1
|
Warren B, Fenton GE, Klenschi E, Windmill JFC, French AS. Physiological Basis of Noise-Induced Hearing Loss in a Tympanal Ear. J Neurosci 2020; 40:3130-3140. [PMID: 32144181 PMCID: PMC7141877 DOI: 10.1523/jneurosci.2279-19.2019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 11/19/2019] [Accepted: 12/08/2019] [Indexed: 11/30/2022] Open
Abstract
Acoustic overexposure, such as listening to loud music too often, results in noise-induced hearing loss. The pathologies of this prevalent sensory disorder begin within the ear at synapses of the primary auditory receptors, their postsynaptic partners and their supporting cells. The extent of noise-induced damage, however, is determined by overstimulation of primary auditory receptors, upstream of where the pathologies manifest. A systematic characterization of the electrophysiological function of the upstream primary auditory receptors is warranted to understand how noise exposure impacts on downstream targets, where the pathologies of hearing loss begin. Here, we used the experimentally-accessible locust ear (male, Schistocerca gregaria) to characterize a decrease in the auditory receptor's ability to respond to sound after noise exposure. Surprisingly, after noise exposure, the electrophysiological properties of the auditory receptors remain unchanged, despite a decrease in the ability to transduce sound. This auditory deficit stems from changes in a specialized receptor lymph that bathes the auditory receptors, revealing striking parallels with the mammalian auditory system.SIGNIFICANCE STATEMENT Noise exposure is the largest preventable cause of hearing loss. It is the auditory receptors that bear the initial brunt of excessive acoustic stimulation, because they must convert excessive sound-induced movements into electrical signals, but remain functional afterward. Here we use the accessible ear of an invertebrate to, for the first time in any animal, characterize changes in auditory receptors after noise overexposure. We find that their decreased ability to transduce sound into electrical signals is, most probably, due to changes in supporting (scolopale) cells that maintain the ionic composition of the ear. An emerging doctrine in hearing research is that vertebrate primary auditory receptors are surprisingly robust, something that we show rings true for invertebrate ears too.
Collapse
Affiliation(s)
- Ben Warren
- Department of Neuroscience, Psychology and Behavior, University of Leicester, Leicester, LE1 7RH, United Kingdom,
| | - Georgina E Fenton
- Department of Neuroscience, Psychology and Behavior, University of Leicester, Leicester, LE1 7RH, United Kingdom
| | - Elizabeth Klenschi
- Centre for Ultrasonic Engineering, Department of Electronic and Electrical Engineering, University of Strathclyde, Glasgow, G1 1XW, United Kingdom, and
| | - James F C Windmill
- Centre for Ultrasonic Engineering, Department of Electronic and Electrical Engineering, University of Strathclyde, Glasgow, G1 1XW, United Kingdom, and
| | - Andrew S French
- Department of Physiology and Biophysics, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| |
Collapse
|
2
|
Warren B, Fenton GE, Klenschi E, Windmill JFC, French AS. Physiological Basis of Noise-Induced Hearing Loss in a Tympanal Ear. J Neurosci 2020. [PMID: 32144181 DOI: 10.3760/cma.j.cn112137-20200803-02267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Acoustic overexposure, such as listening to loud music too often, results in noise-induced hearing loss. The pathologies of this prevalent sensory disorder begin within the ear at synapses of the primary auditory receptors, their postsynaptic partners and their supporting cells. The extent of noise-induced damage, however, is determined by overstimulation of primary auditory receptors, upstream of where the pathologies manifest. A systematic characterization of the electrophysiological function of the upstream primary auditory receptors is warranted to understand how noise exposure impacts on downstream targets, where the pathologies of hearing loss begin. Here, we used the experimentally-accessible locust ear (male, Schistocerca gregaria) to characterize a decrease in the auditory receptor's ability to respond to sound after noise exposure. Surprisingly, after noise exposure, the electrophysiological properties of the auditory receptors remain unchanged, despite a decrease in the ability to transduce sound. This auditory deficit stems from changes in a specialized receptor lymph that bathes the auditory receptors, revealing striking parallels with the mammalian auditory system.SIGNIFICANCE STATEMENT Noise exposure is the largest preventable cause of hearing loss. It is the auditory receptors that bear the initial brunt of excessive acoustic stimulation, because they must convert excessive sound-induced movements into electrical signals, but remain functional afterward. Here we use the accessible ear of an invertebrate to, for the first time in any animal, characterize changes in auditory receptors after noise overexposure. We find that their decreased ability to transduce sound into electrical signals is, most probably, due to changes in supporting (scolopale) cells that maintain the ionic composition of the ear. An emerging doctrine in hearing research is that vertebrate primary auditory receptors are surprisingly robust, something that we show rings true for invertebrate ears too.
