1
|
Huang Z, Chen G, Wu H, Huang X, Xu R, Deng F, Li Y. Ebselen restores peri-implantitis-induced osteogenic inhibition via suppressing BMSCs ferroptosis. Exp Cell Res 2023; 427:113612. [PMID: 37116735 DOI: 10.1016/j.yexcr.2023.113612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 03/12/2023] [Accepted: 04/21/2023] [Indexed: 04/30/2023]
Abstract
It is hard to reconstruct bone defects in peri-implantitis due to osteogenesis inhibited by excessive ROS. Ferroptosis, a recently identified regulated cell death characterized by iron- and reactive oxygen species- (ROS-) dependent lipid peroxidation, provides us with a new explanation. Our study aims to explore whether ferroptosis is involved in peri-implantitis-inhibited osteogenesis and confirm ebselen, an antioxidant with glutathione peroxidase (GPx)-like activity, could inhibit ferroptosis and promote osteogenesis in peri-implantitis. In this study, we used LPS to mimic the microenvironment of peri-implantitis. The osteogenic differentiation of bone-marrow-derived mesenchymal stem cells (BMSCs) was assessed by alkaline phosphatase (ALP), Alizarin Red S, and mRNA and protein expression of osteogenic-related markers. Ferroptosis index analysis included iron metabolism, ROS production, lipid peroxidation and mitochondrial morphological changes. Iron overload, reduced antioxidant capability, excessive ROS, lipid peroxidation and the characteristic mitochondrial morphological changes of ferroptosis were observed in LPS-treated BMSCs, and adding Ferrostatin-1 (Fer-1) restored the inhibitory effect of ferroptosis on osteogenic differentiation of BMSCs. Furthermore, ebselen ameliorated LPS-induced ferroptosis and osteogenic inhibition, which was reversed by erastin. Our results demonstrated that ferroptosis is involved in osteogenic inhibition in peri-implantitis and ebselen could attenuate osteogenic dysfunction of BMSCs via inhibiting ferroptosis.
Collapse
Affiliation(s)
- Ziqing Huang
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, PR China; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, PR China
| | - Guanhui Chen
- Department of Stomatology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Hiokuan Wu
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, PR China; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, PR China
| | - Xiaoqiong Huang
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, PR China; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, PR China
| | - Ruogu Xu
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, PR China; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, PR China
| | - Feilong Deng
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, PR China; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, PR China.
| | - Yiming Li
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, PR China; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, PR China.
| |
Collapse
|
2
|
Kuroki T, Takekoshi S, Kitatani K, Kato C, Miyasaka M, Akamatsu T. Protective Effect of Ebselen on Ischemia-reperfusion Injury in Epigastric Skin Flaps in Rats. Acta Histochem Cytochem 2022; 55:149-157. [PMID: 36405551 PMCID: PMC9631984 DOI: 10.1267/ahc.22-00062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 08/26/2022] [Indexed: 11/26/2022] Open
Abstract
The purpose of this study was to determine the role of oxidized diacylglycerol (DAG) and the molecular mechanism underlying ischemia-reperfusion (I/R) injury in rat skin flaps. The protective effect of ebselen on the viability of rat skin flaps with I/R injury was investigated. Flaps were designed and raised in the left inguinal region. Then, a microvascular clamp was applied to the vascular pedicle and reperfused after 6 hr. After 7 days of I/R (I/R group), the skin flap survival area ratio was significantly reduced compared to the normal skin. The administration of ebselen significantly improved the ratio compared to the I/R group. The flap survival area ratio of the I/R + ebselen group was significantly improved compared to the I/R + vehicle group. In the I/R + ebselen group, the oxidized DAG content and intensity of phosphorylated PKCα and PKCδ were significantly lower compared to the I/R + vehicle group. Furthermore, the inflammatory response was suppressed in the I/R + ebselen group compared to the I/R + vehicle group. These results indicate that ebselen is useful as a preventive and therapeutic agent for skin flap necrosis caused by I/R, because of reduction and elimination of oxidized DAG.
