissues that extend beyond the initial wound boundary, consisting of the actively progressing periphery and the quiescent center. The stretch-associated outgrowth and enhanced angiogenesis are two features of the periphery of keloids. However, which cell population is responsible for transducing the mechanical stimulation to the progression of keloids remains unclear. Herein, through integrative analysis of single-cell RNA sequencing of keloids, we identified CD74+ fibroblasts, a previously unappreciated subset of fibroblasts with pro-angiogenic and stretch-induced proliferative capacities, as a key player in stretch-induced progression of keloids. Immunostaining of keloid cryosections depicted a predominant distribution of CD74+ fibroblasts in the periphery, interacting with the vasculature. In vitro tube formation assays on purified CD74+ fibroblasts ascertained their pro-angiogenic function. BrdU assays revealed that these cells proliferate upon stretching, through PIEZO1-mediated calcium influx and the downstream ERK and AKT signaling. Collectively, our findings propose a model wherein CD74+ fibroblasts serve as pivotal drivers of stretch-induced keloid progression, fueled by their proliferative and pro-angiogenic activities. Targeting the attributes of CD74+ fibroblasts holds promise as a therapeutic strategy for the management of keloids.
Collapse
Affiliation(s)
- Jingheng Zhang
- Department of Plastic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Molecular Precision Medicine, Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Shuyao Li
- Hunan Key Laboratory of Molecular Precision Medicine, Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Chunmei Kuang
- Hunan Key Laboratory of Molecular Precision Medicine, Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yunfan Shen
- Hunan Key Laboratory of Molecular Precision Medicine, Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Haibin Yu
- Hunan Key Laboratory of Molecular Precision Medicine, Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Fang Chen
- Hunan Key Laboratory of Molecular Precision Medicine, Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ruijun Tang
- Hunan Key Laboratory of Molecular Precision Medicine, Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Song Mao
- Hunan Key Laboratory of Molecular Precision Medicine, Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Lu Lv
- Hunan Key Laboratory of Molecular Precision Medicine, Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Min Qi
- Department of Plastic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jianglin Zhang
- Department of Dermatology, Shenzhen People's Hospital, Shenzhen, Guangdong, China
- The Second Clinical Medical College, Jinan University, Shenzhen, Guangdong, China
- The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Kai Yuan
- Hunan Key Laboratory of Molecular Precision Medicine, Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
- Furong Laboratory, Central South University, Changsha, Hunan, China
- The Biobank of Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
2
|
Kwon SH, Lee J, Yoo J, Jung Y. Artificial keloid skin models: understanding the pathophysiological mechanisms and application in therapeutic studies. Biomater Sci 2024; 12:3321-3334. [PMID: 38812375 DOI: 10.1039/d4bm00005f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
Keloid is a type of scar formed by the overexpression of extracellular matrix substances from fibroblasts following inflammation after trauma. The existing keloid treatment methods include drug injection, surgical intervention, light exposure, cryotherapy, etc. However, these methods have limitations such as recurrence, low treatment efficacy, and side effects. Consequently, studies are being conducted on the treatment of keloids from the perspective of inflammatory mechanisms. In this study, keloid models are created to understand inflammatory mechanisms and explore treatment methods to address them. While previous studies have used animal models with gene mutations, chemical treatments, and keloid tissue transplantation, there are limitations in fully reproducing the characteristics of keloids unique to humans, and ethical issues related to animal welfare pose additional challenges. Consequently, studies are underway to create in vitro artificial skin models to simulate keloid disease and apply them to the development of treatments for skin diseases. In particular, herein, scaffold technologies that implement three-dimensional (3D) full-thickness keloid models are introduced to enhance mechanical properties as well as biological properties of tissues, such as cell proliferation, differentiation, and cellular interactions. It is anticipated that applying these technologies to the production of artificial skin for keloid simulation could contribute to the development of inflammatory keloid treatment techniques in the future.
Collapse
Affiliation(s)
- Soo Hyun Kwon
- Center for Biomaterials, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea.
| | - Jongmin Lee
- Center for Biomaterials, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea.
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Republic of Korea
| | - Jin Yoo
- Center for Biomaterials, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea.
| | - Youngmee Jung
- Center for Biomaterials, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea.
- School of Electrical and Electronic Engineering, YU-KIST Institute, Yonsei University, Seoul 03722, Republic of Korea
| |
Collapse
|
3
|
Eftimie R, Rolin G, Adebayo OE, Urcun S, Chouly F, Bordas SPA. Modelling Keloids Dynamics: A Brief Review and New Mathematical Perspectives. Bull Math Biol 2023; 85:117. [PMID: 37855947 DOI: 10.1007/s11538-023-01222-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 10/02/2023] [Indexed: 10/20/2023]
Abstract
Keloids are fibroproliferative disorders described by excessive growth of fibrotic tissue, which also invades adjacent areas (beyond the original wound borders). Since these disorders are specific to humans (no other animal species naturally develop keloid-like tissue), experimental in vivo/in vitro research has not led to significant advances in this field. One possible approach could be to combine in vitro human models with calibrated in silico mathematical approaches (i.e., models and simulations) to generate new testable biological hypotheses related to biological mechanisms and improved treatments. Because these combined approaches do not really exist for keloid disorders, in this brief review we start by summarising the biology of these disorders, then present various types of mathematical and computational approaches used for related disorders (i.e., wound healing and solid tumours), followed by a discussion of the very few mathematical and computational models published so far to study various inflammatory and mechanical aspects of keloids. We conclude this review by discussing some open problems and mathematical opportunities offered in the context of keloid disorders by such combined in vitro/in silico approaches, and the need for multi-disciplinary research to enable clinical progress.
