1
|
You H, Shin U, Kwon DH, Hwang J, Lee GY, Han SN. The effects of in vitro vitamin D treatment on glycolytic reprogramming of bone marrow-derived dendritic cells from Ldlr knock-out mouse. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167436. [PMID: 39067537 DOI: 10.1016/j.bbadis.2024.167436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 07/14/2024] [Accepted: 07/18/2024] [Indexed: 07/30/2024]
Abstract
Dendritic cells (DCs) undergo glycolytic reprogramming, a metabolic conversion process essential for their activation. Vitamin D has been reported to affect the function of DCs, but studies in metabolic diseases are insufficient. This study investigates the effects of in vitro 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) treatment on glycolytic reprogramming of bone marrow-derived dendritic cells (BMDCs) from control, obese, and atherosclerosis mice. Six-week-old male C57BL/6J mice were fed a control diet (CON) or a Western diet (WD), and B6.129S7-Ldlrtm1Her/J mice were fed a Western diet (LDLR-/-) for 16 weeks. BMDCs were cultured in a medium containing 1,25(OH)2D3 (10 nM) for 7 days and stimulated with lipopolysaccharide (LPS, 50 ng/mL) for 24 h. In mature BMDCs, 1,25(OH)2D3 treatment decreased basal and compensatory glycolytic proton efflux rates (glycoPER), the expression of surface markers related to immune function of DCs (MHC class II, CD80, and CD86), and IL-12p70 production. In addition, mTORC1 activation and nitric oxide (NO) production were suppressed by 1,25(OH)2D3 treatment in mature BMDCs. The effect of 1,25(OH)2D3 treatment on IL-12p70 production and mTORC1 activity in the LDLR-/- group was greater than in the CON group. These findings suggest that vitamin D can affect the metabolic environment of BMDCs by regulating glycolytic reprogramming as well as by inducing tolerogenic phenotypes of DCs.
Collapse
Affiliation(s)
- Hyeyoung You
- Department of Food and Nutrition, College of Human Ecology, Seoul National University, Seoul, Republic of Korea
| | - Ungue Shin
- Department of Food and Nutrition, College of Human Ecology, Seoul National University, Seoul, Republic of Korea
| | - Deok Hoon Kwon
- Department of Food and Nutrition, College of Human Ecology, Seoul National University, Seoul, Republic of Korea
| | - Jungwon Hwang
- Department of Food and Nutrition, College of Human Ecology, Seoul National University, Seoul, Republic of Korea
| | - Ga Young Lee
- Department of Food and Nutrition, College of Human Ecology, Seoul National University, Seoul, Republic of Korea
| | - Sung Nim Han
- Department of Food and Nutrition, College of Human Ecology, Seoul National University, Seoul, Republic of Korea; Research Institute of Human Ecology, College of Human Ecology, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
2
|
Hwang J, You H, Kwon DH, Son Y, Lee GY, Han SN. Transcriptome analysis of T cells from Ldlr -/- mice and effects of in vitro vitamin D treatment. J Nutr Biochem 2023; 124:109510. [PMID: 39492429 DOI: 10.1016/j.jnutbio.2023.109510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 10/25/2023] [Accepted: 10/26/2023] [Indexed: 11/05/2024]
Abstract
Vitamin D is known for its immunosuppressive effects on T cells, suppressing Th1 and Th17 and promoting Treg differentiation. Th1 cells contribute to inflammatory responses such as inflammatory cytokine production and macrophage activation, which accelerate the progression of atherosclerosis. However, the mechanisms underlying the modulation of T cell functions by vitamin D in atherosclerosis have not been investigated. This study analyzed the gene expression profiles of T cells, using RNA-seq transcriptome analysis, to investigate the effects of in vitro vitamin D treatment on T cell differentiation and signal transduction pathways in Ldlr knock-out (Ldlr-/-) mice. C57BL/6 mice were randomly assigned to two groups and fed a control diet (CON) or a Western diet (WD) for 16 weeks, while Ldlr-/- mice (LDLR-/-) were fed a Western diet. Splenic T cells were isolated and stimulated with anti-CD3e and anti-CD28 mAb for 48 hours with or without 10 nM 1,25(OH)2D3. RNA sequencing was performed, followed by KEGG and GO enrichment analyses. Populations of T cell subsets and cytokine production were measured to assess T cell lineage differentiation. The JAK-STAT, HIF-1, and calcium signaling pathways of Ldlr-/- mice significantly differed from those of control mice, and 1,25(OH)2D3 treatment affected MAPKKK binding molecular function of Ldlr-/- mice. Percentages of Th1 cells and IL-17 production were significantly reduced by 1,25(OH)2D3 treatment in all three mouse groups. These results suggest that 1,25(OH)2D3 has anti-inflammatory effects in atherosclerosis and is involved in cell signaling pathways that could prevent disease progression by regulating T cell differentiation and effector functions.
