1
|
Dalili S, Sedighi Pirsaraei N, Sharifi A, Pouryousef A, Aghaee F, Bayat R, Ghavami B, Rabbani B, Mahdieh N. Intrafamilial phenotypic variability due to a missense pathogenic variant in FBP1 gene. Mol Genet Metab Rep 2024; 41:101136. [PMID: 39282051 PMCID: PMC11402249 DOI: 10.1016/j.ymgmr.2024.101136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/23/2024] [Accepted: 08/25/2024] [Indexed: 09/18/2024] Open
Abstract
Background FBPase deficiency as an autosomal recessive disorder is due pathogenic variants in the FBP1 gene. It usually presents with hyperlactic acidemia and hypoglycaemia starting from early childhood. Here, genotypes and phenotypes of all reported patients and their distributions are presented. In addition, we present an Iranian family with two affected children presenting with unusual symptoms due to pathogenic variants in the FBP1 gene.Clinical evaluations and laboratory assessments were performed for the affected members. Whole exome sequencing (WES) was applied in order to find the causal variant. In addition to segregation analysis within the family, variant pathogenicity analyses and predictions were done via bioinformatics tools and according to ACMG guidelines. The genotypes and detailed clinical features were documented for all patients. Results The study included a population of 104 patients with different variants of the FBP1 gene; 75 were homozygotes. The average age of onset was 14.97 months. The most frequent clinical features were metabolic acidosis (71 cases), hypoglycemia (70 cases), vomiting (46 cases), hyperuricemia (37 cases), and respiratory distress (25 cases). 74 families were from Asia. The most common genotypes were c.841G > A/c.841G > A and c.472C > T/c.472C > T. WES test showed a pathogenic homozygous variant, c.472C > T in two cases of a family: a six-and-a-half-year-old girl with an older brother with different symptoms. All laboratory evaluations in the patient were normal except for the blood sugar. The patient experienced her first hypoglycemic episode at age 3. Conclusions This is an unusual presentation of FBPase deficiency with intrafamilial phenotypic variability.
Collapse
Affiliation(s)
- Setila Dalili
- Pediatric Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | | | - Ameneh Sharifi
- Growth and Development Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Alireza Pouryousef
- Pediatric Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Fatemeh Aghaee
- Pediatric Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Reza Bayat
- Pediatric Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Babak Ghavami
- Pediatric Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Bahareh Rabbani
- Growth and Development Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Nejat Mahdieh
- Growth and Development Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Cardiogenetic Research Center, Rajaie Cardiovascular Medical and Research Institute, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Maleknejad S, Dalili S, Sharifi A, Hassanzadeh Rad A, Bayat R, Rabbani B, Mahdieh N. Expanding the Phenotype of Congenital Glucocorticoid Deficiency: An Iranian Patient with Cholestasis due to Pathogenic Variants in the MC2R Gene. Int J Endocrinol 2024; 2024:3201949. [PMID: 39135905 PMCID: PMC11319056 DOI: 10.1155/2024/3201949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 07/22/2024] [Accepted: 07/25/2024] [Indexed: 08/15/2024] Open
Abstract
Familial glucocorticoid deficiency is caused by variants in the MC2R and MRAP genes. We report an Iranian patient with congenital glucocorticoid deficiency and cholestasis due to pathogenic variants in the MC2R gene. This is the first documented case of a patient with conditions. Clinical evaluations and lab assessments were conducted on a six-month-old male infant. Next-generation sequencing identified the genetic causes of the disease, and Sanger sequencing confirmed the variants through segregation analysis. The clinical presentation included prolonged jaundice, progressive skin hyperpigmentation, seizures, fever, and a large umbilical hernia. Two variants in the MC2R gene, c.560delT and c.676G > C, were detected and classified as pathogenic and likely pathogenic, respectively. The cooccurrence of cholestasis and glucocorticoid deficiency illustrates the clinical heterogeneity caused by MC2R variants. The prevalence of c.560delT and c.676G > C between Iranian populations suggests these variants may be common. The high frequency of c.560delT could be attributed to a founder effect.
