1
|
Cai D, Ye Y, Song J, Liu S, Zeng X, Zhu B, Tao Y, Cheng J, Yang Y, Zhang Y, Zou Q, Guo Y, Sun H, Zeng H. A chitosan-modified tea tree oil self-nanoemulsion improves antibacterial effects in vivo and in vitro and promotes wound healing by influencing metabolic processes against multidrug-resistant bacterial infections. Int J Biol Macromol 2024; 281:136404. [PMID: 39389511 DOI: 10.1016/j.ijbiomac.2024.136404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 09/18/2024] [Accepted: 10/06/2024] [Indexed: 10/12/2024]
Abstract
Infectious diseases, especially multidrug-resistant bacterial infections, have caused crises and majorly disrupted public health and economic stability worldwide. Many natural essential oils, especially tea tree oil, have potential to treat multidrug-resistant bacteria, such as H. pylori and P. aeruginosa. However, there are some problems need to be solved, such as poor stability upon light or oxygen exposure. Therefore, it is urgent to develop the ideal formation to tackle these difficulties. Herein, we reported the novel chitosan-modified self-nanoemulsion (TNE) encapsulating natural essential tea tree oil with strong antibacterial and stability characterize. In this study, we found that this self-nanoemulsion (size: 212 nm, PDI: 0.124, zeta potential: -20.5 mV, 6 % tea tree oil) not only had physical properties, good stability and tissue safety, but also had better antibacterial synergism (2-8 times) than that of water suspension against various multidrug-resistant bacterial (such as H. pylori, MRSA and P. aeruginosa). Additionally, TNE showed high antibacterial effectiveness in vivo, reduced inflammation, promoted ulcer healing after H. pylori infection and accelerated wound healing after P. aeruginosa infection. Importantly, this novel self-nanoemulsion can induce 274 protein down-regulated and 251 protein up-regulated, and disrupt H. pylori metabolic processes (glyoxylate, dicarboxylic acid, glutamate and tryptophan metabolism) and reduced its viability, leading to significant synergistic antibacterial effects. TNE is a potential treatment for skin wounds or ulcers caused by multidrug-resistant bacterial infections.
Collapse
Affiliation(s)
- Dingyi Cai
- National Engineering Research Centre of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing 400038, China; Department of Stomatology, The 79th Group Army Hospital of PLA, Liaoyang, Liaoning 111000, China
| | - Yan Ye
- National Engineering Research Centre of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing 400038, China
| | - Jianye Song
- National Engineering Research Centre of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing 400038, China
| | - Shulin Liu
- National Engineering Research Centre of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing 400038, China
| | - Xiaoqiang Zeng
- National Engineering Research Centre of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing 400038, China
| | - Baohang Zhu
- National Engineering Research Centre of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing 400038, China
| | - Yikun Tao
- National Engineering Research Centre of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing 400038, China
| | - Jingjing Cheng
- National Engineering Research Centre of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing 400038, China
| | - Yun Yang
- National Engineering Research Centre of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing 400038, China
| | - Yi Zhang
- National Engineering Research Centre of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing 400038, China
| | - Quanming Zou
- National Engineering Research Centre of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing 400038, China
| | - Ying Guo
- National Engineering Research Centre of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing 400038, China; Department of Clinical Laboratory, Affiliated Banan Hospital of Chongqing Medical University, Chongqing 401320, China.
| | - Hongwu Sun
- National Engineering Research Centre of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing 400038, China.
| | - Hao Zeng
- National Engineering Research Centre of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing 400038, China.