Collapse
Affiliation(s)
- R Eftimie
- Laboratoire de Mathématiques de Besançon, Université de Franche-Comté, 25000, Besançon, France.
| | - G Rolin
- INSERM CIC-1431, CHU Besançon, F-25000, Besançon, France
- EFS, INSERM, UMR 1098 RIGHT, Université de Franche-Comté, F-25000, Besançon, France
| | - O E Adebayo
- Laboratoire de Mathématiques de Besançon, Université de Franche-Comté, 25000, Besançon, France
| | - S Urcun
- Institute for Computational Engineering, Faculty of Science, Technology and Communication, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - F Chouly
- Institut de Mathématiques de Bourgogne, Université de Franche-Comté, 21078, Dijon, France
- Center for Mathematical Modelling and Department of Mathematical Engineering, University of Chile and IRL 2807 - CNRS, Santiago, Chile
- Departamento de Ingeniería Matemática, CI2MA, Universidad de Concepción, Casilla 160-C, Concepción, Chile
| | - S P A Bordas
- Institute for Computational Engineering, Faculty of Science, Technology and Communication, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| |
Collapse
|
4
|
Adebayo OE, Urcun S, Rolin G, Bordas SPA, Trucu D, Eftimie R. Mathematical investigation of normal and abnormal wound healing dynamics: local and non-local models. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2023; 20:17446-17498. [PMID: 37920062 DOI: 10.3934/mbe.2023776] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2023]
Abstract
The movement of cells during (normal and abnormal) wound healing is the result of biomechanical interactions that combine cell responses with growth factors as well as cell-cell and cell-matrix interactions (adhesion and remodelling). It is known that cells can communicate and interact locally and non-locally with other cells inside the tissues through mechanical forces that act locally and at a distance, as well as through long non-conventional cell protrusions. In this study, we consider a non-local partial differential equation model for the interactions between fibroblasts, macrophages and the extracellular matrix (ECM) via a growth factor (TGF-$ \beta $) in the context of wound healing. For the non-local interactions, we consider two types of kernels (i.e., a Gaussian kernel and a cone-shaped kernel), two types of cell-ECM adhesion functions (i.e., adhesion only to higher-density ECM vs. adhesion to higher-/lower-density ECM) and two types of cell proliferation terms (i.e., with and without decay due to overcrowding). We investigate numerically the dynamics of this non-local model, as well as the dynamics of the localised versions of this model (i.e., those obtained when the cell perception radius decreases to 0). The results suggest the following: (ⅰ) local models explain normal wound healing and non-local models could also explain abnormal wound healing (although the results are parameter-dependent); (ⅱ) the models can explain two types of wound healing, i.e., by primary intention, when the wound margins come together from the side, and by secondary intention when the wound heals from the bottom up.
Collapse
Affiliation(s)
- O E Adebayo
- Laboratoire de mathématiques de Besançon, UMR CNRS 6623, Université de Franche-Comté, Besançon 25000, France
| | - S Urcun
- Department of Engineering, Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - G Rolin
- INSERM CIC-1431, CHU Besançon, Besançon 25000, France
- Université de Franche-Comté, EFS, INSERM, UMR RIGHT, F-25000 Besançon, France
| | - S P A Bordas
- Department of Engineering, Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - D Trucu
- Division of Mathematics, University of Dundee, Dundee, DD1 4HN, United Kingdom
| | - R Eftimie
- Laboratoire de mathématiques de Besançon, UMR CNRS 6623, Université de Franche-Comté, Besançon 25000, France
- Division of Mathematics, University of Dundee, Dundee, DD1 4HN, United Kingdom
| |
Collapse
|
5
|
Guo C, Liang L, Zheng J, Xie Y, Qiu X, Tan G, Huang J, Wang L. UCHL1 aggravates skin fibrosis through an IGF-1-induced Akt/mTOR/HIF-1α pathway in keloid. FASEB J 2023; 37:e23015. [PMID: 37256780 DOI: 10.1096/fj.202300153rr] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 05/05/2023] [Accepted: 05/22/2023] [Indexed: 06/02/2023]
Abstract
Keloid is a heterogeneous disease featured by the excessive production of extracellular matrix. It is a great challenge for both clinicians and patients regarding the exaggerated and uncontrolled outgrowth and the therapeutic resistance of the disease. In this study, we verified that UCHL1 was drastically upregulated in keloid fibroblasts. UCHL1 had no effects on cell proliferation and migration, but instead promoted collagen I and α-SMA expression that was inhibited by silencing UCHL1 gene and by adding in LDN-57444, a pharmacological inhibitor for UCHL1 activity as well. The pathological process was mediated by IGF-1 promoted Akt/mTOR/HIF-1α signaling pathway because inhibition of any of them could reduce the expression of collagen I and α-SMA driven by UCHL1 in fibroblasts. Also, we found that UCHL1 expression in keloid fibroblasts was promoted by M2 macrophages via TGF-β1. These findings extend our understanding of the pathogenesis of keloid and provide potential therapeutic targets for the disease.
Collapse
Affiliation(s)
- Chipeng Guo
- Department of Dermatology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Lizhu Liang
- Department of Dermatology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jingbin Zheng
- Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yang Xie
- Department of Dermatology, the Third Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, China
| | - Xiaonan Qiu
- Department of Dermatology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Guozhen Tan
- Department of Dermatology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jingang Huang
- Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Liangchun Wang
- Department of Dermatology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
6
|
Michielon E, López González M, Stolk DA, Stolwijk JGC, Roffel S, Waaijman T, Lougheed SM, de Gruijl TD, Gibbs S. A Reconstructed Human Melanoma-in-Skin Model to Study Immune Modulatory and Angiogenic Mechanisms Facilitating Initial Melanoma Growth and Invasion. Cancers (Basel) 2023; 15:2849. [PMID: 37345186 DOI: 10.3390/cancers15102849] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/08/2023] [Accepted: 05/17/2023] [Indexed: 06/23/2023] Open
Abstract
Invasion, immune modulation, and angiogenesis are crucial in melanoma progression. Studies based on animals or two-dimensional cultures poorly recapitulate the tumor-microenvironmental cross-talk found in humans. This highlights a need for more physiological human models to better study melanoma features. Here, six melanoma cell lines (A375, COLO829, G361, MeWo, RPMI-7951, and SK-MEL-28) were used to generate an in vitro three-dimensional human melanoma-in-skin (Mel-RhS) model and were compared in terms of dermal invasion and immune modulatory and pro-angiogenic capabilities. A375 displayed the most invasive phenotype by clearly expanding into the dermal compartment, whereas COLO829, G361, MeWo, and SK-MEL-28 recapitulated to different extent the initial stages of melanoma invasion. No nest formation was observed for RPMI-7951. Notably, the integration of A375 and SK-MEL-28 cells into the model resulted in an increased secretion of immune modulatory factors (e.g., M-CSF, IL-10, and TGFβ) and pro-angiogenic factors (e.g., Flt-1 and VEGF). Mel-RhS-derived supernatants induced endothelial cell sprouting in vitro. In addition, observed A375-RhS tissue contraction was correlated to increased TGFβ release and α-SMA expression, all indicative of differentiation of fibroblasts into cancer-associated fibroblast-like cells and reminiscent of epithelial-to-mesenchymal transition, consistent with A375's most prominent invasive behavior. In conclusion, we successfully generated several Mel-RhS models mimicking different stages of melanoma progression, which can be further tailored for future studies to investigate individual aspects of the disease and serve as three-dimensional models to assess efficacy of therapeutic strategies.