Collapse
Affiliation(s)
- Jungwon Hwang
- Department of Food and Nutrition, College of Human Ecology, Seoul National University, Seoul, Korea, 08826.
| | - Hyeyoung You
- Department of Food and Nutrition, College of Human Ecology, Seoul National University, Seoul, Korea, 08826.
| | - Deok Hoon Kwon
- Department of Food and Nutrition, College of Human Ecology, Seoul National University, Seoul, Korea, 08826.
| | - YeKyoung Son
- Department of Food and Nutrition, College of Human Ecology, Seoul National University, Seoul, Korea, 08826.
| | - Ga Young Lee
- Department of Food and Nutrition, College of Human Ecology, Seoul National University, Seoul, Korea, 08826.
| | - Sung Nim Han
- Department of Food and Nutrition, College of Human Ecology, Seoul National University, Seoul, Korea, 08826.
| |
Collapse
|
3
|
Lorenzon F, Gregorio T, Niebisch F, Stolte RCK, Peixe CDMS, Reis WL, Dos Santos GJ, Lima FB. Gestational administration of vitamin D improves maternal care and prevents anxiety-like behavior in male and female Wistar rats prenatally exposed to dexamethasone. Life Sci 2023:121799. [PMID: 37245838 DOI: 10.1016/j.lfs.2023.121799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/15/2023] [Accepted: 05/20/2023] [Indexed: 05/30/2023]
Abstract
Prenatal overexposure to glucocorticoids (GC) can lead to behavioral changes in adulthood. We aimed to explore the effects of gestational administration of vitamin D on the behavioral responses of dams and their offspring prenatally exposed to dexamethasone (DEX). Vitamin D (500UI) was given daily during the whole pregnancy (VD group). Half of the groups that received vitamin D were treated with DEX (0.1 mg/kg, VD + DEX group) daily between the 14th and 19th days of pregnancy. The corresponding control groups of progenitors were assigned (CTL and DEX groups, respectively). Maternal care and the dam's behaviors were evaluated during lactation. The offspring had developmental and behavioral parameters evaluated during lactation and at 3, 6, and 12 months of age. Gestational administration of vitamin D increased maternal care and had an anxiolytic-like effect on the dams, but the latter was blocked in DEX-treated dams. Prenatal DEX partially impaired neural development and caused an anxiety-like phenotype in the male and female offspring at 6 months, which was prevented by gestational administration of vitamin D. As well, gestational vitamin D improved memory just in the male offspring, but this response was suppressed by prenatal DEX. We concluded that gestational vitamin D could prevent anxiety-like behavior in adult male and female rats prenatally exposed to DEX, which might be, in part, a result of the maternal care improvement.