| |
Collapse
|
2
|
Dontje AEWK, Schuiling-Veninga CCM, van Hunsel FPAM, Ekhart C, Demirci F, Woerdenbag HJ. The Therapeutic Potential of Essential Oils in Managing Inflammatory Skin Conditions: A Scoping Review. Pharmaceuticals (Basel) 2024; 17:571. [PMID: 38794141 PMCID: PMC11123799 DOI: 10.3390/ph17050571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 04/23/2024] [Accepted: 04/28/2024] [Indexed: 05/26/2024] Open
Abstract
Conventional therapy is commonly used for the treatment of inflammatory skin conditions, but undesirable effects, such as erythema, dryness, skin thinning, and resistance to treatment, may cause poor patient compliance. Therefore, patients may seek complementary treatment with herbal plant products including essential oils (EOs). This scoping review aims to generate a broad overview of the EOs used to treat inflammatory skin conditions, namely, acne vulgaris, dermatitis and eczema, psoriasis, and rosacea, in a clinical setting. The quality, efficacy, and safety of various EOs, as well as the way in which they are prepared, are reviewed, and the potential, as well as the limitations, of EOs for the treatment of inflammatory skin conditions are discussed. Twenty-nine eligible studies (case studies, uncontrolled clinical studies, and randomized clinical studies) on the applications of EOs for inflammatory skin conditions were retrieved from scientific electronic databases (PubMed, Embase, Scopus, and the Cochrane Library). As an initial result, tea tree (Melaleuca alternifolia) oil emerged as the most studied EO. The clinical studies with tea tree oil gel for acne treatment showed an efficacy with fewer adverse reactions compared to conventional treatments. The uncontrolled studies indicated the potential efficacy of ajwain (Trachyspermum ammi) oil, eucalyptus (Eucalyptus globulus) oil, and cedarwood (Cedrus libani) oil in the treatment of acne, but further research is required to reach conclusive evidence. The placebo-controlled studies revealed the positive effects of kānuka (Kunzea ericoides) oil and frankincense (Boswellia spp.) oil in the treatment of psoriasis and eczema. The quality verification of the EO products was inconsistent, with some studies lacking analyses and transparency. The quality limitations of some studies included a small sample size, a short duration, and the absence of a control group. This present review underscores the need for extended, well-designed clinical studies to further assess the efficacy and safety of EOs for treating inflammatory skin conditions with products of assured quality and to further elucidate the mechanisms of action involved.
Collapse
Affiliation(s)
- Anouk E. W. K. Dontje
- Department of Pharmaceutical Technology and Biopharmacy, Groningen Research Institute of Pharmacy (GRIP), University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands;
| | - Catharina C. M. Schuiling-Veninga
- Department of Pharmacotherapy, -Epidemiology and -Economics, Groningen Research Institute of Pharmacy (GRIP), University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands; (C.C.M.S.-V.); (F.P.A.M.v.H.)
| | - Florence P. A. M. van Hunsel
- Department of Pharmacotherapy, -Epidemiology and -Economics, Groningen Research Institute of Pharmacy (GRIP), University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands; (C.C.M.S.-V.); (F.P.A.M.v.H.)
- Netherlands Pharmacovigilance Centre Lareb, Goudsbloemvalei 7, 5237 MH ‘s-Hertogenbosch, The Netherlands;
| | - Corine Ekhart
- Netherlands Pharmacovigilance Centre Lareb, Goudsbloemvalei 7, 5237 MH ‘s-Hertogenbosch, The Netherlands;
| | - Fatih Demirci
- Department of Pharmacognosy, Faculty of Pharmacy, Anadolu University, 26470 Eskisehir, Türkiye;
| | - Herman J. Woerdenbag
- Department of Pharmaceutical Technology and Biopharmacy, Groningen Research Institute of Pharmacy (GRIP), University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands;
| |
Collapse
|
3
|
Yehia RM, Teaima MH, Ragaie MH, Elmazar MM, Attia DA, El-Nabarawi MA. Resolving acne with optimized adapalene microspongeal gel, in vivo and clinical evaluations. Sci Rep 2024; 14:1359. [PMID: 38228631 DOI: 10.1038/s41598-024-51392-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 01/04/2024] [Indexed: 01/18/2024] Open
Abstract
In our pursuit of enhancing acne treatment while minimizing side effects, we developed tailored Adapalene microsponges (MS) optimized using a Box-Behnken design 33. The independent variables, Eudragit RS100 percentage in the polymer mixture, organic phase volume, and drug to polymer percentage, were explored. The optimized formulation exhibited remarkable characteristics, with a 98.3% ± 1.6 production yield, 97.3% ± 1.64 entrapment efficiency, and a particle size of 31.8 ± 1.1 µm. Notably, it achieved a 24 h cumulative drug release of 75.1% ± 1.4. To delve deeper into its efficacy, we evaluated the optimized microspongeal-gel in vitro, in vivo, and clinically. It demonstrated impressive retention in the pilosebaceous unit, a target for acne treatment. Comparative studies between our optimized Adapalene microspongeal gel and marketed Adapalene revealed superior performance. In vivo studies on Propionibacterium acnes-infected mice ears showed a remarkable 97% reduction in ear thickness, accompanied by a significant decrease in inflammatory signs and NF-κB levels, as confirmed by histopathological and histochemical examination. Moreover, in preliminary clinical evaluation, it demonstrated outstanding effectiveness in reducing comedonal lesions while causing fewer irritations. This not only indicates its potential for clinical application but also underscores its ability to enhance patient satisfaction, paving the way for future commercialization.