Collapse
Affiliation(s)
- Takahiko Kuroki
- Department of Plastic Surgery, Tokai University School of Medicine
| | - Susumu Takekoshi
- Department of Cell Biology, Division of Host Defense Mechanism, Tokai University School of Medicine
| | - Kanae Kitatani
- Support Center of Medical Research and Education, Tokai University School of Medicine
| | - Chikara Kato
- Department of Cell Biology, Division of Host Defense Mechanism, Tokai University School of Medicine
| | - Muneo Miyasaka
- Department of Plastic Surgery, Tokai University School of Medicine
| | - Tadashi Akamatsu
- Department of Plastic Surgery, Tokai University School of Medicine
| |
Collapse
|
3
|
Abstract
Ebselen is a synthetic organoselenium radical scavenger compound that possesses glutathione peroxidase-like activity and its own unique bioactivity by reacting with thiols, hydroperoxides and peroxynitrites. Owing to its high affinity toward several essential reactions, ebselen protects cellular components from oxidative and free radical damage, and it has been employed as a useful tool for studying redox-related mechanisms. Based on numerous in vitro and in vivo research, mechanisms are proposed to understand the biomedical and molecular actions of ebselen in health and disease, and it is currently under clinical trials for the prevention and treatment of various human disorders. Based on these outstanding discoveries, this review summarizes the current understanding of the biochemical and molecular characteristics, pharmacological applications and future directions of ebselen.
Collapse
|
4
|
Cheng B, Zhong JP, Wu FX, Li GL, Ruan QX, Luo G, Jiang H. Ebselen protects rat hearts against myocardial ischemia-reperfusion injury. Exp Ther Med 2018; 17:1412-1419. [PMID: 30680022 DOI: 10.3892/etm.2018.7089] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 11/09/2018] [Indexed: 12/13/2022] Open
Abstract
Ebselen is an organoselenium compound that has demonstrated potent antioxidant and anti-inflammatory effects in previous studies. The present study was conducted to evaluate the effect of ebselen on myocardial ischemia-reperfusion (I/R) injury in a rat model and to elucidate the related mechanisms. Myocardial infarct size was assessed using triphenyltetrazolium chloride staining. Myocardial injury was evaluated according to the histopathological and ultrastructural alterations of rat hearts and the serum activity levels of cardiac enzymes, including creatine kinase (CK), CK-MB isoenzyme and lactate dehydrogenase (LDH). Cardiomyocyte apoptosis was detected using the terminal dUTP nick end-labelling (TUNEL) assay. In addition, the expression of apoptosis-associated proteins was measured using western blot analysis. In heart tissue specimens the activity of superoxide dismutase (SOD) and glutathione peroxidase (GPx), and levels of malondialdehyde (MDA) and protein carbonyl (PC) were also detected. The results indicated that ebselen reduced I/R-induced increase in myocardial infarct size and prevented the I/R-induced decreases in ejection fraction and fractional shortening. Further of note, ebselen improved I/R-induced rat heart injury. This was indicated by attenuation of histological and ultrastructural changes; reduction of serum CK, CK-MB and LDH activity levels; and decreased cell apoptosis on TUNEL staining, which was verified by decreased expression of cleaved (C)-Caspase-8, C-Caspase-3, B-cell lymphoma 2 (Bcl-2)-associated X protein and C-PARP, and increased expression of Bcl-2. Additionally, SOD and GPx activity levels were significantly higher, while MDA and PC levels were significantly lower in the ebselen + I/R group compared with in the I/R group. In conclusion, the present results suggested that ebselen serves an important role in protecting against myocardial I/R injury. The underlying mechanism may involve suppression of cardiomyocyte apoptosis and promotion of antioxidant activity.