Collapse
Affiliation(s)
- Shohreh Maleknejad
- Pediatric Diseases Research CenterGuilan University of Medical Sciences, Rasht, Iran
| | - Setila Dalili
- Pediatric Diseases Research CenterGuilan University of Medical Sciences, Rasht, Iran
| | - Ameneh Sharifi
- Growth and Development Research CenterTehran University of Medical Sciences, Tehran, Iran
| | - Afagh Hassanzadeh Rad
- Pediatric Diseases Research CenterGuilan University of Medical Sciences, Rasht, Iran
| | - Reza Bayat
- Pediatric Diseases Research CenterGuilan University of Medical Sciences, Rasht, Iran
| | - Bahareh Rabbani
- Growth and Development Research CenterTehran University of Medical Sciences, Tehran, Iran
| | - Nejat Mahdieh
- Cardiogenetic Research CenterRajaie Cardiovascular Medical and Research InstituteIran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Rabbani B, Moghadam MA, Esmaeili S, Rabbani A, Akbari B, Mahdieh N. Pancreatitis as a Main Consequence of APOC2-Related Hypertriglyceridemia: The Role of Nonsense and Frameshift Variants. Int J Genomics 2024; 2024:6653857. [PMID: 38938447 PMCID: PMC11208794 DOI: 10.1155/2024/6653857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 09/13/2023] [Accepted: 05/17/2024] [Indexed: 06/29/2024] Open
Abstract
APOC2-related hypertriglyceridemia occurs due to biallelic variants of this gene. Here, genotype-phenotype architecture of all pathogenic APOC2 variants is investigated among heterozygous and homozygous individuals. Clinical heterogeneity of various types of the variants is also described, and pancreatitis in more than half of homozygotes carrying chain-termination variants is highlighted as well. For this study, patients were selected who had a plasma triglyceride level above 250 mg/dL. The coding and intronic regions of the APOC2 gene were amplified using the Sanger sequencing to investigate the presence of variants. The genotypes, lipid profiles, and detailed clinical features were documented for all APOC2-related patients and heterozygous individuals. Pathogenicity of the variants was predicted and categorized using available bioinformatics tools such as MutationTaster and PolyPhen-2 and ACMG criteria. MetaDome and Phyre2 were applied for structural and functional in silico analyses. 40% (12 out of 30) of APOC2 variants were chain-termination (nonsense and frameshift) variants. These types of variants were determined in 60.53% of patients. 55% of these patients showed pancreatitis followed by lipemia retinalis (29%), abdominal pain (24%), hepatosplenomegaly (24%), and xanthomas (18%). The mean age of onset was about 22 years old. In at least 50% of 38 homozygous individuals, the TG level was more than 2000 mg/dL. More than 25% of heterozygous individuals showed at least one symptom. Pancreatitis and a severe form of HTG were found in 5 and 2% of heterozygous individuals, respectively. The main clinical features of APOC2-related hypertriglyceridemia include pancreatitis, lipemia retinalis, abdominal pain, hepatosplenomegaly, and xanthomas. Nonsense and frameshift homozygous variants usually lead to a severe form of hypertriglyceridemia. Pancreatitis is one of the main consequences of these types of mutations; thus, it is important to consider this point when evaluating asymptomatic individuals. Heterozygous individuals may become symptomatic due to the role of unknown modifying agent including environmental genetic factors.
Collapse
Affiliation(s)
- Bahareh Rabbani
- Growth and Development Research CenterTehran University of Medical Sciences, Tehran, Iran
| | - Mohadeseh Aghli Moghadam
- Department of GeneticsFaculty of SciencesShahid Chamran University of Ahvaz, Ahvaz, Iran
- Cardiogenetic Research CenterRajaie Cardiovascular Medical and Research CenterIran University of Medical Sciences, Tehran, Iran
| | - Shiva Esmaeili
- Growth and Development Research CenterTehran University of Medical Sciences, Tehran, Iran
| | - Amirhassan Rabbani
- Taleghani HospitalDepartment of Transplant & Hepatobiliary SurgeryShahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bahman Akbari
- Department of Medical BiotechnologySchool of MedicineKermanshah University of Medical Sciences, Kermanshah, Iran
| | - Nejat Mahdieh
- Growth and Development Research CenterTehran University of Medical Sciences, Tehran, Iran
- Cardiogenetic Research CenterRajaie Cardiovascular Medical and Research CenterIran University of Medical Sciences, Tehran, Iran
- Physiology Research CenterIran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
4
|
Vafaei N, Mohebbi A, Rezaei Z, Heidari M, Hosseinpour S, Dehnavi AZ, Ghamari A, Salehipour M, Rabbani A, Mahdieh N, Ashrafi MR. TPP1 Variants in Iranian patients: A Novel Pathogenic Homozygous Variant Causing Neuronal Ceroid Lipofuscinosis 2. Mol Syndromol 2024; 15:30-36. [PMID: 38357261 PMCID: PMC10862320 DOI: 10.1159/000534100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 09/11/2023] [Indexed: 02/16/2024] Open
Abstract
Introduction TPP1 variants have been identified as a causative agent of neuronal ceroid lipofuscinosis 2 disease, that ataxia is one of its clinical features. Therefore, here, molecular study of TPP1 variants is presented in an Iranian cohort and a novel pathogenic variant is described. Methods This investigation was conducted as a cross-sectional study in a tertiary referral hospital, Children's Medical Center, Pediatrics Center of Excellence. Clinical presentations and pedigrees were documented. Patients with cerebellar ataxia were enrolled in this study. Next-generation sequencing was applied to confirm the diagnosis. Segregation and bioinformatics analyses were also done for the variants using Sanger sequencing. Results Forty-five patients were included in our study. The mean age of onset was 104 (+55.60) months (minimum = 31 months, maximum = 216 months). The majority of cases (73.3%) were born to consanguineous parents and only 1 patient (2.2%) had an affected sibling. Of the 45 patients, only 1 patient with a novel pathogenic variant (c.1425_1425+1delinsAT, p.A476Cfs*15) in the TPP1 gene was identified. Discussion The main strength of current study is the relatively large sample size. Besides, a novel pathogenic variant could be important toward the diagnosis and management of this condition. With significant advances in various therapies, early diagnosis could improve the treatments using personalized-based medicine.