Collapse
Affiliation(s)
- Elisabetta Michielon
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC, Location Vrije Universiteit, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
- Amsterdam Institute for Infection and Immunity, 1105 AZ Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, 1081 HV Amsterdam, The Netherlands
| | - Marta López González
- Amsterdam Institute for Infection and Immunity, 1105 AZ Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, 1081 HV Amsterdam, The Netherlands
- Department of Medical Oncology, Amsterdam UMC, Location Vrije Universiteit, 1105 AZ Amsterdam, The Netherlands
| | - Dorian A Stolk
- Amsterdam Institute for Infection and Immunity, 1105 AZ Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, 1081 HV Amsterdam, The Netherlands
- Department of Medical Oncology, Amsterdam UMC, Location Vrije Universiteit, 1105 AZ Amsterdam, The Netherlands
| | - Joeke G C Stolwijk
- Amsterdam Institute for Infection and Immunity, 1105 AZ Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, 1081 HV Amsterdam, The Netherlands
- Department of Medical Oncology, Amsterdam UMC, Location Vrije Universiteit, 1105 AZ Amsterdam, The Netherlands
| | - Sanne Roffel
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC, Location Vrije Universiteit, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit, 1105 AZ Amsterdam, The Netherlands
| | - Taco Waaijman
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC, Location Vrije Universiteit, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
- Amsterdam Institute for Infection and Immunity, 1105 AZ Amsterdam, The Netherlands
| | - Sinéad M Lougheed
- Amsterdam Institute for Infection and Immunity, 1105 AZ Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, 1081 HV Amsterdam, The Netherlands
- Department of Medical Oncology, Amsterdam UMC, Location Vrije Universiteit, 1105 AZ Amsterdam, The Netherlands
| | - Tanja D de Gruijl
- Amsterdam Institute for Infection and Immunity, 1105 AZ Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, 1081 HV Amsterdam, The Netherlands
- Department of Medical Oncology, Amsterdam UMC, Location Vrije Universiteit, 1105 AZ Amsterdam, The Netherlands
| | - Susan Gibbs
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC, Location Vrije Universiteit, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
- Amsterdam Institute for Infection and Immunity, 1105 AZ Amsterdam, The Netherlands
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit, 1105 AZ Amsterdam, The Netherlands
| |
Collapse
|
7
|
Hofmann E, Fink J, Pignet AL, Schwarz A, Schellnegger M, Nischwitz SP, Holzer-Geissler JCJ, Kamolz LP, Kotzbeck P. Human In Vitro Skin Models for Wound Healing and Wound Healing Disorders. Biomedicines 2023; 11:biomedicines11041056. [PMID: 37189674 DOI: 10.3390/biomedicines11041056] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/23/2023] [Accepted: 03/24/2023] [Indexed: 05/17/2023] Open
Abstract
Skin wound healing is essential to health and survival. Consequently, high amounts of research effort have been put into investigating the cellular and molecular components involved in the wound healing process. The use of animal experiments has contributed greatly to the knowledge of wound healing, skin diseases, and the exploration of treatment options. However, in addition to ethical concerns, anatomical and physiological inter-species differences often influence the translatability of animal-based studies. Human in vitro skin models, which include essential cellular and structural components for wound healing analyses, would improve the translatability of results and reduce animal experiments during the preclinical evaluation of novel therapy approaches. In this review, we summarize in vitro approaches, which are used to study wound healing as well as wound healing-pathologies such as chronic wounds, keloids, and hypertrophic scars in a human setting.
Collapse
Affiliation(s)
- Elisabeth Hofmann
- COREMED-Centre of Regenerative and Precision Medicine, JOANNEUM RESEARCH Forschungsgesellschaft mbH, 8010 Graz, Austria
- Division of Plastic, Aesthetic and Reconstructive Surgery, Department of Surgery, Medical University of Graz, 8036 Graz, Austria
- Research Unit for Tissue Regeneration, Repair and Reconstruction, Division of Plastic, Aesthetic and Reconstructive Surgery, Department of Surgery, Medical University of Graz, 8036 Graz, Austria
| | - Julia Fink
- COREMED-Centre of Regenerative and Precision Medicine, JOANNEUM RESEARCH Forschungsgesellschaft mbH, 8010 Graz, Austria
- Division of Plastic, Aesthetic and Reconstructive Surgery, Department of Surgery, Medical University of Graz, 8036 Graz, Austria
- Research Unit for Tissue Regeneration, Repair and Reconstruction, Division of Plastic, Aesthetic and Reconstructive Surgery, Department of Surgery, Medical University of Graz, 8036 Graz, Austria
| | - Anna-Lisa Pignet
- COREMED-Centre of Regenerative and Precision Medicine, JOANNEUM RESEARCH Forschungsgesellschaft mbH, 8010 Graz, Austria
- Division of Plastic, Aesthetic and Reconstructive Surgery, Department of Surgery, Medical University of Graz, 8036 Graz, Austria
- Research Unit for Tissue Regeneration, Repair and Reconstruction, Division of Plastic, Aesthetic and Reconstructive Surgery, Department of Surgery, Medical University of Graz, 8036 Graz, Austria
| | - Anna Schwarz
- COREMED-Centre of Regenerative and Precision Medicine, JOANNEUM RESEARCH Forschungsgesellschaft mbH, 8010 Graz, Austria
- Division of Plastic, Aesthetic and Reconstructive Surgery, Department of Surgery, Medical University of Graz, 8036 Graz, Austria
- Research Unit for Tissue Regeneration, Repair and Reconstruction, Division of Plastic, Aesthetic and Reconstructive Surgery, Department of Surgery, Medical University of Graz, 8036 Graz, Austria
| | - Marlies Schellnegger
- COREMED-Centre of Regenerative and Precision Medicine, JOANNEUM RESEARCH Forschungsgesellschaft mbH, 8010 Graz, Austria
- Division of Plastic, Aesthetic and Reconstructive Surgery, Department of Surgery, Medical University of Graz, 8036 Graz, Austria
| | - Sebastian P Nischwitz
- Division of Plastic, Aesthetic and Reconstructive Surgery, Department of Surgery, Medical University of Graz, 8036 Graz, Austria
- Research Unit for Tissue Regeneration, Repair and Reconstruction, Division of Plastic, Aesthetic and Reconstructive Surgery, Department of Surgery, Medical University of Graz, 8036 Graz, Austria
