1
|
Lotfi E, Kholghi A, Golab F, Mohammadi A, Barati M. Circulating miRNAs and lncRNAs serve as biomarkers for early colorectal cancer diagnosis. Pathol Res Pract 2024; 255:155187. [PMID: 38377721 DOI: 10.1016/j.prp.2024.155187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 01/28/2024] [Accepted: 01/31/2024] [Indexed: 02/22/2024]
Abstract
BACKGROUND Colorectal cancer (CRC), the third most prevalent and lethal disease, accounted for approximately 1.9 million new cases and claimed nearly 861,000 lives in 2018. It is imperative to develop a minimally invasive diagnostic technique for early identification of CRC. This would facilitate the selection of patient populations most suitable for clinical trials, monitoring disease progression, assessing treatment effectiveness, and enhancing overall patient care. Utilizing blood as a biomarker source is advantageous due to its minimal discomfort for patients, enabling better integration into clinical and follow-up trials. Recent findings indicate that long noncoding RNAs (lncRNAs) and microRNAs (miRNAs) are detectable in the blood of cancer patients, proving crucial in diagnosing various malignancies. METHODS In this case-control study, we collected plasma samples from 30 patients diagnosed with colorectal cancer (CRC) and 30 healthy volunteers. Following RNA extraction, we measured the expression levels of specific biomolecules, including miR-410, miR-211, miR-139, miR-197, lncRNA UICLM, lncRNA FEZF1-AS1, miR-129, lncRNA CCAT1, lncRNA BBOX1-AS1, and lncRNA LINC00698, using real-time quantitative polymerase chain reaction (RT-qPCR). The obtained data underwent analysis using the Mann-Whitney test for non-parametric data and the T-test for parametric data. RESULTS The level of miR-410, miR-211, miR-139, miR-197, lncRNA UICLM, lncRNA FEZF1-AS1 were significantly higher in patients with CRC than healthy controls (p < .05). Meanwhile, the level of miR-129, lncRNA CCAT1, lncRNA BBOX1-AS1, and lncRNA LINC00698 were higher in healthy controls than in CRC patients (p < .05). CONCLUSION MicroRNA (miRNA) and long noncoding RNAs (lncRNAs) have recently emerged as detectable entities in the blood of cancer patients, playing crucial roles in diagnosing various malignancies. However, their specific relevance in the diagnosis of colorectal cancer (CRC) remains underexplored. This study aimed to investigate miRNA and lncRNA profiles in the plasma fraction of human blood to discern significant differences in content and expression levels between CRC patients and healthy individuals. Our cohort comprised 30 CRC patients and 30 healthy controls, with no statistically significant differences (p < 0.05) in age or gender observed between the two groups. Noteworthy is the uniqueness of our study, as we identified a panel of three significant microRNAs and one significant lncRNA, providing a more reliable prediction compared to existing molecular markers in diagnosing CRC. The four genes examined, including miR-211, miR-129, miR-197, and lncRNA UICLM, demonstrated impeccable results in terms of sensitivity and specificity, suggesting their potential candidacy for inclusion in diagnostic panels. Further validation in a larger statistical population is recommended to confirm the robustness of these genes as promising markers for colorectal cancer diagnosis.
Collapse
Affiliation(s)
- Ehsan Lotfi
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical sciences, Tehran, Iran
| | - Azam Kholghi
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical sciences, Tehran, Iran
| | - Fereshteh Golab
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Ali Mohammadi
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical sciences, Tehran, Iran
| | - Mahmood Barati
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical sciences, Tehran, Iran.
| |
Collapse
|
2
|
Al-Mahayni S, Ali M, Khan M, Jamsheer F, Moin ASM, Butler AE. Glycemia-Induced miRNA Changes: A Review. Int J Mol Sci 2023; 24:ijms24087488. [PMID: 37108651 PMCID: PMC10144997 DOI: 10.3390/ijms24087488] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 04/11/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
Diabetes is a rapidly increasing global health concern that significantly strains the health system due to its downstream complications. Dysregulation in glycemia represents one of the fundamental obstacles to achieving glycemic control in diabetic patients. Frequent hyperglycemia and/or hypoglycemia events contribute to pathologies that disrupt cellular and metabolic processes, which may contribute to the development of macrovascular and microvascular complications, worsening the disease burden and mortality. miRNAs are small single-stranded non-coding RNAs that regulate cellular protein expression and have been linked to various diseases, including diabetes mellitus. miRNAs have proven useful in the diagnosis, treatment, and prognosis of diabetes and its complications. There is a vast body of literature examining the role of miRNA biomarkers in diabetes, aiming for earlier diagnoses and improved treatment for diabetic patients. This article reviews the most recent literature discussing the role of specific miRNAs in glycemic control, platelet activity, and macrovascular and microvascular complications. Our review examines the different miRNAs involved in the pathological processes leading to the development of type 2 diabetes mellitus, such as endothelial dysfunction, pancreatic beta-cell dysfunction, and insulin resistance. Furthermore, we discuss the potential applications of miRNAs as next-generation biomarkers in diabetes with the aim of preventing, treating, and reversing diabetes.