Collapse
Affiliation(s)
- Nahid Vafaei
- Growth and Development Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Mohebbi
- Growth and Development Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Rezaei
- Pediatrics Center of Excellence, Department of Pediatric Neurology, Children’s Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Morteza Heidari
- Pediatric Neurology Division, Children’s Medical Center, Pediatrics Center of Excellence, Myelin Disorders Clinic, Tehran University of Medical Sciences, Tehran, Iran
| | - Sareh Hosseinpour
- Pediatrics Center of Excellence, Department of Pediatric Neurology, Children’s Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Zare Dehnavi
- Pediatrics Center of Excellence, Department of Pediatric Neurology, Children’s Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| | - Azin Ghamari
- Growth and Development Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Masoud Salehipour
- Department of Biology, Parand Branch, Islamic Azad University, Parand, Iran
| | - Ali Rabbani
- Growth and Development Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Nejat Mahdieh
- Growth and Development Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Cardiogenetic Research Center, Rajaie Cardiovascular, Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mahmoud Reza Ashrafi
- Growth and Development Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Pediatrics Center of Excellence, Department of Pediatric Neurology, Children’s Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
5
|
Vallian Broojeni J, Kazemi A, Rezaei H, Vallian S. Exome sequencing identifies novel variants associated with non-syndromic hearing loss in the Iranian population. PLoS One 2023; 18:e0289247. [PMID: 37561809 PMCID: PMC10414579 DOI: 10.1371/journal.pone.0289247] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 07/13/2023] [Indexed: 08/12/2023] Open
Abstract
Autosomal recessive non-syndromic hearing loss (ARNSHL) is a public health concern in the Iranian population, with an incidence of 1 in 166 live births. In the present study, the whole exome sequencing (WES) method was applied to identify the mutation spectrum of NSHL patients negative for GJB2 gene mutations. First, using ARMS PCR followed by Sanger sequencing of the GJB2 gene, 63.15% of mutations in patients with NSHL were identified. Among the identified mutations in GJB2:p.Val43Met and p.Gly21Arg were novel. The remaining patients were subjected to WES, which identified novel mutations including MYO15A:p.Gly39LeufsTer188, ADGRV1:p.Ser5918ValfsTer23, MYO7A: c.5856+2T>c (splicing mutation), FGF3:p.Ser156Cys. The present study emphasized the application of WES as an effective method for molecular diagnosis of NSHL patients negative for GJB2 gene mutations in the Iranian population.
Collapse
Affiliation(s)
- Jalal Vallian Broojeni
- Department of Cell and Molecular Biology& Microbiology, Faculty of Science and Technology, University of Isfahan, Isfahan, IR, Iran
| | - Arezu Kazemi
- Department of Cell and Molecular Biology& Microbiology, Faculty of Science and Technology, University of Isfahan, Isfahan, IR, Iran
| | - Halimeh Rezaei
- Department of Cell and Molecular Biology& Microbiology, Faculty of Science and Technology, University of Isfahan, Isfahan, IR, Iran
| | - Sadeq Vallian
- Department of Cell and Molecular Biology& Microbiology, Faculty of Science and Technology, University of Isfahan, Isfahan, IR, Iran
| |
Collapse
|
6
|
Mao L, Wang Y, An L, Zeng B, Wang Y, Frishman D, Liu M, Chen Y, Tang W, Xu H. Molecular Mechanisms and Clinical Phenotypes of GJB2 Missense Variants. BIOLOGY 2023; 12:biology12040505. [PMID: 37106706 PMCID: PMC10135792 DOI: 10.3390/biology12040505] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 01/19/2023] [Accepted: 01/20/2023] [Indexed: 03/29/2023]
Abstract
The GJB2 gene is the most common gene responsible for hearing loss (HL) worldwide, and missense variants are the most abundant type. GJB2 pathogenic missense variants cause nonsyndromic HL (autosomal recessive and dominant) and syndromic HL combined with skin diseases. However, the mechanism by which these different missense variants cause the different phenotypes is unknown. Over 2/3 of the GJB2 missense variants have yet to be functionally studied and are currently classified as variants of uncertain significance (VUS). Based on these functionally determined missense variants, we reviewed the clinical phenotypes and investigated the molecular mechanisms that affected hemichannel and gap junction functions, including connexin biosynthesis, trafficking, oligomerization into connexons, permeability, and interactions between other coexpressed connexins. We predict that all possible GJB2 missense variants will be described in the future by deep mutational scanning technology and optimizing computational models. Therefore, the mechanisms by which different missense variants cause different phenotypes will be fully elucidated.