Collapse
Affiliation(s)
- Rania M Yehia
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, The British University in Egypt (BUE), Suez Desert Road, El Sherouk City, Cairo, 1183, Egypt.
| | - Mahmoud H Teaima
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Maha H Ragaie
- Department of Dermatology, STDs and Andrology, Faculty of Medicine, Minia University, Al Minya, Egypt
| | - Mohamed M Elmazar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, The British University in Egypt (BUE), Cairo, Egypt
| | - Dalia A Attia
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, The British University in Egypt (BUE), Suez Desert Road, El Sherouk City, Cairo, 1183, Egypt
| | - Mohamed A El-Nabarawi
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
4
|
Yousefpoor Y, Esnaashari SS, Baharifar H, Mehrabi M, Amani A. Current challenges ahead in preparation, characterization, and pharmaceutical applications of nanoemulsions. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2023; 15:e1920. [PMID: 37558229 DOI: 10.1002/wnan.1920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 06/07/2023] [Accepted: 06/27/2023] [Indexed: 08/11/2023]
Abstract
Nanoemulsions (NEs) are emulsions with particle size of less than around 100 nm. Reviewing the literature, several reports are available on NEs, including preparation, characterization, and applications of them. This review aims to brief challenges that researchers or formulators may encounter when working with NEs. For instance, when selecting NE components and identifying their concentrations, stability and safety of the preparation should be evaluated. When preparing an NE, issues over scale-up of the preparation as well as possible effects of the preparation process on the active ingredient need to be considered. When characterizing the NEs, the two major concerns are accuracy of the method and accessibility of the characterizing instrument. Also a highly efficient NE for clinical use to deliver the active ingredient to the target tissue with maximum safety profile is commonly sought. Throughout the review we also have tried to suggest approaches to overcome the challenges. This article is categorized under: Therapeutic Approaches and Drug Discovery > Emerging Technologies.
Collapse
Affiliation(s)
- Yaser Yousefpoor
- Department of Medical Biotechnology, School of Paramedical Sciences, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
- Research Center of Advanced Technologies in Medicine, Torbat Heydariyeh University of Medical, Torbat Heydariyeh, Iran
| | - Seyedeh Sara Esnaashari
- Department of Medical Nanotechnology, Faculty of Advanced Sciences and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Hadi Baharifar
- Department of Medical Nanotechnology, Applied Biophotonics Research Center, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Mohsen Mehrabi
- Department of Medical Nanotechnology, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Amir Amani
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran
- Department of Advanced Technologies, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| |
Collapse
|
5
|
Nascimento T, Gomes D, Simões R, da Graça Miguel M. Tea Tree Oil: Properties and the Therapeutic Approach to Acne-A Review. Antioxidants (Basel) 2023; 12:1264. [PMID: 37371994 DOI: 10.3390/antiox12061264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/05/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
Acne vulgaris is an inflammatory dermatological pathology that affects mostly young people. However, it can also appear in adulthood, mainly in women. It has a high psychosocial impact, not only at the time of active lesions but also due to the consequences of lesions such as scarring and hyperpigmentation. Several factors are involved in the physiopathology of acne and the constant search for active ingredients is a reality, namely phytotherapeutic ingredients. Tea tree oil is an essential oil extracted from Melaleuca alternifolia (Maiden & Betch) Cheel with known antibacterial, anti-inflammatory, and antioxidant properties, making it a candidate for the treatment of acne. This review aims to describe the various properties of tea tree oil that make it a possible ingredient to use in the treatment of acne and to present several human studies that have evaluated the efficacy and safety of using tea tree oil in the treatment of acne. It can be concluded that tea tree oil has good antibacterial, anti-inflammatory, and antioxidant properties that result in a decrease in the number of inflammatory lesions, mainly papules, and pustules. However, given the diversity of study designs, it is not possible to draw concrete conclusions on the efficacy and safety of this oil in the treatment of acne.