Collapse
Affiliation(s)
- Sara Al-Mahayni
- School of Medicine, Royal College of Surgeons in Ireland Bahrain, Busaiteen 15503, Bahrain
| | - Mohamed Ali
- School of Medicine, Royal College of Surgeons in Ireland Bahrain, Busaiteen 15503, Bahrain
| | - Muhammad Khan
- School of Medicine, Royal College of Surgeons in Ireland Bahrain, Busaiteen 15503, Bahrain
| | - Fatema Jamsheer
- School of Medicine, Royal College of Surgeons in Ireland Bahrain, Busaiteen 15503, Bahrain
| | - Abu Saleh Md Moin
- Research Department, Royal College of Surgeons in Ireland Bahrain, Busaiteen 15503, Bahrain
| | - Alexandra E Butler
- Research Department, Royal College of Surgeons in Ireland Bahrain, Busaiteen 15503, Bahrain
| |
Collapse
|
3
|
Li H, Wang C, Jin Y, Cai Y, Yao J, Meng Q, Wu J, Wang H, Sun H, Liu M. Anti-Postmenopausal osteoporosis effects of Isopsoralen: A bioinformatics-integrated experimental study. Phytother Res 2023; 37:231-251. [PMID: 36123318 DOI: 10.1002/ptr.7609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 08/09/2022] [Accepted: 08/19/2022] [Indexed: 01/19/2023]
Abstract
Isopsoralen (IPRN), which comes from the fruit of Psoralea corylifolia, has been identified as a kind of phytoestrogen and has been proven to be effective for the treatment of osteoporosis (OP). However, the mechanisms underlying IPRN's anti-OP effects, especially the anti-postmenopausal osteoporosis (PMOP) effects, remain indistinct. Thus, this study aimed to investigate the effects and mechanisms of IPRN's anti-PMOP activity. In this study, the bioinformatics results predicted that IPRN could resist PMOP by targeting EGFR, AKT1, SRC, CCND1, ESR1 (ER-α), AR, PGR, BRCA1, PTGS2, and IGF1R. An ovariectomized (OVX) mice model and a H2 O2 -induced bone marrow mesenchyml stem cells (BMSCs) model confirmed that IPRN could inhibit the bone loss induced by OVX in mice and promote the osteogenic differentiation in H2 O2 -induced BMSCs by inhibiting oxidative stress and apoptosis. Moreover, IPRN could significantly produce the above effects by upregulating ESR1. IPRN might be a therapeutic agent for PMOP by acting as an estrogen replacement agent and a natural antioxidant.
Collapse
Affiliation(s)
- Hao Li
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, China.,Academy of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Changyuan Wang
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, China
| | - Yue Jin
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, China
| | - Yuanqing Cai
- Department of Orthopaedics, the First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Jialin Yao
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, China
| | - Qiang Meng
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, China
| | - Jingjing Wu
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, China
| | - Huihan Wang
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, China
| | - Huijun Sun
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, China.,Academy of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Mozhen Liu
- Department of Orthopaedics, the First Affiliated Hospital, Dalian Medical University, Dalian, China
| |
Collapse
|
4
|
Olerich KLW, Souter VL, Fay EE, Katz R, Hwang JK. Cesarean delivery rates and indications in pregnancies complicated by diabetes. J Matern Fetal Neonatal Med 2022; 35:10375-10383. [PMID: 36202395 DOI: 10.1080/14767058.2022.2128653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
OBJECTIVE Rates of pregestational (PGDM) and gestational diabetes (GDM), and their associated pregnancy complications, are rising. Pregnancies complicated by diabetes have increased cesarean delivery (CD) rates; however, there are limited data regarding the current rates of, and contributing factors to, these deliveries. The Robson Ten Group Classification System (TGCS) is a clinically relevant, standardized framework that can be used to evaluate and analyze cesarean rates. The objective of this study was to evaluate rates of, and indications for, intrapartum, unplanned CD among pregnancies complicated by diabetes, compared to normoglycemic (NG) pregnancies, in a large United States birth cohort. METHODS This retrospective cohort study used chart-abstracted data on births between 24 and 42 weeks' gestation at 17 hospitals that contributed to the Obstetrical Care Outcome Assessment Program database between 01/2016 and 03/2019. The CD rate for NG pregnancies, and pregnancies complicated by gestational and PGDM was calculated