Collapse
Affiliation(s)
- Lu Mao
- Precision Medicine Center, Academy of Medical Science, Zhengzhou University, Zhengzhou 450052, China
| | - Yueqiang Wang
- Basecare Medical Device Co., Ltd., Suzhou 215000, China
| | - Lei An
- Translational Medicine Center, Huaihe Hospital of Henan University, Kaifeng 475000, China
| | - Beiping Zeng
- Precision Medicine Center, Academy of Medical Science, Zhengzhou University, Zhengzhou 450052, China
| | - Yanyan Wang
- The Research and Application Center of Precision Medicine, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou 450014, China
| | - Dmitrij Frishman
- Wissenschaftszentrum Weihenstephan, Technische Universitaet Muenchen, Am Staudengarten 2, 85354 Freising, Germany
| | - Mengli Liu
- Precision Medicine Center, Academy of Medical Science, Zhengzhou University, Zhengzhou 450052, China
| | - Yanyu Chen
- Precision Medicine Center, Academy of Medical Science, Zhengzhou University, Zhengzhou 450052, China
| | - Wenxue Tang
- The Research and Application Center of Precision Medicine, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou 450014, China
| | - Hongen Xu
- Precision Medicine Center, Academy of Medical Science, Zhengzhou University, Zhengzhou 450052, China
- The Research and Application Center of Precision Medicine, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou 450014, China
- Correspondence:
| |
Collapse
|
7
|
Abbaspour Rodbaneh E, Panahi M, Rahimi B, Mokabber H, Farajollahi R, Davarnia B. GJB2 mutations in Iranian Azeri population with autosomal recessive nonsyndromic hearing loss (ARNSHL): First report of c.238 C>A mutation in Iran. J Clin Lab Anal 2021; 35:e24024. [PMID: 34581455 PMCID: PMC8605150 DOI: 10.1002/jcla.24024] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 09/09/2021] [Accepted: 09/14/2021] [Indexed: 12/18/2022] Open
Abstract
Objective Autosomal‐recessive nonsyndromic hearing loss (ARNSHL) is a heterogeneous genetic disorder. Mutations in the gap junction protein beta 2 (GJB2) gene, encoding connexin 26, are a significant cause of ARNSHL in different ethnic groups. This study aimed to identify the frequency and type of GJB2 mutations in the Iranian Azeri population. Methods Fifty unrelated families presenting ARNSHL in Ardabil Province, the northwest of Iran, were studied to determine the frequency and type of GJB2 mutations leading to ARNSHL. ARMS‐PCR screened all DNA samples to detect c.35delG; p. Gly12Val mutation. In addition, normal samples for c.35delG; p. Gly12Val were analyzed by direct sequencing for other GJB2 mutations. Result Of the fifty families, 13 (26%) showed a GJB2 gene mutation, with c.35delG; p. Gly12Val mutation was the most prevalent one that occurred in eight (61.5%) out of the 13 families. Of the families, two were homozygous for c.358‐360delGAC; p. Glu120del mutation, and one was homozygous for c.290dupA; p. Tyr97Ter and c.299–300delAT; p. His100Arg mutations. Also, we detected a novel mutation, c.238C>A; p. Gln80lys, in one of the families. Conclusion Our findings are comparable to previous studies, indicating c.35d3lG; p. Gly12Val mutation in the GJB2 gene is the most common cause of GJB2‐related hearing loss in the Iranian Azeri population. Furthermore, our study highlights the significance of ARNSHL screening programs of live births based on local population data in Iran.
Collapse
Affiliation(s)
| | - Mohammad Panahi
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Bahareh Rahimi
- Department of Medical Biotechnology, Faculty of Allied Medical Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Haleh Mokabber
- Medical Genetics and Pathology, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Reza Farajollahi
- Medical Genetics and Pathology, Ardabil University of Medical Sciences, Ardabil, Iran.,Ardabil Welfare Organization, Ardabil, Iran
| | - Behzad Davarnia
- Medical Genetics and Pathology, Ardabil University of Medical Sciences, Ardabil, Iran
| |
Collapse
|
8
|
Torkamandi S, Bayat S, Mirfakhraie R, Rezaei S, Askari M, Piltan S, Gholami M. Targeted sequencing of CDH23 and GJB2 genes in an Iranian pedigree with Usher syndrome and non-syndromic hearing loss. GENE REPORTS 2021. [DOI: 10.1016/j.genrep.2021.101149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
9
|
Resmerita I, Cozma RS, Popescu R, Radulescu LM, Panzaru MC, Butnariu LI, Caba L, Ilie OD, Gavril EC, Gorduza EV, Rusu C. Genetics of Hearing Impairment in North-Eastern Romania-A Cost-Effective Improved Diagnosis and Literature Review. Genes (Basel) 2020; 11:genes11121506. [PMID: 33333757 PMCID: PMC7765194 DOI: 10.3390/genes11121506] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/05/2020] [Accepted: 12/12/2020] [Indexed: 12/17/2022] Open
Abstract
Background: We have investigated the main genetic causes for non-syndromic hearing impairment (NSHI) in the hearing impairment individuals from the North-Eastern Romania and proposed a cost-effective diagnosis protocol. Methods: MLPA followed by Sanger Sequencing were used for all 291 patients included in this study. Results: MLPA revealed abnormal results in 141 cases (48.45%): 57 (40.5%) were c.35delG homozygous, 26 (18.44%) were c.35delG heterozygous, 14 (9.93%) were compound heterozygous and 16 (11.35%) had other types of variants. The entire coding region of GJB2 was sequenced and out of 150 patients with normal results at MLPA, 29.33% had abnormal results: variants in heterozygous state: c.71G>A (28%), c.457G>A (20%), c.269T>C (12%), c.109G>A (12%), c.100A>T (12%), c.551G>C (8%). Out of 26 patients with c.35delG in heterozygous state, 38.46% were in fact compound heterozygous. Conclusions: We identified two variants: c.109G>A and c.100A>T that have not been reported in any study from Romania. MLPA is an inexpensive, rapid and reliable technique that could be a cost-effective diagnosis method, useful for patients with hearing impairment. It can be adaptable for the mutation spectrum in every population and followed by Sanger sequencing can provide a genetic diagnosis for patients with different degrees of hearing impairment.
Collapse
Affiliation(s)
- Irina Resmerita
- Department of Medical Genetics, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, University Street, No 16, 700115 Iasi, Romania; (R.P.); (M.C.P.); (L.I.B.); (L.C.); (E.-C.G.); (E.V.G.); (C.R.)
- Correspondence: or (I.R.); (R.S.C.); Tel.: +40-0741195689 (I.R.)
| | - Romica Sebastian Cozma
- Department of Otorhinolaryngology, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, University Street, No 16, 700115 Iasi, Romania;
- Correspondence: or (I.R.); (R.S.C.); Tel.: +40-0741195689 (I.R.)
| | - Roxana Popescu
- Department of Medical Genetics, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, University Street, No 16, 700115 Iasi, Romania; (R.P.); (M.C.P.); (L.I.B.); (L.C.); (E.-C.G.); (E.V.G.); (C.R.)
| | - Luminita Mihaela Radulescu
- Department of Otorhinolaryngology, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, University Street, No 16, 700115 Iasi, Romania;
| | - Monica Cristina Panzaru
- Department of Medical Genetics, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, University Street, No 16, 700115 Iasi, Romania; (R.P.); (M.C.P.); (L.I.B.); (L.C.); (E.-C.G.); (E.V.G.); (C.R.)
| | - Lacramioara Ionela Butnariu
- Department of Medical Genetics, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, University Street, No 16, 700115 Iasi, Romania; (R.P.); (M.C.P.); (L.I.B.); (L.C.); (E.-C.G.); (E.V.G.); (C.R.)
| | - Lavinia Caba
- Department of Medical Genetics, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, University Street, No 16, 700115 Iasi, Romania; (R.P.); (M.C.P.); (L.I.B.); (L.C.); (E.-C.G.); (E.V.G.); (C.R.)
| | - Ovidiu-Dumitru Ilie
- Department of Biology, Faculty of Biology, “Alexandru Ioan Cuza” University, Carol I Avenue, No 20A, 700505 Iasi, Romania;
| | - Eva-Cristiana Gavril
- Department of Medical Genetics, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, University Street, No 16, 700115 Iasi, Romania; (R.P.); (M.C.P.); (L.I.B.); (L.C.); (E.-C.G.); (E.V.G.); (C.R.)
