1
|
Dunjic M, Turini S, Nejkovic L, Sulovic N, Cvetkovic S, Dunjic M, Dunjic K, Dolovac D. Comparative Molecular Docking of Apigenin and Luteolin versus Conventional Ligands for TP-53, pRb, APOBEC3H, and HPV-16 E6: Potential Clinical Applications in Preventing Gynecological Malignancies. Curr Issues Mol Biol 2024; 46:11136-11155. [PMID: 39451541 PMCID: PMC11505693 DOI: 10.3390/cimb46100661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/25/2024] [Accepted: 09/29/2024] [Indexed: 10/26/2024] Open
Abstract
This study presents a comparative analysis of molecular docking data, focusing on the binding interactions of the natural compounds apigenin and luteolin with the proteins TP-53, pRb, and APOBEC, in comparison to conventional pharmacological ligands. Advanced bioinformatics techniques were employed to evaluate and contrast binding energies, showing that apigenin and luteolin demonstrate significantly higher affinities for TP-53, pRb, and APOBEC, with binding energies of -6.9 kcal/mol and -6.6 kcal/mol, respectively. These values suggest strong potential for therapeutic intervention against HPV-16. Conventional ligands, by comparison, exhibited lower affinities, with energies ranging from -4.5 to -5.5 kcal/mol. Additionally, protein-protein docking simulations were performed to assess the interaction between HPV-16 E6 oncoprotein and tumor suppressors TP-53 and pRb, which revealed high binding energies around -976.7 kcal/mol, indicative of their complex interaction. A conversion formula was applied to translate these protein-protein interaction energies to a comparable scale for non-protein interactions, further underscoring the superior binding potential of apigenin and luteolin. These findings highlight the therapeutic promise of these natural compounds in preventing HPV-16-induced oncogenesis, warranting further experimental validation for clinical applications.
Collapse
Affiliation(s)
- Momir Dunjic
- School of Medicine, University of Pristina, BB Anri Dinana, 38220 Kosovska Mitrovica, Serbia;
- Faculty of Pharmacy, Heroja Pinkija 4, 21000 Novi Sad, Serbia
- Alma Mater Europaea (AMEU-ECM), Slovenska Ulica/Street 17, 2000 Maribor, Slovenia;
- BDORT Center for Functional Supplementation and Integrative Medicine, Bulevar Oslobodjenja 2, 11000 Belgrade, Serbia;
| | - Stefano Turini
- Alma Mater Europaea (AMEU-ECM), Slovenska Ulica/Street 17, 2000 Maribor, Slovenia;
- BDORT Center for Functional Supplementation and Integrative Medicine, Bulevar Oslobodjenja 2, 11000 Belgrade, Serbia;
- Guard Plus Doo, Nemanjina 40, 11000 Belgrade, Serbia
- Worldwide Consultancy and Services, Division of Advanced Research and Development, Via Andrea Ferrara 45, 00165 Rome, Italy;
- Capri Campus Forensic and Security, Division of Environmental Medicine and Security, Via G. Orlandi 91 Anacapri, Capri Island, 80071 Naples, Italy
| | - Lazar Nejkovic
- Belgrade University, School of Medicine, dr Subotića Starijeg 8, 11000 Belgrade, Serbia;
- Clinic for Obstetrics and Gynecology, Kraljice Natalije 62, 11000 Belgrade, Serbia
| | - Nenad Sulovic
- School of Medicine, University of Pristina, BB Anri Dinana, 38220 Kosovska Mitrovica, Serbia;
| | - Sasa Cvetkovic
- School of Medicine, University of Pristina, BB Anri Dinana, 38220 Kosovska Mitrovica, Serbia;
| | - Marija Dunjic
- Worldwide Consultancy and Services, Division of Advanced Research and Development, Via Andrea Ferrara 45, 00165 Rome, Italy;
| | - Katarina Dunjic
- BDORT Center for Functional Supplementation and Integrative Medicine, Bulevar Oslobodjenja 2, 11000 Belgrade, Serbia;
| | - Dina Dolovac
- General Hospital, UI. Generala Zivkovica 1, 36300 Novi Pazar, Serbia;
| |
Collapse
|
2
|
Saadaoui M, Singh P, Ortashi O, Al Khodor S. Role of the vaginal microbiome in miscarriage: exploring the relationship. Front Cell Infect Microbiol 2023; 13:1232825. [PMID: 37780845 PMCID: PMC10533927 DOI: 10.3389/fcimb.2023.1232825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 08/28/2023] [Indexed: 10/03/2023] Open
Abstract
Miscarriage is a devastating pregnancy loss that affects many women worldwide. It is characterized as a spontaneous miscarriage that occurs before 20 weeks of gestation which affects more than 25% of pregnancies. While the causes of miscarriage are complex and multifactorial, recent research has suggested a potential role of the vaginal microbiota. The vaginal microbiome is a dynamic ecosystem of microbes that are essential for preserving vaginal health and avoiding infections. Vaginal dysbiosis has been accompanied with numerous adverse pregnancy complications, such as preterm birth. However, the effect of the vaginal microbiome in miscarriage is not fully understood. This review aims to investigate the link between vaginal microbiota and miscarriage. Also, we investigate the various mechanisms through which the vaginal microbiota may affect miscarriage. Additionally, we examine the implications of these research findings, specifically the possibility of vaginal microbiome screening and targeted interventions to prevent miscarriage.
Collapse
Affiliation(s)
| | - Parul Singh
- Research Department, Sidra Medicine, Doha, Qatar
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
| | - Osman Ortashi
- Women’s Services Department, Sidra Medicine, Doha, Qatar
| | | |
Collapse
|
3
|
Basonidis A, Liberis A, Daniilidis A, Petousis S, Dinas K. Human papilloma virus infection and miscarriage: is there an association? Taiwan J Obstet Gynecol 2021; 59:656-659. [PMID: 32917313 DOI: 10.1016/j.tjog.2020.07.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/25/2020] [Indexed: 11/28/2022] Open
Abstract
Human papilloma virus (HPV) infection is the most common viral infection of the reproductive tract. HPV infection is more prevalent in pregnant than in age-matched non-pregnant women and its prevalence increases as pregnancy progresses. A number of reports evaluated the role of HPV infection in miscarriages. In the present review, we summarize the existing evidence regarding the association between HPV infection and miscarriage. It is still unclear whether HPV infection is associated with increased risk for miscarriage. Studies in the field yielded conflicting findings and their conclusions are limited by a small sample size and/or methodological limitations. On the other hand, preclinical data support a role of HPV infection in placental dysfunction. Given the high prevalence of HPV infection and the possibility that vaccination against HPV might protect against miscarriage, more studies are needed to elucidate whether this common infection is associated with increased risk for miscarriage.
Collapse
Affiliation(s)
- Alexandros Basonidis
- Second Department of Obstetrics and Gynecology, Medical School, Aristotle University School of Medicine, Hippokration Hospital, Thessaloniki, Greece
| | - Anastasios Liberis
- Second Department of Obstetrics and Gynecology, Medical School, Aristotle University School of Medicine, Hippokration Hospital, Thessaloniki, Greece.
| | - Angelos Daniilidis
- Second Department of Obstetrics and Gynecology, Medical School, Aristotle University School of Medicine, Hippokration Hospital, Thessaloniki, Greece
| | - Stamatis Petousis
- Second Department of Obstetrics and Gynecology, Medical School, Aristotle University School of Medicine, Hippokration Hospital, Thessaloniki, Greece
| | - Konstantinos Dinas
- Second Department of Obstetrics and Gynecology, Medical School, Aristotle University School of Medicine, Hippokration Hospital, Thessaloniki, Greece
| |
Collapse
|
4
|
Huang RY, Raymond Herr D, Moochhala S. Manipulation of Alcohol and Short-Chain Fatty Acids in the Metabolome of Commensal and Virulent Klebsiella pneumoniae by Linolenic Acid. Microorganisms 2020; 8:microorganisms8050773. [PMID: 32455676 PMCID: PMC7285277 DOI: 10.3390/microorganisms8050773] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 05/17/2020] [Accepted: 05/18/2020] [Indexed: 12/23/2022] Open
Abstract
Endogenous alcohol produced by the gut microbiome is transported via the bloodstream to the liver for detoxification. Gut dysbiosis can result in chronic excess alcohol production that contributes to the development of hepatic steatosis. The aim of this study was to examine whether linolenic acid can manipulate the production of harmful alcohol and beneficial short-chain fatty acids (SCFAs) in the metabolome of commensal Klebsiella pneumoniae (K. pneumoniae) and the virulent K. pneumoniae K1 serotype. Glucose fermentation by the K. pneumoniae K1 serotype yielded increased production of alcohol and decreased SCFAs (especially acetate and propionate) compared to those of commensal K. pneumoniae. However, the use of linolenic acid instead of glucose significantly reduced alcohol and increased SCFAs in the fermentation media of the K. pneumoniae K1 serotype. The work highlights the value of shaping the microbial metabolome using linolenic acid, which can potentially regulate the gut–liver axis for the prevention and treatment of alcohol-induced liver diseases.