Collapse
Affiliation(s)
- Flaviano Lorenzon
- Departamento de Ciências Fisiológicas, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina-UFSC, Campus Trindade, 88040-900 Florianópolis, SC, Brazil; Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina-UFSC, Campus Trindade, 88040-900 Florianópolis, SC, Brazil
| | - Tamires Gregorio
- Departamento de Ciências Fisiológicas, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina-UFSC, Campus Trindade, 88040-900 Florianópolis, SC, Brazil; Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina-UFSC, Campus Trindade, 88040-900 Florianópolis, SC, Brazil
| | - Fernanda Niebisch
- Departamento de Ciências Fisiológicas, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina-UFSC, Campus Trindade, 88040-900 Florianópolis, SC, Brazil
| | - Rafaela Carla Kachel Stolte
- Departamento de Ciências Fisiológicas, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina-UFSC, Campus Trindade, 88040-900 Florianópolis, SC, Brazil
| | - Carolina De Moraes Silveira Peixe
- Departamento de Ciências Fisiológicas, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina-UFSC, Campus Trindade, 88040-900 Florianópolis, SC, Brazil
| | - Wagner Luis Reis
- Departamento de Ciências Fisiológicas, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina-UFSC, Campus Trindade, 88040-900 Florianópolis, SC, Brazil; Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina-UFSC, Campus Trindade, 88040-900 Florianópolis, SC, Brazil
| | - Gustavo Jorge Dos Santos
- Departamento de Ciências Fisiológicas, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina-UFSC, Campus Trindade, 88040-900 Florianópolis, SC, Brazil; Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina-UFSC, Campus Trindade, 88040-900 Florianópolis, SC, Brazil
| | - Fernanda Barbosa Lima
- Departamento de Ciências Fisiológicas, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina-UFSC, Campus Trindade, 88040-900 Florianópolis, SC, Brazil; Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina-UFSC, Campus Trindade, 88040-900 Florianópolis, SC, Brazil.
| |
Collapse
|
4
|
New concepts in regulation and function of the FGF23. Clin Exp Med 2022:10.1007/s10238-022-00844-x. [PMID: 35708778 DOI: 10.1007/s10238-022-00844-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 05/20/2022] [Indexed: 11/03/2022]
Abstract
In comparison to the regulation of calcium homeostasis, which has been widely studied over the last several decades, phosphate homeostasis is little understood. The parathyroid hormone (PTH)/vitamin D axis has traditionally been used as a conceptual framework for understanding mineral metabolism. Recently, the fundamental regulator of phosphate homeostasis, fibroblast growth factor 23 (FGF23), which is produced by osteocytes and is involved in the hormonal bone-parathyroid-kidney axis, has attracted more attention. The secretion of FGF23 is controlled by diet, serum phosphate levels, PTH, and 1,25(OH)2 vitamin D. FGF-23, the FGF receptors and the obligate co-receptor α-Klotho work in concert to affect FGF-23 actions on targeted organs. Despite all efforts to investigate pleotropic effects of FGF23 in various endocrine organs, many aspects of the regulation and functions of FGF23 and the exact crosstalk among FGF23, serum phosphate, calcium, PTH, and vitamin D in the regulation of mineral homeostasis remain unclear; much efforts need to be established before it can be moved toward therapeutic applications. In this regard, we provide a brief overview of the novel findings in the regulation and function of FGF23 and refer to related questions and hypotheses not answered yet, which can be a window for future projects. We also focus on the current knowledge about the role of FGF23 obtained from our researches in recent years.