| | - Judith C J Holzer-Geissler
- Division of Plastic, Aesthetic and Reconstructive Surgery, Department of Surgery, Medical University of Graz, 8036 Graz, Austria
- Research Unit for Tissue Regeneration, Repair and Reconstruction, Division of Plastic, Aesthetic and Reconstructive Surgery, Department of Surgery, Medical University of Graz, 8036 Graz, Austria
| | - Lars-Peter Kamolz
- COREMED-Centre of Regenerative and Precision Medicine, JOANNEUM RESEARCH Forschungsgesellschaft mbH, 8010 Graz, Austria
- Division of Plastic, Aesthetic and Reconstructive Surgery, Department of Surgery, Medical University of Graz, 8036 Graz, Austria
| | - Petra Kotzbeck
- COREMED-Centre of Regenerative and Precision Medicine, JOANNEUM RESEARCH Forschungsgesellschaft mbH, 8010 Graz, Austria
- Division of Plastic, Aesthetic and Reconstructive Surgery, Department of Surgery, Medical University of Graz, 8036 Graz, Austria
- Research Unit for Tissue Regeneration, Repair and Reconstruction, Division of Plastic, Aesthetic and Reconstructive Surgery, Department of Surgery, Medical University of Graz, 8036 Graz, Austria
| |
Collapse
|
8
|
Zhang Y, Li X, Liu W, Hu G, Gu H, Cui X, Zhang D, Zeng W, Xia Y. TWEAK/Fn14 signaling may function as a reactive compensatory mechanism against extracellular matrix accumulation in keloid fibroblasts. Eur J Cell Biol 2023; 102:151290. [PMID: 36709605 DOI: 10.1016/j.ejcb.2023.151290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 01/22/2023] [Accepted: 01/22/2023] [Indexed: 01/25/2023] Open
Abstract
Overabundance of the extracellular matrix resulting from hyperproliferation of keloid fibroblasts (KFs) and dysregulation of apoptosis represents the main pathophysiology underlying keloids. TWEAK is a weak apoptosis inducer, and it plays a critical role in pathological tissue remodeling via its receptor, Fn14. However, the role of TWEAK/Fn14 signaling in the pathogenesis of keloids has not been investigated. In this study, we confirmed the overexpression levels of TWEAK and Fn14 in clinical keloid tissue specimens and primary KFs. The extracellular matrix (ECM)-related genes were also evaluated between primary KFs and their normal counterparts to determine the factors leading to the formation or development of keloids. Unexpectedly, exogenous TWEAK significantly reduced the levels of collagen I and collagen III, as well as alpha-smooth muscle actin (α-SMA). Additionally, TWEAK promoted MMPs expression and apoptosis activity of KFs. Furthermore, we verified that the inhibitory effect of TWEAK on KFs is through down-regulation of Polo-like kinase 5, which modulates cell differentiation and apoptosis. The TWEAK-Fn14 axis seems to be a secondary, although less effective, compensatory mechanism to increase the catabolic functions of fibroblasts in an attempt to further decrease the accumulation of collagen. DATA AVAILABILITY: All data generated or analyzed during this study are included in this published article (and its Supporting Information files).
Collapse
Affiliation(s)
- Yitian Zhang
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Xiaoli Li
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004 China
| | - Wei Liu
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Guanglei Hu
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Hanjiang Gu
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Xiao Cui
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Dewu Zhang
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Weihui Zeng
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China.
| | - Yumin Xia
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China.
| |
Collapse
|
9
|
Teng Y, Hao Y, Liu H, Shan M, Chen Q, Song K, Wang Y. Histology and Vascular Architecture Study of Keloid Tissue to Outline the Possible Terminology of Keloid Skin Flaps. Aesthetic Plast Surg 2022; 46:985-994. [PMID: 35169912 DOI: 10.1007/s00266-022-02775-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Accepted: 01/04/2022] [Indexed: 02/13/2023]
Abstract
BACKGROUND Using the keloid "epidermis" to cover a wound is widely used during treatment for keloids. Many flap terminologies have been used in literature. However, the definition of the flap is not well established. Here, we refined the definition of the flap and associated terminology and explored the survival mechanism of the 'flap' through histological analysis and blood supply studying. METHODS Histology and vascular study of keloid was carried out with keloid and its surrounding normal skin tissue which were collected from keloid patients following keloid resection operations. The histological structures and thicknesses of epidermal and subepidermal of the keloids were analyzed and measured using hematoxylin & eosin (H&E) staining. Vascular density and blood perfusion in the subepidermal layer of keloids (KDS) were analyzed using CD31 immunohistochemical staining and a laser speckle contrast imaging system (LSCI), respectively. The vascular network in KDS was visualized by CD31 immunofluorescence staining and three-dimensional reconstruction. RESULTS 29 pieces of keloid and its surrounding normal skin tissue sample from ten patients were collected. Keloid samples were about 2 cm wide and 5 cm long. The normal skin samples were about 2 to 3 mm in width. The thickness of epidermal layer of keloids was (136.4 ± 35.3) μm, and the thickness of epidermal layer of surrounding normal skin was (78.8 ± 13.9) μm. There was statistical thickness difference between the two layers, t(20) = 7.469, P < 0.001. The total thickness of keloid epidermal and subepidermal layers was 391.4 ± 2.3 μm. The vascular density (13.9 ± 3.4/field) and blood flow perfusion (132.7 ± 31.3) PU in KDS were greater than that of surrounding normal skin (7.8 ± 2.3/field, 73.9 ± 17.9 PU), P < 0.001. Horizontally distributed vessels with several vertical branches were observed in 3D vascular network reconstruction. CONCLUSION The epidermal layer of keloid is thicker than that of surrounding normal skin. There is a vascular network structure under it. The vessels mainly locate at a depth of about 150 to 400 μm from the surface of keloid epidermis, randomly distribute and run parallel to the epidermis. Based on these characteristics which may ensure an adequate blood supply, we propose the concept of a "keloid subepidermal vascular network flap." LEVEL OF EVIDENCE V This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .
Collapse
|
10
|
Wang Q, Wang W, Sun XJ. Construction of a HOXA11-AS-Interact Ed Network in Keloid Fibroblasts Using Integrated Bioinformatic Analysis and in Vitro Validation. Front Genet 2022; 13:844198. [PMID: 35432479 PMCID: PMC9010035 DOI: 10.3389/fgene.2022.844198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 02/28/2022] [Indexed: 11/23/2022] Open
Abstract
Background: Expression of the long noncoding RNA (lncRNA) HOXA11-AS significantly increased in keloids by unclarified molecular regulation mechanisms. Methods: Using successfully primary cultured keloid-derived fibroblasts from central region of chronic keloid tissues (sample 0), small interfering RNAs were designed and transfected into two keloid fibroblast samples (samples 1 and 2) to knockdown HOXA11-AS. One nonspecific transfection control (sample 3) and one blank control (sample 4) were used to remove nonspecific overlap from the studied group. The lncRNAs, messenger RNAs (mRNAs), and microRNAs (miRNAs) of five samples were sequenced to identify differentially expressed (DE) profiles in HOXA11-AS-knockdown keloid fibroblasts in samples 1 and 2 (by intersection), which facilitated removal of overlap with the nonspecific controls (samples 3 and 4, by union). Using stepwise bioinformatic analysis, a HOXA11-AS-interacted competing endogenous network (ceRNA) was screened based on three DE profiles. Results: Keloid fibroblasts with or without HOXA11-AS as well as with or without nonspecific interferences were successfully constructed respectively. A total of 1,396 mRNAs and 39 lncRNAs were significantly changed in keloid fibroblast with HOXA11-AS knockdown. Simultaneously, 1,626 mRNAs and 99 lncRNAs were significantly changed in keloid fibroblast with nonspecific interference. With removal of nonspecific overlap, a lncRNA–mRNA interactive network characterized by close natural/intronic antisense relationship was initially constructed in keloid fibroblast with HOXA11-AS knockdown. Based on this network, a lncRNA–mRNA–protein interaction network was extended by integration of the human protein–protein interaction network. Significant functional genes were screened using PageRank algorithm in the extended network. Three genes, including SNED1, NIPAL3, and VTN, were validated by real-time PCR in HOXA11-AS-knockdown keloid fibroblasts. Only NIPAL3 was predicted to be a target gene for HOXA11-AS via three competing endogenous miRNAs (hsa-miRNA-19a-3p, hsa-miR-141-3p, and hsa-miR-140-5p). Conclusion: An interactive network of HOXA11-AS–three miRNAs–NIPAL3 was predicted in keloid fibroblasts by integrative bioinformatic analysis and in vitro validation.
Collapse
Affiliation(s)
- Qiang Wang
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun, China
| | - Wei Wang
- Department of Radiology, The First Hospital of Jilin University, Changchun, China
| | - Xiao-jie Sun
- Department of Plastic Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
- *Correspondence: Xiao-jie Sun,
| |
Collapse
|
11
|
Li Y, Li M, Qu C, Li Y, Tang Z, Zhou Z, Yu Z, Wang X, Xin L, Shi T. The Polygenic Map of Keloid Fibroblasts Reveals Fibrosis-Associated Gene Alterations in Inflammation and Immune Responses. Front Immunol 2022; 12:810290. [PMID: 35082796 PMCID: PMC8785650 DOI: 10.3389/fimmu.2021.810290] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 12/15/2021] [Indexed: 01/02/2023] Open
Abstract
Due to many inconsistencies in differentially expressed genes (DEGs) related to genomic expression changes during keloid formation and a lack of satisfactory prevention and treatment methods for this disease, the critical biomarkers related to inflammation and the immune response affecting keloid formation should be systematically clarified. Normal skin/keloid scar tissue-derived fibroblast genome expression data sets were obtained from the Gene Expression Omnibus (GEO) and ArrayExpress databases. Hub genes have a high degree of connectivity and gene function aggregation in the integration network. The hub DEGs were screened by gene-related protein–protein interactions (PPIs), and their biological processes and signaling pathways were annotated to identify critical biomarkers. Finally, eighty-one hub DEGs were selected for further analysis, and some noteworthy signaling pathways and genes were found to be closely related to keloid fibrosis. For example, IL17RA is involved in IL-17 signal transduction, TIMP2 and MMP14 activate extracellular matrix metalloproteinases, and TNC, ITGB2, and ITGA4 interact with cell surface integrins. Furthermore, changes in local immune cell activity in keloid tissue were detected by DEG expression, immune cell infiltration, and mass CyTOF analyses. The results showed that CD4+ T cells, CD8+ T cells and NK cells were abnormal in keloid tissue compared with normal skin tissue. These findings not only support the key roles of fibrosis-related pathways, immune cells and critical genes in the pathogenesis of keloids but also expand our understanding of targets that may be useful for the treatment of fibrotic diseases.
Collapse
Affiliation(s)
- Yang Li
- Department of Dermatology, The Affiliated Qingdao Municipal Hospital of Qingdao University, Qingdao, China
| | - Min Li
- Department of Dermatology, The Affiliated Qingdao Municipal Hospital of Qingdao University, Qingdao, China
| | - Caijie Qu
- Department of Dermatology, The Affiliated Qingdao Municipal Hospital of Qingdao University, Qingdao, China
| | - Yongxi Li
- Department of Dermatology, The Affiliated Qingdao Municipal Hospital of Qingdao University, Qingdao, China
| | - Zhanli Tang
- Department of Dermatology, Qilu Hospital, Shandong University, Jinan, China
| | - Zhike Zhou
- Department of Dermatology, The Affiliated Qingdao Municipal Hospital of Qingdao University, Qingdao, China
| | - Zengzhao Yu
- Department of Dermatology, The Affiliated Qingdao Municipal Hospital of Qingdao University, Qingdao, China
| | - Xu Wang
- Department of Dermatology, The Affiliated Qingdao Municipal Hospital of Qingdao University, Qingdao, China
| | - Linlin Xin
- Department of Dermatology, Shandong Provincial Qianfoshan Hospital, The First Hospital Affiliated with Shandong First Medical University, Jinan, China
| | - Tongxin Shi
- Department of Dermatology, The Affiliated Qingdao Municipal Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
12
|
Integration of Flow Cytometry and Computational Analysis to Dissect the Epidermal Cellular Subsets in Keloids that Correlate with Recurrence. J Invest Dermatol 2021; 141:2521-2529.e4. [PMID: 33839145 DOI: 10.1016/j.jid.2021.03.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 02/25/2021] [Accepted: 03/16/2021] [Indexed: 02/05/2023]
Abstract
Keloid disease is a benign skin disease that does not have an effective therapy. More and more research shows that epidermal abnormalities are involved in keloid pathogenesis. Little is known about the relationship between the abnormal epidermal immunophenotype and clinical outcome. Nine-color flow cytometry with computational analysis was performed to detect the altered cellular subpopulation distribution in keloid lesions. Receiver operating characteristic curves were drawn to compare predictive ability between the alteration of cell subgroup frequency and the Vancouver Scar Scale. The frequency of CD49fhi/CD29+/TLR7+ cellular subsets increased in the keloid epidermis compared with that in the healthy control. CD49fmid-hi/CD29+/TLR7+/CD24+ cellular subpopulation level was increased significantly in keloids, whereas CD49flo-mid/CD29‒/TLR7‒/CD24‒ cellular subpopulation frequency was decreased. The CD49flo/CD29‒/TLR7‒/CD24+/CD117+ cellular subpopulation showed an increased frequency during recurrence with a sensitivity of 66.7% and specificity of 91.7%. The area under the curve was 0.806 for cellular subpopulation analysis, which was higher than the area under the curve for the Vancouver Scar Scale (0.583). The alteration of keloid epidermal subpopulation frequency is related to recurrence, which will provide an optional predictive marker for keloid recurrence and a potential target subset for investigating the generation of keloid.
