1
|
Liu Y, Jing Y, Gao Y, Li M, Qin W, Xie Y, Zhang B, Li J. Exploring the correlation between childhood trauma experiences, inflammation, and brain activity in first-episode, drug-naive major depressive disorder. Eur Arch Psychiatry Clin Neurosci 2024:10.1007/s00406-024-01847-3. [PMID: 39073445 DOI: 10.1007/s00406-024-01847-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 06/17/2024] [Indexed: 07/30/2024]
Abstract
BACKGROUND Childhood trauma experiences and inflammation are pivotal factors in the onset and perpetuation of major depressive disorder (MDD). However, research on brain mechanisms linking childhood trauma experiences and inflammation to depression remains insufficient and inconclusive. METHODS Resting-state fMRI scans were performed on fifty-six first-episode, drug-naive MDD patients and sixty healthy controls (HCs). A whole-brain functional network was constructed by thresholding 246 brain regions, and connectivity and network properties were calculated. Plasma interleukin-6 (IL-6) levels were assessed using enzyme-linked immunosorbent assays in MDD patients, and childhood trauma experiences were evaluated through the Childhood Trauma Questionnaire (CTQ). RESULTS Negative correlations were observed between CTQ total (r = -0.28, p = 0.047), emotional neglect (r = -0.286, p = 0.042) scores, as well as plasma IL-6 levels (r = -0.294, p = 0.036), with mean decreased functional connectivity (FC) in MDD patients. Additionally, physical abuse exhibited a positive correlation with the nodal clustering coefficient of the left thalamus in patients (r = 0.306, p = 0.029). Exploratory analysis indicated negative correlations between CTQ total and emotional neglect scores and mean decreased FC in MDD patients with lower plasma IL-6 levels (n = 28), while these correlations were nonsignificant in MDD patients with higher plasma IL-6 levels (n = 28). CONCLUSIONS This finding enhances our understanding of the correlation between childhood trauma experiences, inflammation, and brain activity in MDD, suggesting potential variations in their underlying pathophysiological mechanisms.
Collapse
Affiliation(s)
- Yuan Liu
- Institute of Mental Health, Tianjin Anding Hospital, Mental Health Center of Tianjin Medical University, 13 Liulin Rd., Hexi District, Tianjin, 300222, China
| | - Yifan Jing
- Institute of Mental Health, Tianjin Anding Hospital, Mental Health Center of Tianjin Medical University, 13 Liulin Rd., Hexi District, Tianjin, 300222, China
| | - Ying Gao
- Institute of Mental Health, Tianjin Anding Hospital, Mental Health Center of Tianjin Medical University, 13 Liulin Rd., Hexi District, Tianjin, 300222, China
| | - Meijuan Li
- Institute of Mental Health, Tianjin Anding Hospital, Mental Health Center of Tianjin Medical University, 13 Liulin Rd., Hexi District, Tianjin, 300222, China
| | - Wen Qin
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Yingying Xie
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Bin Zhang
- Institute of Mental Health, Tianjin Anding Hospital, Mental Health Center of Tianjin Medical University, 13 Liulin Rd., Hexi District, Tianjin, 300222, China
| | - Jie Li
- Institute of Mental Health, Tianjin Anding Hospital, Mental Health Center of Tianjin Medical University, 13 Liulin Rd., Hexi District, Tianjin, 300222, China.