Collapse
Affiliation(s)
- Tânia Nascimento
- Escola Superior de Saúde, Universidade do Algarve (ESSUAlg), Campus de Gambelas, Edifício 2, 8005-139 Faro, Portugal
- Algarve Biomedical Center Research Institute (ABC-RI), Universidade do Algarve, Campus de Gambelas, Edifício 2, 8005-139 Faro, Portugal
| | - Diana Gomes
- Faculdade de Ciências e Tecnologia, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Ricardo Simões
- Faculdade de Ciências e Tecnologia, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Maria da Graça Miguel
- Faculdade de Ciências e Tecnologia, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
- Mediterranean Institute for Agriculture, Environment and Development, Mediterranean Institute for Agriculture, Environment and Development, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| |
Collapse
|
6
|
Kairey L, Agnew T, Bowles EJ, Barkla BJ, Wardle J, Lauche R. Efficacy and safety of Melaleuca alternifolia (tea tree) oil for human health-A systematic review of randomized controlled trials. Front Pharmacol 2023; 14:1116077. [PMID: 37033604 PMCID: PMC10080088 DOI: 10.3389/fphar.2023.1116077] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 01/04/2023] [Indexed: 04/11/2023] Open
Abstract
Introduction: Leaves of the Australian tea tree plant Melaleuca alternifolia were used traditionally by First Nations Australians for treating wounds, burns, and insect bites. Tea tree oil, the essential oil steam-distilled from M. alternifolia, is well-known for its medicinal properties, the evidence for most applications however is limited. This review aimed to critically appraise evidence from clinical trials examining the therapeutic efficacy and safety of tea tree oil on outcomes. Methods: Randomized controlled trials with participants of any age, gender, or health status, comparing tea tree oil to any control were included, without limit on publication date. Electronic databases were searched on 12 August 2022 with additional records sourced from article reference sections, reviews, and industry white papers. Risk of bias was assessed by two authors independently using the Cochrane risk-of-bias 1.0 tool. Results were summarized and synthesized thematically. Results: Forty-six articles were eligible from the following medical fields (Dentistry n = 18, Dermatology n = 9, Infectious disease n = 9, Ophthalmology n = 6, Podiatry n = 3; and Other n = 1). Results indicate that oral mouthwashes with 0.2%-0.5% tea tree oil may limit accumulation of dental plaque. Gels containing 5% tea tree oil applied directly to the periodontium may aid treatment of periodontitis as an adjunctive therapy to scaling and root planing. More evidence is needed to confirm the benefits of tea tree oil for reducing acne lesions and severity. Local anti-inflammatory effects on skin, if any, also require further elucidation. Topical tea tree oil regimens show similar efficacy to standard treatments for decolonizing the body from methicillin-resistant Staphylococcus aureus, although intra-nasal use of tea tree oil may cause irritation to mucous membranes. Tea tree oil with added iodine may provide an effective treatment for molluscum contagiosum lesions in young children. More evidence on efficacy of tea tree oil-based eyelid wipes for Demodex mite control are needed. Side effects were reported in 60% of included studies and were minor, except where tea tree oil was applied topically in concentrations ≥ 25%. Discussion: Overall, the quality of research was poor to modest and higher quality trials with larger samples and better reporting are required to substantiate potential therapeutic applications of tea tree oil. Systematic Review Registration: PROSPERO, identifier [CRD42021285168].