Collapse
|
13
|
Yang Y, Liu L, Yang R, Ding X, Li Y, Liu H, Yan H. Blood perfusion in hypertrophic scars and keloids studied by laser speckle contrast imaging. Skin Res Technol 2021; 27:789-796. [PMID: 33651469 DOI: 10.1111/srt.13020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 01/25/2021] [Indexed: 11/30/2022]
Abstract
BACKGROUND This study used laser speckle contrast imaging (LSCI) to evaluate the difference in blood perfusion between hypertrophic scars and keloids. MATERIALS AND METHODS A total of 30 keloids, 21 early hypertrophic scars, 20 proliferative hypertrophic scars, 20 regressive hypertrophic scars, and 20 mature hypertrophic scars were enrolled into this study. Vancouver Scar Scale (VSS) was assessed by a plastic surgeon. LSCI was used to evaluate perfusion of the whole (W), marginal (M), central (C) regions, and surrounding normal skin of the scars, and ratios (M/N, C/N) were calculated. RESULTS The perfusion of the marginal region in the keloid was significantly higher than that of the central region. Nevertheless, there was no significant difference in perfusion between the central and marginal regions in the early, proliferative, regressive, and mature hypertrophic scars. The degree of perfusion and perfusion ratio in the marginal region of keloid was similar to that of proliferative hypertrophic scars, and the degree of perfusion and perfusion ratio in central region of keloid group was similar to that of early and regressive hypertrophic scars. CONCLUSIONS The difference in perfusion distribution in keloids and hypertrophic scars may provide ideas for their identification. LSCI may be a useful method for differentiating between keloids and hypertrophic scars.
Collapse
Affiliation(s)
- Yuting Yang
- Department of Plastic and Burn Surgery, National Key Clinical Construction Specialty, Wound Repair and Regeneration Laboratory, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Lan Liu
- Department of Plastic and Burn Surgery, National Key Clinical Construction Specialty, Wound Repair and Regeneration Laboratory, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Ruxi Yang
- Department of Plastic and Burn Surgery, National Key Clinical Construction Specialty, Wound Repair and Regeneration Laboratory, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Xiaobing Ding
- Department of Plastic and Burn Surgery, National Key Clinical Construction Specialty, Wound Repair and Regeneration Laboratory, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Ying Li
- Department of Plastic and Burn Surgery, National Key Clinical Construction Specialty, Wound Repair and Regeneration Laboratory, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Hongjun Liu
- Department of Plastic and Burn Surgery, National Key Clinical Construction Specialty, Wound Repair and Regeneration Laboratory, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Hong Yan
- Department of Plastic and Burn Surgery, National Key Clinical Construction Specialty, Wound Repair and Regeneration Laboratory, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| |
Collapse
|
14
|
Chen C, Zhang M, Yu N, Zhang W, Long X, Wang Y, Wang X. Heterogeneous Features of Keloids Assessed by Laser Speckle Contrast Imaging: A Cross-Sectional Study. Lasers Surg Med 2020; 53:865-871. [PMID: 33027537 DOI: 10.1002/lsm.23331] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 09/01/2020] [Accepted: 09/20/2020] [Indexed: 01/08/2023]
Abstract
BACKGROUND AND OBJECTIVES Keloids are described as benign dermal fibroproliferative lesions, and vascularization may play a significant role in their pathogenesis. In this study, laser speckle contrast imaging (LSCI) was used to assess perfusion within keloids and surrounding skin, and perfusion of keloids at different stages was compared. STUDY DESIGN/MATERIALS AND METHODS A total of 59 patients with 110 untreated keloids on the anterior chest were enrolled in this study. Different keloid stages (progressive, stable, and regressive) were defined according to patients' descriptions of whether keloids became larger, stable, or smaller during the previous year. Vancouver Scar Scale (VSS) was assessed by a plastic surgeon, and patient reports on pain and itching were documented. LSCI was used to evaluate blood perfusion of keloids (K), skin adjacent to keloids (A), and nonadjacent skin (N). The mean perfusion of these regions was determined, and ratios (K/N, A/N) were calculated. RESULTS A heterogeneous perfusion map was observed among the keloid groups, as well as within each keloid. A positive correlation was found between keloid perfusion and VSS. There were 62 (56.4%) keloids in the progressive stage, 33 (30.0%) keloids in the stable stage, and 15 (13.6%) keloids in the regressive stage. The mean K/N ratios in the progressive, stable, and regressive stages were 2.3 ± 0.5, 1.8 ± 0.3, and 1.5 ± 0.5, respectively. The mean A/N ratios were 1.2 ± 0.4, 1.2 ± 0.2, and 1.0 ± 0.5, respectively. Within each keloid, significantly higher perfusion was noted in the keloid and adjacent skin compared with nonadjacent skin. CONCLUSION These results indicate that LSCI is a promising technique for evaluating keloid blood perfusion and distinguishing heterogeneous keloids. Lasers Surg. Med. © 2020 Wiley Periodicals LLC.