| |
Collapse
|
2
|
Kumpf U, Ezim H, Stadler M, Burkhardt G, Palm U, Dechantsreiter E, Padberg F. Transcranial direct current stimulation as treatment for major depression in a home treatment setting (HomeDC trial): study protocol and methodology of a double-blind, placebo-controlled pilot study. Pilot Feasibility Stud 2023; 9:197. [PMID: 38102647 PMCID: PMC10722795 DOI: 10.1186/s40814-023-01423-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 11/21/2023] [Indexed: 12/17/2023] Open
Abstract
INTRODUCTION Transcranial direct current stimulation (tDCS) of prefrontal cortex regions has been reported to exert therapeutic effects in patients with major depressive disorder (MDD). Due to its beneficial safety profile, its easy mode of application, and its cost-effectiveness, tDCS has recently been proposed for treatment at home. This would offer new chances for regionally widespread and long-term application. However, tDCS at home must meet the new methodological challenges of handling and adherence. At the same time, data from randomized controlled trials (RCT) investigating this mode of application are still lacking. In this pilot RCT, we therefore investigate the feasibility, safety, and effectiveness of a new antidepressant tDCS application set-up. METHODS AND ANALYSIS The HomeDC trial will be conducted as a double-blind, placebo-controlled, parallel-group design trial. Thirty-two study participants with MDD will be randomly assigned to active or sham tDCS groups. Participants will self-administer prefrontal tDCS for 6 weeks. Active tDCS will be conducted with anode over F3, cathode over F4, for 5 sessions/week, with a duration of 30 min/day, and 2 mA stimulation intensity. Sham tDCS, conversely, follows an identical protocol in regard to electrode montage and timing, but with no electric stimulation between the ramp-in and ramp-out periods. Both conditions will be administered either as a monotherapy or an adjunctive treatment to a stable dose of antidepressant medication. Adjunctive magnetic resonance imaging (MRI) and electric field (E-field) modelling will be conducted at baseline. Primary outcome is feasibility based on successfully completed stimulations and drop-out rates. The intervention is considered feasible when 20 out of 30 sessions have been fully conducted by at least 75% of the participants. Effectiveness and safety will be assessed as secondary outcomes. DISCUSSION In the HomeDC trial, the technical requirements for a placebo-controlled tDCS study in a home-based treatment setting have been established. The trial addresses the crucial points of the home-based tDCS treatment approach: uniform electrode positioning, frequent monitoring of stimulation parameters, adherence, and ensuring an appropriate home treatment environment. This study will further identify constraints and drawbacks of this novel mode of treatment. TRIAL REGISTRATION www. CLINICALTRIALS gov . TRIAL REGISTRATION NUMBER NCT05172505. Registration date: 12/13/2021.
Collapse
Affiliation(s)
- Ulrike Kumpf
- Department of Psychiatry and Psychotherapy, Ludwig Maximilians University Munich, Nussbaumstr. 7, 80336, Munich, Germany.
| | - Harry Ezim
- Department of Psychiatry and Psychotherapy, Ludwig Maximilians University Munich, Nussbaumstr. 7, 80336, Munich, Germany
| | - Matthias Stadler
- Faculty of Psychology and Educational Sciences, Ludwig Maximilian University Munich, Munich, Germany
| | - Gerrit Burkhardt
- Department of Psychiatry and Psychotherapy, Ludwig Maximilians University Munich, Nussbaumstr. 7, 80336, Munich, Germany
| | - Ulrich Palm
- Medicalpark Chiemseeblick, Bernau-Felden, Germany
| | - Esther Dechantsreiter
- Department of Psychiatry and Psychotherapy, Ludwig Maximilians University Munich, Nussbaumstr. 7, 80336, Munich, Germany
| | - Frank Padberg
- Department of Psychiatry and Psychotherapy, Ludwig Maximilians University Munich, Nussbaumstr. 7, 80336, Munich, Germany
| |
Collapse
|
3
|
Kumpf U, Palm U, Eder J, Ezim H, Stadler M, Burkhardt G, Dechantsreiter E, Padberg F. TDCS at home for depressive disorders: an updated systematic review and lessons learned from a prematurely terminated randomized controlled pilot study. Eur Arch Psychiatry Clin Neurosci 2023; 273:1403-1420. [PMID: 37191697 PMCID: PMC10185954 DOI: 10.1007/s00406-023-01620-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 05/04/2023] [Indexed: 05/17/2023]
Abstract
The application of transcranial direct current stimulation (tDCS) at home for the treatment of major depressive disorder (MDD) is the subject of current clinical trials. This is due to its positive safety profile, cost-effectiveness, and potential scalability for a wide outreach in clinical practice. Here, we provide a systematic review of the available studies and also a report on the results of a randomized controlled trial (RCT) on tDCS at home for the treatment of MDD. This trial had to be prematurely terminated due to safety concerns. The HomeDC trial is a double-blinded, placebo-controlled, parallel-group study. Patients with MDD (DSM-5) were randomized to active or sham tDCS. Patients conducted tDCS at home for 6 weeks with 5 sessions/week (30 min at 2 mA) anode over F3, cathode over F4. Sham tDCS resembled active tDCS, with ramp-in and ramp-out periods, but without intermittent stimulation. The study was prematurely terminated due to an accumulation of adverse events (AEs, skin lesions), so that only 11 patients were included. Feasibility was good. Safety monitoring was not sufficient enough to detect or prevent AEs within an appropriate timeframe. Regarding antidepressant effects, the reduction in depression scales over time was significant. However, active tDCS was not superior to sham tDCS in this regard. Both the conclusions from this review and the HomeDC trial show that there are several critical issues with the use of tDCS at home that need to be addressed. Nevertheless the array of transcranial electric simulation (TES) methods that this mode of application offers, including tDCS, is highly interesting and warrants further investigation in high quality RCTs. TRIAL REGISTRATION www. CLINICALTRIALS gov . TRIAL REGISTRATION NUMBER NCT05172505. Registration date: 12/13/2021, https://clinicaltrials.gov/ct2/show/NCT05172505 . *Consider, if feasible to do so, reporting the number of records identified from each database or register searched (rather than the total number across all databases/registers) **If automation tools were used, indicate how many records were excluded by a human and how many were excluded by automation tools From: Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ 2021;372:n71. https://doi.org/10.1136/bmj.n71 . For more information, visit: http://www.prisma-statement.org/.