Collapse
Affiliation(s)
- Ben Warren
- Department of Neuroscience, Psychology and Behavior, University of Leicester, Leicester, LE1 7RH, United Kingdom,
| | - Georgina E Fenton
- Department of Neuroscience, Psychology and Behavior, University of Leicester, Leicester, LE1 7RH, United Kingdom
| | - Elizabeth Klenschi
- Centre for Ultrasonic Engineering, Department of Electronic and Electrical Engineering, University of Strathclyde, Glasgow, G1 1XW, United Kingdom, and
| | - James F C Windmill
- Centre for Ultrasonic Engineering, Department of Electronic and Electrical Engineering, University of Strathclyde, Glasgow, G1 1XW, United Kingdom, and
| | - Andrew S French
- Department of Physiology and Biophysics, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| |
Collapse
|
3
|
Jougleux JL, Rioux FM, Church MW, Fiset S, Surette ME. Mild iron deficiency anaemia during pregnancy and lactation in guinea pigs alters amplitudes and auditory nerve velocity, but not brainstem transmission times in the offspring's auditory brainstem response. Nutr Neurosci 2013; 17:37-47. [PMID: 23602121 DOI: 10.1179/1476830513y.0000000067] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
OBJECTIVES It is well known that postnatal/early childhood iron deficiency (ID) anaemia (IDA) adversely affects infants' cognitive development and neurophysiology. However, the effects of IDA during gestation and lactation on the offspring are largely unknown. To address this health issue, the impact of mild IDA during gestation and lactation on the offsprings' neural maturation was studied in the guinea pig, using auditory brainstem responses (ABRs) latencies and amplitudes. METHODS Female guinea pigs (n = 10/group) were fed an iron sufficient (ISD) or deficient diet (IDD) (144 and 11.7 mg iron/kg) during the gestation and lactation periods. From postnatal day (PNd) 9 onward, the ISD was given to both groups of weaned offspring. The offsprings' ABRs were collected on PNd24 using a broad range of stimulus intensities in response to 2, 4, 8, 16, and 32 kHz tone pips. RESULTS Although the IDA siblings (n = 8) did not differ in brainstem transmission times (BTTs) compared to the IS siblings (n = 8), they showed significant delayed peak I latency at 100 and 80 dB, respectively. Additionally, significantly higher ABR wave amplitudes were observed in the IDA female offspring between 35 and 50 dB (4 kHz), a phenomenon suggestive of a neural hyperactivity (hyperacusis). DISCUSSION In support to our previous findings, the present results indicate that a mild IDA during gestation and lactation can have detrimental effects on early development of the offsprings' hearing and nervous systems, particularly on neural synchrony and auditory nerve conduction velocity, but not on BTT.
Collapse
|
4
|
Physiological, anatomical, and behavioral changes after acoustic trauma in Drosophila melanogaster. Proc Natl Acad Sci U S A 2013; 110:15449-54. [PMID: 24003166 DOI: 10.1073/pnas.1307294110] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Noise-induced hearing loss (NIHL) is a growing health issue, with costly treatment and lost quality of life. Here we establish Drosophila melanogaster as an inexpensive, flexible, and powerful genetic model system for NIHL. We exposed flies to acoustic trauma and quantified physiological and anatomical effects. Trauma significantly reduced sound-evoked potential (SEP) amplitudes and increased SEP latencies in control genotypes. SEP amplitude but not latency effects recovered after 7 d. Although trauma produced no gross morphological changes in the auditory organ (Johnston's organ), mitochondrial cross-sectional area was reduced 7 d after exposure. In nervana 3 heterozygous flies, which slightly compromise ion homeostasis, trauma had exaggerated effects on SEP amplitude and mitochondrial morphology, suggesting a key role for ion homeostasis in resistance to acoustic trauma. Thus, Drosophila exhibit acoustic trauma effects resembling those found in vertebrates, including inducing metabolic stress in sensory cells. This report of noise trauma in Drosophila is a foundation for studying molecular and genetic sequelae of NIHL.