| | - Eusebiu Vlad Gorduza
- Department of Medical Genetics, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, University Street, No 16, 700115 Iasi, Romania; (R.P.); (M.C.P.); (L.I.B.); (L.C.); (E.-C.G.); (E.V.G.); (C.R.)
| | - Cristina Rusu
- Department of Medical Genetics, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, University Street, No 16, 700115 Iasi, Romania; (R.P.); (M.C.P.); (L.I.B.); (L.C.); (E.-C.G.); (E.V.G.); (C.R.)
| |
Collapse
|
10
|
Akbariazar E, Vahabi A, Abdi Rad I. Report of a Novel Splicing Mutation in the MYO15A Gene in a Patient With Sensorineural Hearing Loss and Spectrum of the MYO15A Mutations. CLINICAL MEDICINE INSIGHTS-CASE REPORTS 2019; 12:1179547619871907. [PMID: 31579092 PMCID: PMC6757496 DOI: 10.1177/1179547619871907] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 07/30/2019] [Indexed: 12/29/2022]
Abstract
Introduction Autosomal recessive non-syndromic hearing loss (ARNSHL) is a genetically heterogeneous sensorineural disorder with an approximate incidence of 1.4:1000 in neonates. Mutations in more than 60 genes including the MYO15A gene has been reported in patients affected with ARNSHL. In the present study, we report a novel MYO15A mutation identified by clinical exome sequencing and confirmed by Sanger sequencing in a consanguineous Iranian family with ARNSHL. Case presentation A 22-year-old woman with congenital non-syndromic sensorineural hearing loss referred to our medical genetic center. Her parents were consanguineous with F = 1/16 (first cousin), and clinical examination of the patient exclude dysmorphic features. Sanger sequencing of GJB2 and GJB6 genes, which are the most common causes of ARNSHL, was negative. Then she underwent clinical exome sequencing. Outcome We found a novel homozygote variant (c.9611_9612+8delTGGTGAGCAT) in the MYO15A gene which creates a shift in the reading frame starting at codon 3204. This variant was confirmed by Sanger sequencing in the patient and also in her parents who were heterozygous. Discussion The present results suggest that the homozygous MYO15A (c.9611_9612+8delTGGTGAGCAT) variant is a pathogenic mutation and to the best of our knowledge, this mutation has not been reported in any database.
Collapse
Affiliation(s)
- Elinaz Akbariazar
- Department of Genetics, Urmia University of Medical Sciences, Urmia, Iran
| | - Ali Vahabi
- Department of Genetics, Urmia University of Medical Sciences, Urmia, Iran
| | - Isa Abdi Rad
- Department of Genetics, Urmia University of Medical Sciences, Urmia, Iran.,Cellular and Molecular Research Center, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
11
|
Koohiyan M, Koohian F, Azadegan-Dehkordi F. GJB2-related hearing loss in central Iran: Review of the spectrum and frequency of gene mutations. Ann Hum Genet 2019; 84:107-113. [PMID: 31512227 DOI: 10.1111/ahg.12354] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 08/15/2019] [Accepted: 08/27/2019] [Indexed: 12/13/2022]
Abstract
Mutations in the GJB2 gene are a main cause of autosomal-recessive nonsyndromic hearing loss (ARNSHL) in many populations. Previous studies have estimated the average frequency of GJB2 mutations to be ∼16% in Iran, but would vary among different ethnic groups. Here, we have taken together and reviewed results from our two previous publications and data from searching other published mutation reports to provide a comprehensive collection of data for GJB2 mutations and HL in central Iran. In all, 332 unrelated families were included and analyzed for the prevalence and type of the GJB2 gene mutations. In total, the frequency of GJB2 mutations was found to be 16% in the central provinces, which is significantly higher than those identified in southern populations of Iran. Also, c.35delG was the most frequent mutation in the related population. The present study suggests that mutations in the GJB2 gene, especially c.35delG, are important causes of HL in central Iran and can be used as a basis of genetic counseling and clinical guidelines in this region.