Collapse
Affiliation(s)
- Ulrike Kumpf
- Department of Psychiatry and Psychotherapy, Ludwig Maximilian University Munich, Nussbaumstr. 7, 80336, Munich, Germany.
| | - Ulrich Palm
- Medicalpark Chiemseeblick, Bernau-Felden, Germany
| | - Julia Eder
- Department of Psychiatry and Psychotherapy, Ludwig Maximilian University Munich, Nussbaumstr. 7, 80336, Munich, Germany
| | - Harry Ezim
- Department of Psychiatry and Psychotherapy, Ludwig Maximilian University Munich, Nussbaumstr. 7, 80336, Munich, Germany
| | - Matthias Stadler
- Faculty of Psychology and Educational Sciences Ludwig Maximilian University Munich, Munich, Germany
| | - Gerrit Burkhardt
- Department of Psychiatry and Psychotherapy, Ludwig Maximilian University Munich, Nussbaumstr. 7, 80336, Munich, Germany
| | - Esther Dechantsreiter
- Department of Psychiatry and Psychotherapy, Ludwig Maximilian University Munich, Nussbaumstr. 7, 80336, Munich, Germany
| | - Frank Padberg
- Department of Psychiatry and Psychotherapy, Ludwig Maximilian University Munich, Nussbaumstr. 7, 80336, Munich, Germany
| |
Collapse
|
4
|
Liu C, Zhang C, Sun L, Liu K, Liu H, Zhu W, Jiang C. Detection of Pilot's Mental Workload Using a Wireless EEG Headset in Airfield Traffic Pattern Tasks. ENTROPY (BASEL, SWITZERLAND) 2023; 25:1035. [PMID: 37509982 PMCID: PMC10378707 DOI: 10.3390/e25071035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 06/25/2023] [Accepted: 07/05/2023] [Indexed: 07/30/2023]
Abstract
Elevated mental workload (MWL) experienced by pilots can result in increased reaction times or incorrect actions, potentially compromising flight safety. This study aims to develop a functional system to assist administrators in identifying and detecting pilots' real-time MWL and evaluate its effectiveness using designed airfield traffic pattern tasks within a realistic flight simulator. The perceived MWL in various situations was assessed and labeled using NASA Task Load Index (NASA-TLX) scores. Physiological features were then extracted using a fast Fourier transformation with 2-s sliding time windows. Feature selection was conducted by comparing the results of the Kruskal-Wallis (K-W) test and Sequential Forward Floating Selection (SFFS). The results proved that the optimal input was all PSD features. Moreover, the study analyzed the effects of electroencephalography (EEG) features from distinct brain regions and PSD changes across different MWL levels to further assess the proposed system's performance. A 10-fold cross-validation was performed on six classifiers, and the optimal accuracy of 87.57% was attained using a multi-class K-Nearest Neighbor (KNN) classifier for classifying different MWL levels. The findings indicate that the wireless headset-based system is reliable and feasible. Consequently, numerous wireless EEG device-based systems can be developed for application in diverse real-driving scenarios. Additionally, the current system contributes to future research on actual flight conditions.
Collapse
Affiliation(s)
- Chenglin Liu
- School of Transportation & Logistics, Southwest Jiaotong University, Chengdu 611756, China
| | - Chenyang Zhang
- School of Transportation & Logistics, Southwest Jiaotong University, Chengdu 611756, China
| | - Luohao Sun
- School of Information Science and Technology, Southwest Jiaotong University, Chengdu 611756, China
| | - Kun Liu
- School of Transportation & Logistics, Southwest Jiaotong University, Chengdu 611756, China
| | - Haiyue Liu
- School of Transportation & Logistics, Southwest Jiaotong University, Chengdu 611756, China
| | - Wenbing Zhu
- School of Transportation & Logistics, Southwest Jiaotong University, Chengdu 611756, China
| | - Chaozhe Jiang
- School of Transportation & Logistics, Southwest Jiaotong University, Chengdu 611756, China
| |
Collapse
|