Collapse
|
5
|
Chen X, Chu C, Doebis C, Xiong Y, Cao Y, Krämer BK, von Baehr V, Hocher B. Vitamin D status and its association with parathyroid hormone in 23,134 outpatients. J Steroid Biochem Mol Biol 2022; 220:106101. [PMID: 35351538 DOI: 10.1016/j.jsbmb.2022.106101] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 03/22/2022] [Accepted: 03/24/2022] [Indexed: 12/16/2022]
Abstract
In vitro studies indicate that 25-hydroxyvitamin D3 (25(OH)D3) and 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) inhibits the synthesis of parathyroid hormone (PTH). The degree of PTH inhibition in humans by circulating 25(OH)D and 1,25(OH)2D may be different. Moreover, age and sex as well as confounding factors like calcium and phosphate may likewise affect the relationship between vitamin D and PTH in humans. However, this was not done so far in adequately powered studies. We investigated the relationship between 25(OH)D as well as 1,25(OH)2D and intact parathyroid hormone (iPTH) in 23,134 outpatients (age mean: 59.81 years) from the Berlin-Brandenburg area of Germany with normal serum creatinine considering confounding factors like age, sex, calcium and phosphate. 25(OH)D and iPTH were inversely correlated (r = -0.17, p < 0.0001). The inverse linear correlation was observed over the entire spectrum of 25(OH)D concentrations - from low 25(OH)D concentrations to very high 25(OH)D concentrations. Multiple linear regression analysis revealed that this correlation was independent of age, sex, creatinine, calcium and phosphate (unstandardized coefficients B: -0.16, p < 0.0001). However, 1,25(OH)2D was only positively associated with iPTH in women (r = 0.05, p = 0.033) and in the subgroup of patients with lower 25(OH)D (25(OH)D< 40 ng/ml) (r = 0.09, p < 0.0001), which was also presented in multiple linear regression analysis (unstandardized coefficients B: 0.20, p = 0.001). Circulating 1,25(OH)2D does not contribute substantially to the regulation of PTH in middle aged and vitamin D sufficient outpatients from the Berlin-Brandenburg area of Germany with normal kidney function. Presumably, serum 25(OH)D that is converted to 1,25(OH)2D after uptake in the parathyroid chief cells plays the critical role.
Collapse
Affiliation(s)
- Xin Chen
- Fifth Department of Medicine (Nephrology/Endocrinology/Rheumatology), University Medical Centre Mannheim, University of Heidelberg, Germany; Department of Nephrology, Charité - Universitätsmedizin Berlin, Campus Mitte, Berlin, Germany
| | - Chang Chu
- Fifth Department of Medicine (Nephrology/Endocrinology/Rheumatology), University Medical Centre Mannheim, University of Heidelberg, Germany; Department of Nephrology, Charité - Universitätsmedizin Berlin, Campus Mitte, Berlin, Germany
| | - Cornelia Doebis
- Institute of Medical Diagnostics, IMD Berlin-Potsdam, Berlin, Germany
| | - Yingquan Xiong
- Fifth Department of Medicine (Nephrology/Endocrinology/Rheumatology), University Medical Centre Mannheim, University of Heidelberg, Germany; Department of Nephrology, Charité - Universitätsmedizin Berlin, Campus Mitte, Berlin, Germany
| | - Yaochen Cao
- Fifth Department of Medicine (Nephrology/Endocrinology/Rheumatology), University Medical Centre Mannheim, University of Heidelberg, Germany; Department of Nephrology, Charité - Universitätsmedizin Berlin, Campus Mitte, Berlin, Germany
| | - Bernhard K Krämer
- Fifth Department of Medicine (Nephrology/Endocrinology/Rheumatology), University Medical Centre Mannheim, University of Heidelberg, Germany
| | - Volker von Baehr
- Institute of Medical Diagnostics, IMD Berlin-Potsdam, Berlin, Germany
| | - Berthold Hocher
- Fifth Department of Medicine (Nephrology/Endocrinology/Rheumatology), University Medical Centre Mannheim, University of Heidelberg, Germany; Institute of Medical Diagnostics, IMD Berlin-Potsdam, Berlin, Germany; Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, School of Medicine, Hunan Normal University, Changsha, China; Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China.