Collapse
Affiliation(s)
- Bin Cheng
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Jin-Peng Zhong
- Department of Cardiology, The People's Hospital of China Three Gorges University, Yichang, Hubei 443000, P.R. China
| | - Fu-Xia Wu
- Department of Cardiology, The People's Hospital of China Three Gorges University, Yichang, Hubei 443000, P.R. China
| | - Guan-Lan Li
- Department of Cardiology, The People's Hospital of China Three Gorges University, Yichang, Hubei 443000, P.R. China
| | - Qing-Xiao Ruan
- Department of Cardiology, The People's Hospital of China Three Gorges University, Yichang, Hubei 443000, P.R. China
| | - Gang Luo
- Department of Cardiology, The People's Hospital of China Three Gorges University, Yichang, Hubei 443000, P.R. China
| | - Hong Jiang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| |
Collapse
|
5
|
Jia ZQ, Li SQ, Qiao WQ, Xu WZ, Xing JW, Liu JT, Song H, Gao ZY, Xing BW, He XJ. Ebselen protects mitochondrial function and oxidative stress while inhibiting the mitochondrial apoptosis pathway after acute spinal cord injury. Neurosci Lett 2018; 678:110-117. [PMID: 29733976 DOI: 10.1016/j.neulet.2018.05.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Revised: 04/20/2018] [Accepted: 05/03/2018] [Indexed: 10/17/2022]
Abstract
Ebselen is a fat-soluble small molecule and organic selenium compound that regulates the activity of glutathione peroxidase to alleviate mitochondrial oxidative stress and improve mitochondrial function. In the present study, we aimed to investigate the effects of ebselen on mitochondrial oxidative stress response, mitochondrial apotosis, and motor behaviors after spinal cord injury (SCI). We found that ebselen significantly increased the BBB score in motor behavior, thus suggesting a rescue effect of ebselen on motor function after SCI in rats. Meanwhile, we revealed that ebselen can increase glutathione (GSH) content as well as superoxide dismutase (SOD) and catalase (CAT) activities after SCI-this suggests ebselen has an antioxidant effect. Furthermore, the ATP content and Na+-K+-ATPase activity in mitochondria were increased by ebselen after SCI, while the mitochondrial membrane potential (MMP) was decreased by ebselen. The Cytochrome C and Smac release from mitochondria were reduced by ebselen after SCI, thus indicating improved membrane permeability by ebselen. Moreover, the alterations in caspase-3, Bax and Bcl-2 protein expression, as well as the proportion of cell apoptosis were improved by ebselen treatment, which together suggested that ebselen has an inhibitory effect on mitochondrial apotosis pathways after SCI. Taken together, our results suggest that ebselen can inhibit secondary damage caused by spinal cord injury. Indeed it plays a neuroprotective role in spinal cord injury perhaps by improving mitochondrial function and inhibiting the mitochondrial apoptosis pathway.
Collapse
Affiliation(s)
- Zhi-Qiang Jia
- Department of Orthopedics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xian 710004, PR China; Department of Spinal Surgery, The Second Affiliated Hospital of Henan University of Science and Technology, Luoyang 471000, PR China.
| | - San-Qiang Li
- Medical College, Henan University of Science and Technology, Luoyang 471003, PR China
| | - Wei-Qiang Qiao
- Department of Breast Surgery, The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang, PR China
| | - Wen-Zhong Xu
- Department of Spinal Surgery, The Second Affiliated Hospital of Henan University of Science and Technology, Luoyang 471000, PR China
| | - Jian-Wu Xing
- Department of Spinal Surgery, The Second Affiliated Hospital of Henan University of Science and Technology, Luoyang 471000, PR China
| | - Jian-Tao Liu
- Department of Orthopedics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xian 710004, PR China
| | - Hui Song
- Department of Orthopedics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xian 710004, PR China
| | - Zhong-Yang Gao
- Department of Orthopedics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xian 710004, PR China
| | - Bing-Wen Xing
- Medical College, Henan University of Science and Technology, Luoyang 471003, PR China
| | - Xi-Jing He
- Department of Orthopedics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xian 710004, PR China.
| |
Collapse
|
6
|
Pak O, Sydykov A, Kosanovic D, Schermuly RT, