1
|
Nadhif MH, Irsyad M, Ocviyanti D. Biomechanically Compliant Gynecologic Training Simulator. Simul Healthc 2023; 18:135-143. [PMID: 35363667 DOI: 10.1097/sih.0000000000000654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
INTRODUCTION Pap smear training is commonly conducted using simulators before practicing with humans. Unfortunately, existing simulators do not well simulate the biomechanical properties of pelvic tissues, and this may negatively impact the training outcome. In this study, we used finite element analysis (FEA) to identify a material that most accurately simulates pelvic tissues in terms of biomechanical properties for fabricating gynecologic training simulators. The selected material was then used to fabricate a vagina and cervix model using a hybrid technique of fused deposition modeling and molding to qualitatively confirm the structural integrity of the simulator. METHODS The vagina and cervix were reconstructed in a 3-dimensional feature according to geometrical parameters reported in the literature. The biomechanical compliance of the simulators was investigated by comparing 5 materials-RTV615, Dragon Skin 10, Dragon Skin 30, Dragon Skin FX-Pro, and Ecoflex 00-30-and a pelvic tissue model (control) using 2 FEA modules. The structural mechanics module simulated the insertion and opening of a vaginal speculum, and the (1) horizontal opening of the vagina and peak von Mises stress at the anterior and (2) posterior walls of the vagina were obtained. The explicit dynamics module estimated (1) the fracture stress during punch biopsies and (2) maximum perpendicular deformation of the cervix before break. The most biomechanically compliant material was subsequently used to fabricate the simulator using the hybrid technique. RESULTS From the FEA, the horizontal opening of the vagina, peak von Mises stress at the anterior wall of the vagina, peak von Mises stress at the posterior wall of the vagina fracture stress, and maximum perpendicular deformation of the cervix before break were obtained; the results of Dragon Skin 10 and the control were most similar. Therefore, the simulator was fabricated using the material. A qualitative evaluation of the simulator by the naked eye verified its structural integrity. CONCLUSIONS Of the materials studied, the FEA results showed that Dragon Skin 10 was the most accurate material for simulating pelvic tissues in terms of the biomechanical properties in a gynecologic training simulator. The simulator was also successfully fabricated using the hybrid technique. Further studies may also involve experimental testing to support the simulation results.
Collapse
Affiliation(s)
- Muhammad Hanif Nadhif
- From the Medical Physics Department (M.H.N.), and Medical Technology Cluster (M.H.N., M.I.), Indonesian Medical Education and Research Institute (IMERI), Faculty of Medicine; and Department of Obstetrics and Gynecology (D.O.), Faculty of Medicine/Ciptomangunkusumo Central Hospital, Universitas Indonesia, Jakarta, Indonesia
| | | | | |
Collapse
|
2
|
Silva MET, Brandão S, Parente MPL, Mascarenhas T, Natal Jorge RM. Biomechanical properties of the pelvic floor muscles of continent and incontinent women using an inverse finite element analysis. Comput Methods Biomech Biomed Engin 2017; 20:842-852. [DOI: 10.1080/10255842.2017.1304542] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
3
|
Todros S, Pavan PG, Natali AN. Biomechanical properties of synthetic surgical meshes for pelvic prolapse repair. J Mech Behav Biomed Mater 2015; 55:271-285. [PMID: 26615384 DOI: 10.1016/j.jmbbm.2015.10.024] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 10/26/2015] [Accepted: 10/27/2015] [Indexed: 12/27/2022]
Abstract
Synthetic meshes are widely used for surgical repair of different kind of prolapses. In the light of the experience of abdominal wall repair, similar prostheses are currently used in the pelvic region, to restore physiological anatomy after organ prolapse into the vaginal wall, that represent a recurrent dysfunction. For this purpose, synthetic meshes are surgically positioned in contact with the anterior and/or posterior vaginal wall, to inferiorly support prolapsed organs. Nonetheless, while mesh implantation restores physiological anatomy, it is often associated with different complications in the vaginal region. These potentially dangerous effects induce the surgical community to reconsider the safety and efficacy of mesh transvaginal placement. For this purpose, the evaluation of state-of-the-art research may provide the basis for a comprehensive analysis of mesh compatibility and functionality. The aim of this work is to review synthetic surgical meshes for pelvic organs prolapse repair, taking into account the mechanics of mesh material and structure, and to relate them with pelvic and vaginal tissue biomechanics. Synthetic meshes are currently available in different chemical composition, fiber and textile conformations. Material and structural properties are key factors in determining mesh biochemical and mechanical compatibility in vivo. The most significant results on vaginal tissue and surgical meshes mechanical characterization are here reported and discussed. Moreover, computational models of the pelvic region, which could support the surgeon in the evaluation of mesh performances in physiological conditions, are recalled.