| |
Collapse
|
6
|
Meng L, Su C, Shapses SA, Wang X. Total and free vitamin D metabolites in patients with primary hyperparathyroidism. J Endocrinol Invest 2022; 45:301-307. [PMID: 34282553 DOI: 10.1007/s40618-021-01633-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 07/05/2021] [Indexed: 12/14/2022]
Abstract
PURPOSE To evaluate total and free vitamin D metabolites and hormone-to-prohormone [1,25(OH)2D/25(OH)D] "activation ratio" in PHPT patients with low or insufficient vitamin D status. METHODS Thirty female patients with primary hyperparathyroidism (PHPT) and 30 age and body mass index (BMI) matched healthy controls were enrolled. Serum levels of calcium, intact parathyroid hormone (iPTH), vitamin D binding protein (DBP), albumin, total 25(OH)D and 1,25(OH)2D were measured. The activation ratio of vitamin D was calculated as total 1,25(OH)2D/25(OH)D. Calculated serum-free 25(OH)D and 1,25(OH)2D levels were also reported. RESULTS Compared to the control subject, patients with PHPT had a lower total 25(OH)D and DBP levels (p < 0.001). The serum concentration of free 25(OH)D and total 1,25(OH)2D were similar between the two groups; but free 1,25(OH)2D levels were about 26% higher in the PHPT patients compared to controls (p < 0.001). PHPT patients had a significantly higher activation ratio (p < 0.01), although their total 25(OH)D were lower than controls. The free (but not total) 1,25(OH)2D level was inversely correlated with DBP (p < 0.01). Both free 1,25(OH)2D levels and activation ratio were positively correlated with iPTH and calcium levels (p < 0.01). The activation ratio was highly correlated with levels of total vitamin D stores and free vitamin D metabolites (p < 0.001). CONCLUSION Patients with PHPT had significantly higher free 1,25(OH)2D levels and activation ratio compared to control subjects. We suggest that levels of free vitamin D metabolites and vitamin D activation ratio may provide additional values for the diagnosis and therapeutic choices in these patient populations with compromised vitamin D status.
Collapse
Affiliation(s)
- L Meng
- Department of Nutritional Sciences, Rutgers University, New Brunswick, NJ, 08901, USA
| | - C Su
- Graduate School of Biomedical Science, Rutgers University, Piscataway, NJ, 08854, USA
| | - S A Shapses
- Department of Nutritional Sciences, Rutgers University, New Brunswick, NJ, 08901, USA
| | - X Wang
- Division of Endocrinology, Department of Medicine, Rutgers University-Robert Wood Johnson Medical School, New Brunswick, NJ, 08093, USA.
| |
Collapse
|
7
|
Kato H, Hidaka N, Koga M, Ogawa N, Takahashi S, Miyazaki H, Nangaku M, Makita N, Ito N. Performance evaluation of the new chemiluminescent intact FGF23 assay relative to the existing assay system. J Bone Miner Metab 2022; 40:101-108. [PMID: 34351500 DOI: 10.1007/s00774-021-01258-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 07/29/2021] [Indexed: 11/25/2022]
Abstract
INTRODUCTION This study assessed the performance of a new fully automated immunoassay for fibroblast growth factor (FGF) 23 (Determinar CL FGF23 CL) among healthy individuals and those with chronic hypophosphatemia compared with the previous assay (Kainos FGF23 KI). MATERIALS AND METHODS A total of 380 serum samples from healthy participants were collected to determine the reference range of FGF23 levels with CL. A total of 200 serum samples from 22 hypophosphatemic patients were collected simultaneously to compare the difference in FGF23 levels between CL and KI. The Mann-Whitney U test and linear regression analysis were adopted to assess the differences and linearity between the two assays. RESULTS The median FGF23 levels among healthy individuals was 31.7 (interquartile: 26.4-37.5) pg/mL. When the reference range was calculated as the mean ± 2 standard deviation (2SD), it was 16.1-49.3 pg/mL. A total of 363 individuals (96%) among normal cases fell in this range. Among 200 samples from patients with chronic hypophosphatemic disorder, the median FGF23 levels analyzed by CL and KI were 123.0 (90.2-237.7) and 172.5 (115.8-290.7) pg/mL. KI yielded significantly higher FGF23 values than CL (p < 0.001). A linear regression model revealed the correlation between KI (x) and CL (y), which had a slope of 0.76 with a y-intercept of -0.32 and high linearity (R2 = 0.99). CONCLUSION The new measurement kit yielded lower FGF23 values when compared with the previous assay. Clinicians should consider this discrepancy when they assay intact FGF23 values with CL.