Collapse
Affiliation(s)
- Lana Kairey
- National Centre for Naturopathic Medicine, Southern Cross University, Lismore, NSW, Australia
| | - Tamara Agnew
- National Centre for Naturopathic Medicine, Southern Cross University, Lismore, NSW, Australia
| | - Esther Joy Bowles
- National Centre for Naturopathic Medicine, Southern Cross University, Lismore, NSW, Australia
| | - Bronwyn J. Barkla
- Southern Cross Plant Science, Faculty of Science and Engineering, Southern Cross University, Lismore, NSW, Australia
| | - Jon Wardle
- National Centre for Naturopathic Medicine, Southern Cross University, Lismore, NSW, Australia
| | - Romy Lauche
- National Centre for Naturopathic Medicine, Southern Cross University, Lismore, NSW, Australia
- *Correspondence: Romy Lauche,
| |
Collapse
|
7
|
Nurzyńska-Wierdak R, Pietrasik D, Walasek-Janusz M. Essential Oils in the Treatment of Various Types of Acne-A Review. PLANTS (BASEL, SWITZERLAND) 2022; 12:90. [PMID: 36616219 PMCID: PMC9824697 DOI: 10.3390/plants12010090] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 12/19/2022] [Accepted: 12/20/2022] [Indexed: 06/17/2023]
Abstract
Acne is a chronic, common disease that poses a significant therapeutic, psychological and social problem. The etiopathogenesis of this disease is not fully understood. Drugs used in general and external therapy should have anti-seborrhoeic, anticomadogenic, bactericidal, bacteriostatic, and anti-inflammatory properties. Acne treatment is often associated with the long-term use of antibiotics, contributing to the global antibiotic resistance crisis. In order to solve this problem, attention has been paid to essential oils and their terpene components with potent antimicrobial, anti-inflammatory, and antioxidant properties. Research shows that certain essential oils effectively reduce inflammatory acne lesions through mechanisms related to the sebaceous glands, colonization of Cutibacterium acnes, and reactive oxygen species (ROS). An example is tea tree oil (TTO), a more commonly used topical agent for treating acne. TTO has antimicrobial and anti-inflammatory activity. The paper presents the latest scientific information on the activity and potential use of specific essential oils in treating acne. Evidence of antibacterial, anti-inflammatory, and antioxidant activity of several essential oils and their main components was presented, indicating the possibility of using them in the treatment of acne.
Collapse
|
8
|
Tobiasz A, Nowicka D, Szepietowski JC. Acne Vulgaris-Novel Treatment Options and Factors Affecting Therapy Adherence: A Narrative Review. J Clin Med 2022; 11:jcm11247535. [PMID: 36556150 PMCID: PMC9788443 DOI: 10.3390/jcm11247535] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/13/2022] [Accepted: 12/16/2022] [Indexed: 12/23/2022] Open
Abstract
Acne vulgaris is an extremely common skin condition, affecting a large population of adolescents, but at the same time, remaining a quite common issue in the group of adult patients. Its complex pathogenesis includes increased sebum secretion, impaired follicular keratinization, colonization of sebaceous glands with Cutibacterium acne bacteria, and the development of inflammation in pilosebaceous units. Although there are many methods of treatment available targeting the mechanisms mentioned above, a large percentage of patients remain undertreated or non-compliant with treatment. Ineffective treatment results in the formation of acne scars, which has a major impact on the well-being and quality of life of the patients. The aim of this publication was a review of available evidence on widely used and novel methods of topical and systemic treatment of acne, additionally including current literature-based analysis of factors affecting patients' compliance. The strengths and limitations of novel substances for treating acne were discussed. We conclude that an effective acne treatment remains a challenge. A better understanding of current treatment options and factors affecting patients' compliance could be a helpful tool in choosing a proper treatment option.