Collapse
Affiliation(s)
- S Todros
- Department of Industrial Engineering, Centre for Mechanics of Biological Materials, University of Padova, via Marzolo 9, I-35131 Padova, Italy.
| | - P G Pavan
- Department of Industrial Engineering, Centre for Mechanics of Biological Materials, University of Padova, via Marzolo 9, I-35131 Padova, Italy
| | - A N Natali
- Department of Industrial Engineering, Centre for Mechanics of Biological Materials, University of Padova, via Marzolo 9, I-35131 Padova, Italy
| |
Collapse
|
4
|
Roza TD, Brandão S, Oliveira D, Mascarenhas T, Parente M, Duarte JA, Jorge RN. Football practice and urinary incontinence: Relation between morphology, function and biomechanics. J Biomech 2015; 48:1587-92. [PMID: 25835786 DOI: 10.1016/j.jbiomech.2015.03.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 03/10/2015] [Indexed: 10/23/2022]
Abstract
Current evidence points to a high prevalence of urinary incontinence among female athletes. In this context, this study aims to assess if structural and biomechanical characteristics of the pubovisceral muscles may lead to urine leakage. Clinical and demographic data were collected, as well as pelvic Magnetic Resonance Imaging. Furthermore, computational models were built to verify if they were able to reproduce similar biomechanical muscle response as the one measured by dynamic imaging during active contraction by means of the percent error. Compared to the continent ones (n=7), incontinent athletes (n=5) evidenced thicker pubovisceral muscles at the level of the midvagina (p=0.019 and p=0.028 for the right and left sides, respectively). However, there were no differences neither in the strength of contraction in the Oxford Scale or in the displacement of the pelvic floor muscles during simulation of voluntary contraction, which suggests that urine leakage may be related with alterations in the intrafusal fibers than just the result of thicker muscles. Additionally, we found similar values of displacement retrieved from dynamic images and numerical models (6.42 ± 0.36 mm vs. 6.10 ± 0.47 mm; p=0.130), with a percent error ranging from 1.47% to 17.20%. However, further refinements in the mechanical properties of the striated skeletal fibers of the pelvic floor muscles and the inclusion of pelvic organs, fascia and ligaments would reproduce more realistically the pelvic cavity.
Collapse
Affiliation(s)
- Thuane Da Roza
- INEGI, Faculty of Engineering, University of Porto, Rua Dr Roberto Frias, s/n, 4200-465 Porto, Portugal; Faculty of Sport, University of Porto, Research Centre in Physical Activity, Health and Leisure, Rua Dr. Plácido Costa, 91, 4200-450 Porto, Portugal.
| | - Sofia Brandão
- INEGI, Faculty of Engineering, University of Porto, Rua Dr Roberto Frias, s/n, 4200-465 Porto, Portugal; Department of Radiology, Centro Hospitalar de São João - EPE, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
| | - Dulce Oliveira
- INEGI, Faculty of Engineering, University of Porto, Rua Dr Roberto Frias, s/n, 4200-465 Porto, Portugal
| | - Teresa Mascarenhas
- Department of Gynecology and Obstetrics, Centro Hospitalar de São João - EPE, Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
| | - Marco Parente
- INEGI, Faculty of Engineering, University of Porto, Rua Dr Roberto Frias, s/n, 4200-465 Porto, Portugal
| | - José Alberto Duarte
- Faculty of Sport, University of Porto, Research Centre in Physical Activity, Health and Leisure, Rua Dr. Plácido Costa, 91, 4200-450 Porto, Portugal
| | - Renato Natal Jorge
- INEGI, Faculty of Engineering, University of Porto, Rua Dr Roberto Frias, s/n, 4200-465 Porto, Portugal
| |
Collapse
|
5
|
Egorov V, van Raalte H, Lucente V. Quantifying vaginal tissue elasticity under normal and prolapse conditions by tactile imaging. Int Urogynecol J 2012; 23:459-66. [PMID: 22072417 PMCID: PMC3306492 DOI: 10.1007/s00192-011-1592-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2011] [Accepted: 10/17/2011] [Indexed: 02/04/2023]
Abstract
INTRODUCTION AND HYPOTHESIS Vaginal tactile imaging (VTI) is based on principles similar to those of manual palpation. The objective of this study is to assess the clinical suitability of new approach for imaging and tissue elasticity quantification under normal and prolapse conditions. METHODS The study subjects included 31 women with normal and prolapse conditions. The tissue elasticity (Young's modulus) was calculated from spatial gradients in the resulting 3-D tactile images. RESULTS Average values for tissue elasticity for the anterior and posterior compartments for normal conditions were 7.4 ± 4.3 kPa and 6.2 ± 3.1 kPa respectively. For Stage III prolapse the average values for tissue elasticity for anterior and posterior compartments were 1.8 ± 0.7 kPa and 1.8 ± 0.5 kPa respectively. CONCLUSIONS VTI may serve as a means for 3-D imaging of the vagina and a quantitative assessment of vaginal tissue elasticity, providing important information for furthering our understanding of pelvic organ prolapse and surgical treatment.
Collapse
|
6
|
Mechanical characterization and constitutive modelling of the damage process in rectus sheath. J Mech Behav Biomed Mater 2012; 8:111-22. [DOI: 10.1016/j.jmbbm.2011.12.005] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2011] [Revised: 11/26/2011] [Accepted: 12/16/2011] [Indexed: 11/23/2022]
|
7
|
Bibliography. Female urology. Current world literature. Curr Opin Urol 2011; 21:343-6. [PMID: 21654401 DOI: 10.1097/mou.0b013e3283486a38] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|