Collapse
Affiliation(s)
- Cheng Chen
- Department of Plastic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.,Department of Ultrasound, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Mingzi Zhang
- Department of Plastic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Nanze Yu
- Department of Plastic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Wenchao Zhang
- Department of Plastic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Xiao Long
- Department of Plastic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Youbin Wang
- Department of Plastic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Xiaojun Wang
- Department of Plastic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| |
Collapse
|
15
|
Tang H, Chen Q, Yu W, Zhao T. MiR-4328 inhibits proliferation, metastasis and induces apoptosis in keloid fibroblasts by targeting BCL2 expression. Open Life Sci 2020; 15:638-646. [PMID: 33817252 PMCID: PMC7747497 DOI: 10.1515/biol-2020-0056] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 04/09/2020] [Accepted: 04/16/2020] [Indexed: 12/24/2022] Open
Abstract
Keloids are considered to be a type of benign tumor. MicroRNAs have been reported to be involved in the formation and growth of keloids. MicroRNA-4328 (miR-4328) was found to be abnormally expressed in keloids, while the role and the detailed molecular mechanism of miR-4328 in keloids remain unclear. The expression of miR-4328 and B-cell lymphoma 2 (BCL2) mRNA was detected by qRT-PCR. The proliferation, migration, invasion and apoptosis of keloid fibroblasts (KFs) was examined using Cell Counting Kit-8 assay, transwell assay or flow cytometry, respectively. Western blot was used to detect the level of proliferating cell nuclear antigen, cleaved-caspase 3, collagen I, collagen III and BCL2 protein. The interaction between miR-4328 and BCL2 was confirmed by luciferase reporter analyses. It was observed that miR-4328 was down-regulated in keloid tissues and fibroblasts, and miR-4328 restoration mediated the inhibition of proliferation, metastasis, collagen synthesis and the promotion of apoptosis in KFs. BCL2 was up-regulated in keloid tissues and fibroblasts, and BCL2 knockdown promoted the deterioration of KFs. In addition, BCL2 was confirmed to be a target of miR-4328, and the rescue experiment indicated that the inhibitory action of miR-4328 on keloid fibroblast progression was reversed by BCL2 overexpression. Thus, our results demonstrated that miR-4328 restrained the deterioration of KFs by targeting BCL2, which sheds new light on miR-4328 as a promising target for keloid development and therapeutic.
Collapse
Affiliation(s)
- Hongmei Tang
- Department of Plastic Surgery, The Second Affiliated Hospital of Suzhou University, 215000, Suzhou, China
| | - Qi Chen
- Department of Plastic Surgery, The Second Affiliated Hospital of Suzhou University, 215000, Suzhou, China
| | - Wenyuan Yu
- Department of Plastic Surgery, The Second Affiliated Hospital of Suzhou University, 215000, Suzhou, China
| | - Tianlan Zhao
- Department of Plastic Surgery, The Second Affiliated Hospital of Suzhou University, 215000, Suzhou, China
| |
Collapse
|
16
|
Limandjaja GC, Niessen FB, Scheper RJ, Gibbs S. The Keloid Disorder: Heterogeneity, Histopathology, Mechanisms and Models. Front Cell Dev Biol 2020; 8:360. [PMID: 32528951 PMCID: PMC7264387 DOI: 10.3389/fcell.2020.00360] [Citation(s) in RCA: 171] [Impact Index Per Article: 34.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 04/22/2020] [Indexed: 12/22/2022] Open
Abstract
Keloids constitute an abnormal fibroproliferative wound healing response in which raised scar tissue grows excessively and invasively beyond the original wound borders. This review provides a comprehensive overview of several important themes in keloid research: namely keloid histopathology, heterogeneity, pathogenesis, and model systems. Although keloidal collagen versus nodules and α-SMA-immunoreactivity have been considered pathognomonic for keloids versus hypertrophic scars, conflicting results have been reported which will be discussed together with other histopathological keloid characteristics. Importantly, histopathological keloid abnormalities are also present in the keloid epidermis. Heterogeneity between and within keloids exists which is often not considered when interpreting results and may explain discrepancies between studies. At least two distinct keloid phenotypes exist, the superficial-spreading/flat keloids and the bulging/raised keloids. Within keloids, the periphery is often seen as the actively growing margin compared to the more quiescent center, although the opposite has also been reported. Interestingly, the normal skin directly surrounding keloids also shows partial keloid characteristics. Keloids are most likely to occur after an inciting stimulus such as (minor and disproportionate) dermal injury or an inflammatory process (environmental factors) at a keloid-prone anatomical site (topological factors) in a genetically predisposed individual (patient-related factors). The specific cellular abnormalities these various patient, topological and environmental factors generate to ultimately result in keloid scar formation are discussed. Existing keloid models can largely be divided into in vivo and in vitro systems including a number of subdivisions: human/animal, explant/culture, homotypic/heterotypic culture, direct/indirect co-culture, and 3D/monolayer culture. As skin physiology, immunology and wound healing is markedly different in animals and since keloids are exclusive to humans, there is a need for relevant human in vitro models. Of these, the direct co-culture systems that generate full thickness keloid equivalents appear the most promising and will be key to further advance keloid research on its pathogenesis and thereby ultimately advance keloid treatment. Finally, the recent change in keloid nomenclature will be discussed, which has moved away from identifying keloids solely as abnormal scars with a purely cosmetic association toward understanding keloids for the fibroproliferative disorder that they are.