Collapse
Affiliation(s)
- Mahbobeh Koohiyan
- Cancer Research Center, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Farideh Koohian
- Department of Medical Physics, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | | |
Collapse
|
12
|
Koohiyan M, Ahmadi A, Koohian F, Aghaei S, Amiri B, Hashemzadeh-Chaleshtori M. An update of spectrum and frequency of GJB2 mutations causing hearing loss in the south of Iran: A literature review. Int J Pediatr Otorhinolaryngol 2019; 119:136-140. [PMID: 30708180 DOI: 10.1016/j.ijporl.2019.01.036] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 01/21/2019] [Accepted: 01/23/2019] [Indexed: 11/18/2022]
Abstract
OBJECTIVE Mutations in the GJB2 gene are a major cause of autosomal recessive non-syndromic HL (ARNSHL) in many populations. Previous studies have estimated the average frequency of GJB2 mutations to be between 16 and 18% in Iran, but would vary among different ethnic groups. Here, we have taken together and reviewed results from our three previous publications and data from search other published mutation reports to provide a comprehensive collection of data for GJB2 mutations and HL in the south of Iran. METHODS In all, 447 unrelated families were included and analyzed for the prevalence and type of the GJB2 gene mutations. RESULTS Totally, the frequency of GJB2 mutations was found to be 11.5% in the southern provinces studied which is significantly lower than that identified in Northern populations of Iran, and also a southwest to southeast Iranian gradient in the frequency of GJB2 mutations is suggested. CONCLUSIONS This study highlights the importance of establishing prevalence, based on the local population for screening and diagnostic programs of live births in Iran.
Collapse
Affiliation(s)
- Mahbobeh Koohiyan
- Cancer Research Center, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Amirhossein Ahmadi
- Pharmaceutical Sciences Research Center, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Farideh Koohian
- Department of Medical Physics, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Shahrzad Aghaei
- Department of Molecular Medicine, School of Advanced Technologies, Shahrekord of Medical Sciences, Shahrekord, Iran
| | - Beheshteh Amiri
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Morteza Hashemzadeh-Chaleshtori
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran.
| |
Collapse
|
13
|
GJB2 mutations causing autosomal recessive non-syndromic hearing loss (ARNSHL) in two Iranian populations: Report of two novel variants. Int J Pediatr Otorhinolaryngol 2018; 107:121-126. [PMID: 29501291 DOI: 10.1016/j.ijporl.2018.01.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 01/14/2018] [Accepted: 01/15/2018] [Indexed: 11/21/2022]
Abstract
OBJECTIVE Hereditary hearing loss (HL) is a noticeable concern in medicine all over the world. On average, 1 in 166 babies born are diagnosed with HL in Iran, which makes it a major public health issue. Autosomal recessive non-syndromic HL (ARNSHL) is the most prevalent form of HL. Although over 60 genes have been identified for ARNSHL, GJB2 mutations are the most prevalent causes of ARNSHL in many populations. Previous studies have estimated the average frequency of GJB2 mutations to be between 16 and 18% in Iran, but would vary among different ethnic groups. In the present study, we aimed to determine the frequency and mutation profile of 70 deaf patients from two different provinces (center and west) of Iran. METHODS We enrolled 70 Iranian deaf patients with ARNSHL from Isfahan (40 family) and Hamedan (30 family) provinces. After extraction of genomic DNA, the entire coding region of GJB2 was directly sequenced in all patients. Multiplex PCR was used for detection of del(GJB6-D13S1830) and del(GJB6-D13S1854) in the GJB6 gene. In silico analyses were also performed by available software tools. RESULTS A total of eleven different mutations were detected, nine of which were previously reported and the other two (c.130T > G and c.178T > G) were novel. Homozygous GJB2 mutations were observed in 22.5% and 20% of all the subjects from Isfahan and Hamedan provinces, respectively. c.35delG was the most frequent mutation. One compound heterozygous genotype (c.358_360delGAG/c.35delG) was observed for c.35delG. Screening for the two GJB6 deletions did not reveal any positive sample among heterozygous or GJB2 negative samples. CONCLUSIONS The present study suggests that mutations in the GJB2 gene specially c.35delG are important causes of ARNSHL in the center and west of Iran. Totally, 15% of the patients were heterozygous carriers. Further investigation is needed to detect the genetic cause of HL in the patients with monoallelic GJB2 mutations.