Collapse
|
9
|
Yousefpoor Y, Amani A, Divsalar A, Elaheh Mousavi S, Shakeri A, Torkamannejad Sabzevari J. Anti-rheumatic activity of topical nanoemulsion containing bee venom in rats. Eur J Pharm Biopharm 2022; 172:168-176. [PMID: 35149192 DOI: 10.1016/j.ejpb.2022.02.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 01/23/2022] [Accepted: 02/05/2022] [Indexed: 12/22/2022]
Abstract
PURPOSE Bee Venom (BV) has been used to treat rheumatoid arthritis (RA) for many centuries. However, its clinical use is limited by pain and fear of bee stings/injection. Nanoemulsions (NEs) are nanocarriers that are able to help their content(s) penetrate through the skin. They also act as drug reservoirs on the skin to provide an efficient, sustained-release vehicle. METHODS In this paper, we present the development of a stable water-in-oil NE to help passing BV through the animal skin when used topically. RESULTS Particle size of NE was 12.7 to 29.8 nm for NEs containing 0 to 150 µg/ml BV. Also, its anti-inflammatory effects were evaluated in rat models of type II collagen-induced arthritis. Topical administration of NEs containing 18.75 or 9.37 μg/ml BV were able to significantly (p<0.05) reduce inflammation in the rat paws compared to the blank and control groups. CONCLUSION Our findings demonstrated the efficacy of NEs containing BV to reduce inflammation caused by RA animal model.
Collapse
Affiliation(s)
- Yaser Yousefpoor
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran; Research Center of Advanced Technologies in Medicine, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| | - Amir Amani
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran; Medical Biomaterials Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| | - Adeleh Divsalar
- Department of Cell & Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Seyedeh Elaheh Mousavi
- Department of pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Abbas Shakeri
- Khalil Abad Health Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | | |
Collapse
|
10
|
Milosheska D, Roškar R. Use of Retinoids in Topical Antiaging Treatments: A Focused Review of Clinical Evidence for Conventional and Nanoformulations. Adv Ther 2022; 39:5351-5375. [PMID: 36220974 PMCID: PMC9618501 DOI: 10.1007/s12325-022-02319-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 09/06/2022] [Indexed: 01/30/2023]
Abstract
Nowadays, numerous skincare routines are used to rejuvenate aging skin. Retinoids are one of the most popular ingredients used in antiaging treatments. Among the representatives of retinoids, tretinoin is considered the most effective agent with proven antiaging effects on the skin and can be found in formulations approved as medicines for topical treatment of acne, facial wrinkles, and hyperpigmentation. Other retinoids present in topical medicines are used for various indications, but only tazarotene is also approved as adjunctive agent for treatment of facial fine wrinkling and pigmentation. The most commonly used retinoids such as retinol, retinaldehyde, and retinyl palmitate are contained in cosmeceuticals regulated as cosmetics. Since clinical efficacy studies are not required for marketing cosmetic formulations, there are concerns about the efficacy of these retinoids. From a formulation perspective, retinoids pose a challenge to researchers as a result of their proven instability, low penetration, and potential for skin irritation. Therefore, novel delivery systems based on nanotechnology are being developed to overcome the limitations of conventional formulations and improve user compliance. In this review, the clinical evidence for retinoids in conventional and nanoformulations for topical antiaging treatments was evaluated. In addition, an overview of the comparison clinical trials between tretinoin and other retinoids is presented. In general, there is a lack of evidence from properly designed clinical trials to support the claimed efficacy of the most commonly used retinoids as antiaging agents in cosmeceuticals. Of the other retinoids contained in medicines, tazarotene and adapalene have clinically evaluated antiaging effects compared to tretinoin and may be considered as potential alternatives for antiaging treatments. The promising potential of retinoid nanoformulations requires a more comprehensive evaluation with additional studies to support the preliminary findings.
Collapse
Affiliation(s)
| | - Robert Roškar
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, 1000, Ljubljana, Slovenia.
| |
Collapse
|