and compared using the Robson TGCS. The indications for intrapartum CD in patients with term, singleton, vertex gestations without a prior cesarean were then analyzed. Univariate and multivariate logistic regression models were used to compare the cesarean rate and indications for CD, between the diabetic groups and the NG group. Results were adjusted for maternal age, BMI, neonatal birth weight, and insurance status, as well as clustering by hospital. RESULTS A total of 86,381 pregnant people were included in the study cohort. Of these 76,272 (88.3%) were NG, 8591 (9.9%) had GDM, and 1518 (1.8%) had PGDM. Compared to NG patients, overall cesarean rates were higher in patients with GDM (40.3% vs. 29.7%; aOR 1.25, 95%CI 1.18-1.31) and PGDM (60.0% vs. 29.7%; aOR 2.53, 95%CI 2.04-3.13). This finding remained true when the cohort was restricted to term, singleton, vertex laboring patients without a prior cesarean; compared to NG patients, the cesarean rate was higher in patients with GDM (17.4% vs. 12.2%, aOR 1.37, 95%CI 1.29-1.45) and PGDM (26.0% vs. 12.2%, aOR 2.55, 95%CI 2.00-3.25). The cesarean rate for fetal indications was similar in the GDM (5.7%) and NG (4.4%) groups, while those patients with PGDM had a significantly higher rate (10.4%; aOR 2.01, 95%CI 1.43-2.83). Similarly, the rate of cesarean for labor dystocia in patients with PGDM was significantly higher than in NG patients (16.9% vs. 7.0%, and aOR 2.28, 95%CI 1.66-3.13) while patients with GDM had an intermediate rate (10.6% vs. 7.0%, aOR 1.49, 95%CI 1.40-1.57). CONCLUSIONS The CD rate is significantly higher in pregnancies complicated by diabetes, particularly pregestational, compared to NG pregnancies. Despite controlling for maternal factors and birth weight, pregnancies complicated by diabetes are more likely to undergo an unplanned intrapartum cesarean secondary to labor dystocia than their NG counterparts, but only pregnancies complicated by PGDM have an increased risk of cesarean for fetal indications. More research is needed to understand whether this higher cesarean rate is due to factors intrinsic to diabetes in laboring patients or is due to a difference in the way clinicians manage diabetics in labor.
Collapse
Affiliation(s)
- Kelsey L W Olerich
- Department of Obstetrics and Gynecology, Division of Maternal Fetal Medicine, University of Washington, Seattle, WA, USA
| | | | - Emily E Fay
- Department of Obstetrics and Gynecology, Division of Maternal Fetal Medicine, University of Washington, Seattle, WA, USA
| | - Ronit Katz
- Department of Obstetrics and Gynecology, University of Washington, Seattle, WA, USA
| | - Joseph K Hwang
- Department of Obstetrics and Gynecology, Division of Maternal Fetal Medicine, University of Washington, Seattle, WA, USA
| |
Collapse
|
5
|
Che S, Wu S, Yu P. Downregulated HDAC3 or up-regulated microRNA-296-5p alleviates diabetic retinopathy in a mouse model. Regen Ther 2022; 21:1-8. [PMID: 35619945 PMCID: PMC9121075 DOI: 10.1016/j.reth.2022.04.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 04/02/2022] [Accepted: 04/14/2022] [Indexed: 11/28/2022] Open
Abstract
Objective It has been demonstrated the efficacy of histone deacetylase 3 (HDAC3) in diabetes. Nevertheless, the function of HDAC3 in diabetic retinopathy (DR) remained largely obscure. Here, we investigated the HDAC3 effects in DR mice through the microRNA (miR)-296-5p/G protein subunit alpha i2 (GNAI2) axis. Methods The mice diabetes model was established. HDAC3, GNAI2 and miR-296-5p levels in retina tissues of DR mice were evaluated. The weight, blood glucose, Evans blue leakage in DR mice, apoptosis of retinal ganglion cells, vascular endothelial growth factor (VEGF) and malondialdehyde (MDA) contents and superoxide dismutase (SOD) activity in DR mice were detected after miR-296-5p elevation or HDAC3 depletion. The relations among HDAC3, miR-296-5p and GNAI2 were validated. Results HDAC3 and GNAI2 expressed at a high level while miR-296-5p expressed at a low level in retina tissues of DR mice. Restoring miR-296-5p or depleting HDAC3 reduced Evans blue leakage in DR mice, attenuated apoptosis of retinal ganglion cells, reduced VEGF and MDA, and enhanced SOD activity in serum and retinal tissues of DR mice. HDAC3 repressed miR-296-5p expression by binding to its promoter region, thereby enhancing GNAI2 expression. Conclusion Depleting HDAC3 or restoring miR-296-5p suppresses apoptosis of retinal ganglion cells of DR mice via down-regulating GNAI2.