Collapse
|
14
|
Laleh MA, Naseri M, Zonouzi AAP, Zonouzi AP, Masoudi M, Ahangari N, Shams L, Nejatizadeh A. Diverse pattern of gap junction beta-2 and gap junction beta-4 genes mutations and lack of contribution of DFNB21, DFNB24, DFNB29, and DFNB42 loci in autosomal recessive nonsyndromic hearing loss patients in Hormozgan, Iran. JOURNAL OF RESEARCH IN MEDICAL SCIENCES 2017; 22:99. [PMID: 28900455 PMCID: PMC5583625 DOI: 10.4103/jrms.jrms_976_16] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 04/26/2017] [Accepted: 05/12/2017] [Indexed: 11/04/2022]
Abstract
BACKGROUND We aimed to determine the contribution of four DFNB loci and mutation analysis of gap junction beta-2 (GJB2) and GJB4 genes in autosomal recessive nonsyndromic hearing loss (ARNSHL) in South of Iran. MATERIALS AND METHODS A total of 36 large ARNSHL pedigrees with at least two affected subjects were enrolled in the current study. The GJB2 and GJB4 genes mutations were screened using direct sequencing method. The GJB2 and GJB4 negative families were analyzed for the linkage to DFNB21, DFNB24, DFNB29, and DFNB42 loci by genotyping the corresponding STR markers using polymerase chain reaction-PAGE method. RESULTS We found a homozygous nonsense mutation W77X and a homozygous missense mutation C169W in 5.55% of studied families in GJB2 and GJB4 genes, respectively. Five heterozygous mutations including V63G, A78T, and R127H in GJB2 gene, and R103C and R227W in GJB4 gene were detected. We identified two novel variations V63G in GJB2 and R227W in GJB4. In silico analysis predicted that both novel variations are deleterious mutations. We did not unveil any linkage between DFNB21, DFNB24, DFNB29, and DFNB42 loci and ARNSHL among studied families. CONCLUSION This is the first report of GJB2 and GJB4 mutations from Hormozgan population. According to the previous publications regarding GJB2 and GJB4 mutations, the distribution of the mutations is different from other parts of Iran that should be considered in primary health-care programs. Further investigations are needed to evaluate the contribution of other loci in ARNSHL subjects in South of Iran.
Collapse
Affiliation(s)
- Masoud Akbarzadeh Laleh
- Molecular Medicine Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Marzieh Naseri
- Molecular Medicine Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | | | | | - Marjan Masoudi
- Molecular Medicine Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Najmeh Ahangari
- Molecular Medicine Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Leila Shams
- Molecular Medicine Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Azim Nejatizadeh
- Molecular Medicine Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| |
Collapse
|
15
|
Beheshtian M, Babanejad M, Azaiez H, Bazazzadegan N, Kolbe D, Sloan-Heggen C, Arzhangi S, Booth K, Mohseni M, Frees K, Azizi MH, Daneshi A, Farhadi M, Kahrizi K, Smith RJ, Najmabadi H. Heterogeneity of Hereditary Hearing Loss in Iran: a Comprehensive Review. ARCHIVES OF IRANIAN MEDICINE 2017; 19:720-728. [PMID: 27743438 DOI: 0161910/aim.0010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A significant contribution to the causes of hereditary hearing impairment comes from genetic factors. More than 120 genes and 160 loci have been identified to be involved in hearing impairment. Given that consanguine populations are more vulnerable to most inherited diseases, such as hereditary hearing loss (HHL), the genetic picture of HHL among the Iranian population, which consists of at least eight ethnic subgroups with a high rate of intermarriage, is expected to be highly heterogeneous. Using an electronic literature review through various databases such as PubMed, MEDLINE, and Scopus, we review the current picture of HHL in Iran. In this review, we present more than 39 deafness genes reported to cause non-syndromic HHL in Iran, of which the most prevalent causative genes include GJB2, SLC26A4, MYO15A, and MYO7A. In addition, we highlight some of the more common genetic causes of syndromic HHL in Iran. These results are of importance for further investigation and elucidation of the molecular basis of HHL in Iran and also for developing a national diagnostic tool tailored to the Iranian context enabling early and efficient diagnosis of hereditary hearing impairment.
Collapse
Affiliation(s)
- Maryam Beheshtian
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Mojgan Babanejad
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Hela Azaiez
- Department of Otolaryngology, University of Iowa Hospitals and Clinics, Iowa City, Iowa, USA
| | - Niloofar Bazazzadegan
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Diana Kolbe
- Department of Otolaryngology, University of Iowa Hospitals and Clinics, Iowa City, Iowa, USA
| | - Christina Sloan-Heggen
- Department of Otolaryngology, University of Iowa Hospitals and Clinics, Iowa City, Iowa, USA
| | - Sanaz Arzhangi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Kevin Booth
- Department of Otolaryngology, University of Iowa Hospitals and Clinics, Iowa City, Iowa, USA
| | - Marzieh Mohseni
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Kathy Frees
- Department of Otolaryngology, University of Iowa Hospitals and Clinics, Iowa City, Iowa, USA
| | | | - Ahmad Daneshi
- Head and Neck Surgery Department and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Farhadi
- Head and Neck Surgery Department and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Kimia Kahrizi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Richard Jh Smith
- Department of Otolaryngology, University of Iowa Hospitals and Clinics, Iowa City, Iowa, USA
| | - Hossein Najmabadi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| |
Collapse
|