Collapse
Affiliation(s)
- Grace C. Limandjaja
- Department of Molecular Cell Biology and Immunology, Amsterdam University Medical Center (location VUmc), Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Frank B. Niessen
- Department of Plastic Surgery, Amsterdam University Medical Center (location VUmc), Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Rik J. Scheper
- Department of Pathology, Amsterdam University Medical Center (location VUmc), Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Susan Gibbs
- Department of Molecular Cell Biology and Immunology, Amsterdam University Medical Center (location VUmc), Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Department of Oral Cell Biology, Academic Centre for Dentistry (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
17
|
Limandjaja GC, Belien JM, Scheper RJ, Niessen FB, Gibbs S. Hypertrophic and keloid scars fail to progress from the CD34 - /α-smooth muscle actin (α-SMA) + immature scar phenotype and show gradient differences in α-SMA and p16 expression. Br J Dermatol 2019; 182:974-986. [PMID: 31206605 DOI: 10.1111/bjd.18219] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/19/2019] [Indexed: 01/02/2023]
Abstract
BACKGROUND Our understanding of the pathogenesis underlying keloid scar formation is still very limited, and the morphological distinction between hypertrophic and keloid scars remains difficult. OBJECTIVES To test whether hypertrophic and keloid scars may reflect an inability to progress from immaturity to the desired mature normotrophic scar phenotype. METHODS Using whole-biopsy imaging and an objectively quantifiable way to analyse immunoreactivity, we have compared the immunohistopathological profiles of young immature scars with mature normotrophic scars, hypertrophic scars, and keloids with their surrounding-normal-skin. RESULTS Abnormal scars (hypertrophic scars and keloids) maintain the immature scar phenotype, characterized by a CD34- (tumour biomarker) and α-smooth muscle actin (α-SMA)+ (myofibroblast) dermal region. This is in contrast to normal skin, surrounding-normal-skin and mature normotrophic scars that were CD34+ / α-SMA- . Immature, hypertrophic and keloid scars showed abnormal epidermal differentiation (involucrin), but only hypertrophic scars and keloids showed increased epidermal thickness. Immature scars did show increased epidermal and dermal proliferation (Ki67), which was absent from abnormal scars, where mesenchymal hypercellularity (vimentin) and senescence (p16) were predominant. Keloidal collagen and α-SMA were previously considered to distinguish between hypertrophic scars and keloids. However, α-SMA staining was present in both abnormal scar types, while keloidal collagen was present mostly in keloids. There were no obvious signs of heterogeneity within keloid scars, and the surrounding-normal-skin resembled normal skin. CONCLUSIONS Both abnormal scar types showed a unique CD34- /α-SMA+ /p16+ scar phenotype, but the differences between hypertrophic scars and keloids observed in this study were of a gradient rather than absolute nature. This suggests that scar progression to the mature normal scar phenotype is, for as yet unknown reasons, hindered in hypertrophic and keloid scars. What's already known about this topic? Hypertrophic and keloid scars both have sustained epidermal barrier dysfunction, suggesting the persistence of an immature scar phenotype. Morphological distinction between hypertrophic and keloid scars remains a topic of debate, although α-smooth muscle actin (α-SMA) and keloidal collagen have been considered distinguishing features of hypertrophic and keloid scars, respectively. It has been suggested that keloids are not simply homogeneous growths, as heterogeneity within keloid scars and possible involvement of the surrounding-normal-skin have been reported. What does this study add? An extensive whole-biopsy imaging and quantifiable immunohistochemical assessment of immature, mature normal, hypertrophic and keloid scars, including normal skin surrounding keloids. Hypertrophic and keloid scars maintain dermal characteristics of immature scars, rather than transitioning into the normal mature phenotype. Differences between hypertrophic and keloid scars were of a gradient rather than absolute nature, with keloids showing the more extreme phenotype. There was no obvious heterogeneity within keloids, and the normal skin surrounding keloids resembled normal skin. What is the translational message? Keloids remain primarily a clinical diagnosis. A raised scar with the CD34- /α-SMA+ /p16+ phenotype with strong immunoreactivity for p16 and significant amounts of keloidal collagen, together with a thickened and strongly abnormal involucrin-stained epidermis, would sway the diagnosis towards keloid scars. A hypertrophic scar seems more likely when the CD34- /α-SMA+ /p16+ phenotype shows very strong presence of α-SMA+ in large dermal nodules, with lesser p16 staining and absent or negligible keloidal collagen.
Collapse
Affiliation(s)
- G C Limandjaja
- Department of Molecular Cell Biology and Immunology, Amsterdam University Medical Centre, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - J M Belien
- Department of Pathology, Amsterdam University Medical Centre, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - R J Scheper
- Department of Pathology, Amsterdam University Medical Centre, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - F B Niessen
- Department of Plastic Surgery, Amsterdam University Medical Centre, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - S Gibbs
- Department of Molecular Cell Biology and Immunology, Amsterdam University Medical Centre, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands.,Department of Oral Cell Biology, Academic Centre for Dentistry (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
18
|
Discussion: The Interplay of Mechanical Stress, Strain, and Stiffness at the Keloid Periphery Correlates with Increased Caveolin-1/ROCK Signaling and Scar Progression. Plast Reconstr Surg 2019; 144:68e-69e. [PMID: 31246820 DOI: 10.1097/prs.0000000000005718] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
19
|
Limandjaja GC, Waaijman T, Roffel S, Niessen FB, Gibbs S. Monocytes co-cultured with reconstructed keloid and normal skin models skew towards M2 macrophage phenotype. Arch Dermatol Res 2019; 311:615-627. [PMID: 31187196 PMCID: PMC6736899 DOI: 10.1007/s00403-019-01942-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Revised: 03/28/2019] [Accepted: 06/04/2019] [Indexed: 01/15/2023]
Abstract
Several abnormalities have been reported in the peripheral blood mononuclear cells of keloid-forming patients and particularly in the monocyte cell fraction. The goal of this in vitro study was to determine whether monocytes from keloid-prone patients contribute to the keloid phenotype in early developing keloids, and whether monocyte differentiation is affected by the keloid microenvironment. Therefore, keloid-derived keratinocytes and fibroblasts were used to reconstruct a full thickness, human, in vitro keloid scar model. The reconstructed keloid was co-cultured with monocytes from keloid-forming patients and compared to reconstructed normal skin co-cultured with monocytes from non-keloid-formers. The reconstructed keloid showed increased contraction, dermal thickness (trend) and α-SMA+ staining, but co-culture with monocytes did not further enhance the keloid phenotype. After 2-week culture, all monocytes switched from a CD11chigh/CD14high/CD68low to a CD11chigh/CD14low/CD68high phenotype. However, only monocytes co-cultured with either reconstructed keloid scar or normal skin models skewed towards the more fibrotic M2-macrophage phenotype. There was negligible fibroblast and fibrocyte differentiation in mono- and co-cultured monocytes. These results indicate that monocytes differentiate into M2 macrophages when in the vicinity of early regenerating and repairing tissue, independent of whether the individual is prone to normal or keloid scar formation.
Collapse
Affiliation(s)
- Grace C Limandjaja
- Department of Molecular Cell Biology and Immunology, O|2 Lab Building Room 11E05, Amsterdam University Medical Centre (UMC), Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, De Boelelaan, 1108, Amsterdam, The Netherlands
| | - Taco Waaijman
- Department of Molecular Cell Biology and Immunology, O|2 Lab Building Room 11E05, Amsterdam University Medical Centre (UMC), Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, De Boelelaan, 1108, Amsterdam, The Netherlands
| | - Sanne Roffel
- Department of Molecular Cell Biology and Immunology, O|2 Lab Building Room 11E05, Amsterdam University Medical Centre (UMC), Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, De Boelelaan, 1108, Amsterdam, The Netherlands
| | - Frank B Niessen
- Department of Plastic Surgery, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Susan Gibbs
- Department of Molecular Cell Biology and Immunology, O|2 Lab Building Room 11E05, Amsterdam University Medical Centre (UMC), Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, De Boelelaan, 1108, Amsterdam, The Netherlands.
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|