Collapse
Affiliation(s)
- Ryan Yuki Huang
- Canyon Crest Academy, San Diego, CA 92130, USA;
- Department of Mechanical and Aerospace Engineering, University of California, San Diego, CA 92093, USA
| | - Deron Raymond Herr
- Department of Pharmacology, National University of Singapore, Singapore 117600, Singapore;
| | - Shabbir Moochhala
- Department of Pharmacology, National University of Singapore, Singapore 117600, Singapore;
- Correspondence: ; Tel.: +65-8511-0112
| |
Collapse
|
5
|
de Freitas LB, Pereira CC, Merçon-de-Vargas PR, Spano LC. Human papillomavirus in foetal and maternal tissues from miscarriage cases. J OBSTET GYNAECOL 2018; 38:1083-1087. [PMID: 29884100 DOI: 10.1080/01443615.2018.1454408] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Early miscarriage is still a concern, and viral infections are recognised as one of the causes of this adverse outcome. The causal relationship between HPV and miscarriage remains controversial. The aim of the study was to evaluate whether HPV infection indeed may occur in both the maternal and placental tissue in cases of miscarriage. Decidual and chorionic villi fragments (n = 118) were dissected from 81 miscarriage cases, 68 spontaneous and 13 intentional. HPV DNA was detected using the consensus primers MY09/11; in eight cases (9.9%, 8/81), seven of which (10.3%) were from spontaneous miscarriages and one (7.7%), was from an intentional miscarriage. The deciduas (4/8) and chorionic villi (5/8) were both infected with HPV. A reverse line blot was used to genotype HPV positive samples and revealed HPV6, 11, 58, 66 and 82. Although the results obtained cannot infer an association between HPV and pregnancy loss, it cannot be ruled out. Impact Statement What is already known on this subject? Miscarriages are considered to be the most common complication in pregnancy. Several possible causes of miscarriage have been considered, and the role of infections as one of those is confirmed, especially during the second trimester of pregnancy. The prevalence of HPV in conception products is still questionable. However, an HPV infection should not be ignored and its association with miscarriage must be considered. What the results of this study add? The present study reveals the presence of HPV in the foetal and maternal tissues of conception. What the implications are of these findings for clinical practice and/or further research? This issue deserves further investigation aiming to clarify the role of HPV in miscarriage cases; which are mainly related to the specific type and grade of tissues' abnormalities found co-topographically with a virus presence.
Collapse
Affiliation(s)
- Luciana Bueno de Freitas
- a Post-Graduate Program in Infectious Diseases , Federal University of Espírito Santo , Vitória , Brazil
| | - Christiane Curi Pereira
- a Post-Graduate Program in Infectious Diseases , Federal University of Espírito Santo , Vitória , Brazil
| | | | - Liliana Cruz Spano
- a Post-Graduate Program in Infectious Diseases , Federal University of Espírito Santo , Vitória , Brazil.,b Department of Pathology , Center of Health Sciences, Federal University of Espírito Santo , Vitória , Brazil
| |
Collapse
|
6
|
Selenium Attenuates HPV-18 Associated Apoptosis in Embryo-Derived Trophoblastic Cells but Not Inner Cell Mass In Vitro. Int J Reprod Med 2015; 2015:562567. [PMID: 26345191 PMCID: PMC4539449 DOI: 10.1155/2015/562567] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2015] [Revised: 07/20/2015] [Accepted: 07/26/2015] [Indexed: 11/17/2022] Open
Abstract
Objectives. Human papillomaviruses (HPV) are associated with cell cycle arrest. This study focused on antioxidant selenomethionine (SeMet) inhibition of HPV-mediated necrosis. The objectives were to determine HPV-18 effects on embryonic cells and to evaluate SeMet in blocking HPV-18 effects. Methods. Fertilized mouse embryos were cultured for 5 days to implanted trophoblasts and exposed to either control medium (group 1), HPV-18 (group 2), combined HPV-18 and 0.5 µM SeMet (group 3), or combined HPV-18 and 5.0 µM SeMet (group 4). After 48 hrs, trophoblast integrity and, apoptosis/necrosis were assessed using morphometric and dual-stain fluorescence assays, respectively. Results. HPV-18 exposed trophoblasts nuclei (253.8 ± 28.5 sq·µ) were 29% smaller than controls (355.6 ± 35.9 sq·µ). Supplementation with 0.5 and 5.0 µM SeMet prevented nuclear shrinkage after HPV-18 exposure. HPV-18 infected trophoblasts remained larger with SeMet supplementation. HPV-18 decreased cell viability by 44% but SeMet supplementation sustained cell viability. Apoptosis was lower when SeMet was present. HPV-18 decreased inner cell mass (ICM) viability by over 60%. Conclusions. HPV-18 decreased nuclear size and trophoblast viability but these effects were attenuated by the antioxidant SeMet. SeMet blocked HPV-18 associated apoptosis process in trophoblasts but not ICM cells suggesting involvement of different oxidative stress pathways.
Collapse
|