Collapse
Affiliation(s)
- Hajime Kato
- Division of Nephrology and Endocrinology, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Naoko Hidaka
- Division of Nephrology and Endocrinology, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Minae Koga
- Division of Nephrology and Endocrinology, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Noriyuki Ogawa
- Minaris Medical Co., Ltd., 600-1, Minami-ishiki, Nagaizumi-cho, Sunto-gun, Shizuoka, 411-0932, Japan
| | - Shichihiro Takahashi
- Minaris Medical Co., Ltd., 600-1, Minami-ishiki, Nagaizumi-cho, Sunto-gun, Shizuoka, 411-0932, Japan
| | - Hiromi Miyazaki
- Minaris Medical Co., Ltd., 600-1, Minami-ishiki, Nagaizumi-cho, Sunto-gun, Shizuoka, 411-0932, Japan
| | - Masaomi Nangaku
- Division of Nephrology and Endocrinology, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Noriko Makita
- Division of Nephrology and Endocrinology, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Nobuaki Ito
- Division of Nephrology and Endocrinology, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan.
| |
Collapse
|
8
|
Insights into the perspective correlation between vitamin D and regulation of hormones: sex hormones and prolactin. CURRENT ISSUES IN PHARMACY AND MEDICAL SCIENCES 2021. [DOI: 10.2478/cipms-2021-0035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Abstract
Aim. Vitamin D is currently an exciting research target, besides its obvious role in calcium homeostasis and bone health, enormous work is being directed at examining the effects of this vitamin on various biological functions and pathological conditions.
Material and methods. The review of the literature and the analysis took about six months and was carried out through PubMed. This is a search engine opening mainly the MEDLINE database of trusted references. We called up all studies written in English that were published between the years 2004 to 2021 and that came through using the applied search terms, and analysed all those that met the criteria.
Results. The endocrine system with its many glands and hormones and their essential roles in the maintenance of normal body functioning cannot be far from interactions with vitamin D. Male and female sex hormones are no exceptions and many studies have investigated the correlations between these hormones and vitamin D. As such, direct and indirect relationships have been found between vitamin D, its receptors or one of its metabolising enzymes with sex hormones and the development of reproductive organs in males and females.
Conclusion. This review summarises the research investigating the associations of vitamin D with sex hormones and reproductive organs in males and females, and thus may pave the road for future studies that will investigate the clinical significance of vitamin D in the management of reproductive system disorders. Despite some conflicting results about the relationship between VD and the effectiveness of the reproductive system, many studies confirm the presence of receptors for this vitamin in the reproductive system, and this supports the direct or indirect relationship between VD and prolactin or VD and testosterone through PO4 and Ca2+ homeostasis, or production of osteocalcin. Therefore, VD is positively associated with semen quality and androgen status. Furthermore, a direct relationship between VD and the production of progesterone, estrogen and estrone in human ovarian cells has been supported by many studies.
Collapse
|
9
|
Phosphate, Calcium, and Vitamin D: Key Regulators of Fetal and Placental Development in Mammals. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1354:77-107. [PMID: 34807438 DOI: 10.1007/978-3-030-85686-1_5] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Normal calcium and bone homeostasis in the adult is virtually fully explained by the interactions of several key regulatory hormones, including parathyroid hormone, 1,25 dihydroxy vitamin D3, fibroblast growth factor-23, calcitonin, and sex steroids (estradiol and testosterone). In utero, bone and mineral metabolism is regulated differently from the adult. During development, it is the placenta and not the fetal kidneys, intestines, or skeleton that is the primary source of minerals for the fetus. The placenta is able to meet the almost inexhaustible needs of the fetus for minerals by actively driving the transport of calcium and phosphorus from the maternal circulation to the growing fetus. These fundamentally important minerals are maintained in the fetal circulation at higher concentrations than those in maternal blood. Maintenance of these inordinately higher fetal levels is necessary for the developing skeleton to accrue sufficient minerals by term. Importantly, in livestock species, prenatal mineralization of the skeleton is crucial for the high levels of offspring activity soon after birth. Calcium is required for mineralization, as well as a plethora of other physiological functions. Placental calcium and phosphate transport are regulated by several mechanisms that are discussed in this review. It is clear that phosphate and calcium metabolism is intimately interrelated and, therefore, placental transport of these minerals cannot be considered in isolation.