Collapse
Affiliation(s)
- Songtian Che
- Department of Ocular Fundus Disease, the Second Hospital of Jilin University, No. 4026, Yatai Street, Changchun 130041, Jilin, People's Republic of China
| | - Shuai Wu
- Department Orbital Diseases & Ocular Plastic Surgery, the Second Hospital of Jilin University, No. 4026, Yatai Street, Changchun 130041, Jilin, People's Republic of China
| | - Peng Yu
- Department of Ocular Fundus Disease, the Second Hospital of Jilin University, No. 4026, Yatai Street, Changchun 130041, Jilin, People's Republic of China
- Corresponding author. Peng Yu Department of Ocular Fundus Disease, the Second Hospital of Jilin University, No. 4026, Yatai Street, Changchun 130041, Jilin, People's Republic of China. Tel: +0431-81136535
| |
Collapse
|
6
|
Ramanjaneya M, Priyanka R, Bensila M, Jerobin J, Pawar K, Sathyapalan T, Abou-Samra AB, Halabi NM, Moin ASM, Atkin SL, Butler AE. MiRNA and associated inflammatory changes from baseline to hypoglycemia in type 2 diabetes. Front Endocrinol (Lausanne) 2022; 13:917041. [PMID: 36017315 PMCID: PMC9395634 DOI: 10.3389/fendo.2022.917041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 07/21/2022] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVE Hypoglycemia in type 2 diabetes (T2D) increases morbidity and mortality but the underlying physiological response is still not fully understood, though physiological changes are still apparent 24 hours after the event. Small noncoding microRNA (miRNA) have multiple downstream biological effects that may respond rapidly to stress. We hypothesized that hypoglycemia would induce rapid miRNA changes; therefore, this pilot exploratory study was undertaken. METHODS A pilot prospective, parallel study in T2D (n=23) and controls (n=23). Insulin-induced hypoglycemia (2mmol/l: 36mg/dl) was induced and blood sampling performed at baseline and hypoglycemia. Initial profiling of miRNA was undertaken on pooled samples identified 96 miRNA that were differentially regulated, followed by validation on a custom designed 112 miRNA panel. RESULTS Nine miRNAs differed from baseline to hypoglycemia in control subjects; eight were upregulated: miR-1303, miR-let-7e-5p, miR-1267, miR-30a-5p, miR-571, miR-661, miR-770-5p, miR-892b and one was downregulated: miR-652-3p. None of the miRNAs differed from baseline in T2D subjects. CONCLUSION A rapid miRNA response reflecting protective pathways was seen in control subjects that appeared to be lost in T2D, suggesting that mitigating responses to hypoglycemia with blunting of the counter-regulatory response in T2D occurs even in patients with short duration of disease. CLINICAL TRIAL REGISTRATION https://clinicaltrials.gov/ct2/show/NCT03102801?term=NCT03102801&draw=2&rank=1, identifier NCT03102801.
Collapse
Affiliation(s)
- Manjunath Ramanjaneya
- Qatar Metabolic Institute, Hamad Medical Corporation, Doha, Qatar
- Translational Research Institute, Hamad Medical Corporation, Doha, Qatar
| | - Ruth Priyanka
- Qatar Metabolic Institute, Hamad Medical Corporation, Doha, Qatar
- Translational Research Institute, Hamad Medical Corporation, Doha, Qatar
| | - Milin Bensila
- Qatar Metabolic Institute, Hamad Medical Corporation, Doha, Qatar
- Translational Research Institute, Hamad Medical Corporation, Doha, Qatar
| | - Jayakumar Jerobin
- Qatar Metabolic Institute, Hamad Medical Corporation, Doha, Qatar
- Translational Research Institute, Hamad Medical Corporation, Doha, Qatar
| | - Krunal Pawar
- Amity Institute of Biotechnology, Amity University, Jaipur, India
| | - Thozhukat Sathyapalan
- Academic Endocrinology, Diabetes and Metabolism, Hull York Medical School, Hull, United Kingdom
| | | | - Najeeb M. Halabi
- Weill Cornell Medicine in Qatar, Education City, Qatar Foundation, Doha, Qatar
| | - Abu Saleh Md Moin
- Research Department, Royal College of Surgeons in Ireland Bahrain, Adliya, Bahrain
| | - Stephen L. Atkin
- Research Department, Royal College of Surgeons in Ireland Bahrain, Adliya, Bahrain
| | - Alexandra E. Butler
- Research Department, Royal College of Surgeons in Ireland Bahrain, Adliya, Bahrain
- *Correspondence: Alexandra E. Butler,
| |
Collapse
|