Collapse
|
5
|
Schultz M, Baumhoff P, Maier H, Teudt IU, Krüger A, Lenarz T, Kral A. Nanosecond laser pulse stimulation of the inner ear-a wavelength study. BIOMEDICAL OPTICS EXPRESS 2012; 3:3332-45. [PMID: 23243582 PMCID: PMC3521308 DOI: 10.1364/boe.3.003332] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Revised: 11/13/2012] [Accepted: 11/23/2012] [Indexed: 05/18/2023]
Abstract
Optical stimulation of the inner ear, the cochlea, is discussed as a possible alternative to conventional cochlear implants with the hypothetical improvement of dynamic range and frequency resolution. In this study nanosecond-pulsed optical stimulation of the hearing and non-hearing inner ear is investigated in vivo over a wide range of optical wavelengths and at different beam delivery locations. Seven anaesthetized guinea pigs were optically stimulated before and after neomycin induced destruction of hair cells. An optical parametric oscillator was tuned to different wavelengths (420 nm-2150 nm, ultraviolet to near-infrared) and delivered 3-5 ns long pulses with 6 µJ pulse energy via a multimode optical fiber located either extracochlearly in front of the intact round window membrane or intracochlearly within the scala tympani. Cochlear responses were measured using registration of compound action potentials (CAPs). With intact hair cells CAP similar to acoustic stimulation were measured at both locations, while the neomycin treated cochleae did not show any response in any case. The CAP amplitudes of the functional cochleae showed a positive correlation to the absorption coefficient of hemoglobin and also to moderate water absorption. A negative correlation of CAP amplitude with a water absorption coefficient greater than 5.5 cm(-1) indicates additional phenomena. We conclude that in our stimulation paradigm with ns-pulses the most dominant stimulation effect is of optoacoustic nature and relates to functional hair cells.
Collapse
Affiliation(s)
- Michael Schultz
- Institute of Audioneurotechnology (VIANNA) & Dept. of Experimental Otology, ENT-Clinics, Medical University Hannover, Feodor-Lynen-Straße 35, 30625 Hannover, Germany
- Laser Zentrum Hannover e.V., Hollerithallee 8, 30419 Hannover, Germany
| | - Peter Baumhoff
- Institute of Audioneurotechnology (VIANNA) & Dept. of Experimental Otology, ENT-Clinics, Medical University Hannover, Feodor-Lynen-Straße 35, 30625 Hannover, Germany
| | - Hannes Maier
- Institute of Audioneurotechnology (VIANNA) & Dept. of Experimental Otology, ENT-Clinics, Medical University Hannover, Feodor-Lynen-Straße 35, 30625 Hannover, Germany
| | - Ingo U. Teudt
- Institute of Audioneurotechnology (VIANNA) & Dept. of Experimental Otology, ENT-Clinics, Medical University Hannover, Feodor-Lynen-Straße 35, 30625 Hannover, Germany
| | - Alexander Krüger
- Laser Zentrum Hannover e.V., Hollerithallee 8, 30419 Hannover, Germany
| | - Thomas Lenarz
- Institute of Audioneurotechnology (VIANNA) & Dept. of Experimental Otology, ENT-Clinics, Medical University Hannover, Feodor-Lynen-Straße 35, 30625 Hannover, Germany
| | - Andrej Kral
- Institute of Audioneurotechnology (VIANNA) & Dept. of Experimental Otology, ENT-Clinics, Medical University Hannover, Feodor-Lynen-Straße 35, 30625 Hannover, Germany
| |
Collapse
|
6
|
Popelar J, Grecova J, Rybalko N, Syka J. Comparison of noise-induced changes of auditory brainstem and middle latency response amplitudes in rats. Hear Res 2008; 245:82-91. [PMID: 18812219 DOI: 10.1016/j.heares.2008.09.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2008] [Revised: 09/03/2008] [Accepted: 09/05/2008] [Indexed: 10/21/2022]
|
7
|
Church MW, Jen KLC, Jackson DA, Adams BR, Hotra JW. Abnormal neurological responses in young adult offspring caused by excess omega-3 fatty acid (fish oil) consumption by the mother during pregnancy and lactation. Neurotoxicol Teratol 2008; 31:26-33. [PMID: 18834936 DOI: 10.1016/j.ntt.2008.09.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2008] [Revised: 07/14/2008] [Accepted: 09/07/2008] [Indexed: 11/24/2022]
Abstract