Collapse
|
10
|
Clemens Z, Sivakumar S, Pius A, Sahu A, Shinde S, Mamiya H, Luketich N, Cui J, Dixit P, Hoeck JD, Kreuz S, Franti M, Barchowsky A, Ambrosio F. The biphasic and age-dependent impact of klotho on hallmarks of aging and skeletal muscle function. eLife 2021; 10:e61138. [PMID: 33876724 PMCID: PMC8118657 DOI: 10.7554/elife.61138] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 04/06/2021] [Indexed: 12/15/2022] Open
Abstract
Aging is accompanied by disrupted information flow, resulting from accumulation of molecular mistakes. These mistakes ultimately give rise to debilitating disorders including skeletal muscle wasting, or sarcopenia. To derive a global metric of growing 'disorderliness' of aging muscle, we employed a statistical physics approach to estimate the state parameter, entropy, as a function of genes associated with hallmarks of aging. Escalating network entropy reached an inflection point at old age, while structural and functional alterations progressed into oldest-old age. To probe the potential for restoration of molecular 'order' and reversal of the sarcopenic phenotype, we systemically overexpressed the longevity protein, Klotho, via AAV. Klotho overexpression modulated genes representing all hallmarks of aging in old and oldest-old mice, but pathway enrichment revealed directions of changes were, for many genes, age-dependent. Functional improvements were also age-dependent. Klotho improved strength in old mice, but failed to induce benefits beyond the entropic tipping point.
Collapse
Affiliation(s)
- Zachary Clemens
- Department of Physical Medicine & Rehabilitation, University of PittsburghPittsburghUnited States
- Department of Environmental and Occupational Health, University of PittsburghPittsburghUnited States
| | - Sruthi Sivakumar
- Department of Physical Medicine & Rehabilitation, University of PittsburghPittsburghUnited States
- Department of Bioengineering, University of PittsburghPittsburghUnited States
| | - Abish Pius
- Department of Physical Medicine & Rehabilitation, University of PittsburghPittsburghUnited States
- Department of Computational & Systems Biology, School of Medicine, University of PittsburghPittsburghUnited States
| | - Amrita Sahu
- Department of Physical Medicine & Rehabilitation, University of PittsburghPittsburghUnited States
| | - Sunita Shinde
- Department of Physical Medicine & Rehabilitation, University of PittsburghPittsburghUnited States
| | - Hikaru Mamiya
- Department of Bioengineering, University of PittsburghPittsburghUnited States
| | - Nathaniel Luketich
- Department of Bioengineering, University of PittsburghPittsburghUnited States
| | - Jian Cui
- Department of Computational & Systems Biology, School of Medicine, University of PittsburghPittsburghUnited States
| | - Purushottam Dixit
- Department of Physics, University of FloridaGainesvilleUnited States
| | - Joerg D Hoeck
- Department of Research Beyond Borders, Regenerative Medicine, Boehringer Ingelheim Pharmaceuticals, IncRheinGermany
| | - Sebastian Kreuz
- Department of Research Beyond Borders, Regenerative Medicine, Boehringer Ingelheim Pharmaceuticals, IncRheinGermany
| | - Michael Franti
- Department of Research Beyond Borders, Regenerative Medicine, Boehringer Ingelheim Pharmaceuticals, IncRheinGermany
| | - Aaron Barchowsky
- Department of Environmental and Occupational Health, University of PittsburghPittsburghUnited States
| | - Fabrisia Ambrosio
- Department of Physical Medicine & Rehabilitation, University of PittsburghPittsburghUnited States
- Department of Environmental and Occupational Health, University of PittsburghPittsburghUnited States
- Department of Bioengineering, University of PittsburghPittsburghUnited States
- McGowan Institute for Regenerative Medicine, University of PittsburghPittsburghUnited States
| |
Collapse
|