Consuming omega-3 fatty acids (omega-3 FA) during pregnancy and lactation benefits fetal and infant brain development and might reduce the severity of preterm births by prolonging pregnancy. However, diets that are relatively rich in omega-3 FA can adversely affect fetal and infant development and the auditory brainstem response (ABR), a measure of brain development and sensory function. We previously examined the offspring of female rats fed excessive, adequate or deficient amounts of omega-3 FA during pregnancy and lactation. The 24-day-old offspring in the Excess group, compared to the Control group, had postnatal growth retardation and poor hearing acuity and prolonged neural transmission times as evidenced by the ABR. The Deficient group was intermediate. The current study followed these offspring to see if these poor outcomes persisted into young adulthood. Based on prior findings, we hypothesized that the Excess and Deficient offspring would "catch-up" to the Control offspring by young adulthood. Female Wistar rats received one of the three diet conditions from day 1 of pregnancy through lactation. The three diets were the Control omega-3 FA condition (omega-3/omega-6 ratio approximately 0.14), the Excess omega-3 FA condition (omega-3/omega-6 ratio approximately 14.0) and Deficient omega-3 FA condition (omega-3/omega-6 ratio approximately 0% ratio). The Control diet contained 7% soybean oil; whereas the Deficient and Excess omega-3 FA diets contained 7% safflower oil and 7% fish oil, respectively. One male and female offspring per litter were ABR-tested as young adults using tone pip stimuli of 2, 4, 8 and 16 kHz. The postnatal growth retardation and prolonged neural transmission times in the Excess and Deficient pups had dissipated by young adulthood. In contrast, the Excess group had elevated ABR thresholds (hearing loss) at all tone pip frequencies in comparison to the Control and Deficient groups. The Deficient group had worse ABR thresholds than the Control group in response to the 8 kHz tone pips only. The Excess group also had ABR amplitude-intensity profiles suggestive of hyperacusis. These results are consistent with the Barker hypothesis concerning the fetal and neonatal origins of adult diseases. Thus, consuming diets that are excessively rich or deficient in omega-3 FA during pregnancy and lactation seems inadvisable because of risks for long-lasting adverse effects on brain development and sensory function.
Collapse
Affiliation(s)
- M W Church
- Department of Obstetrics & Gynecology, Wayne State University, Detroit, MI 48201, USA.
| | | | | | | | | |
Collapse
|
8
|
Sendowski I, Raffin F, Braillon-Cros A. Therapeutic efficacy of magnesium after acoustic trauma caused by gunshot noise in guinea pigs. Acta Otolaryngol 2006; 126:122-9. [PMID: 16428187 DOI: 10.1080/00016480500312547] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
CONCLUSIONS The present findings show that magnesium administration can significantly reduce threshold shift 7 days after gunshot noise exposure. However, this improvement seems to be temporary, suggesting a probable advantage in prolonging the treatment. OBJECTIVE To evaluate the therapeutic efficacy of magnesium administration after hearing loss induced by gunshot noise. MATERIAL AND METHODS Forty-eight guinea pigs were exposed to an impulse noise (blank shot from a rifle; 170 or 176 dB SPL peak). The therapeutic efficacy of magnesium was evaluated by administering either the treatment or a placebo to the traumatized animals for 7 days, beginning 1 h after the trauma. Auditory function was explored for up to 14 days of recovery by recording the compound action potential in the round window. The functional study of hearing was supplemented by histological analysis. RESULTS The threshold shifts of the 170-dB SPL group that received magnesium were significantly lower than those of controls after 2 and 7 days of recovery, but no significant difference was evidenced at 14 days in this group, nor at any time in the 176-dB SPL group. Animals treated with magnesium after the 176-dB SPL exposure had a significant reduction in hair cell loss in the basal region.
Collapse
Affiliation(s)
- Isabelle Sendowski
- Pôle "Traumatisme Sonore", Département de Radiobiologie, Centre de Recherches du Service de Santé des Armées (CRSSA), La Tronche Cedex, France.
| | | | | |
Collapse
|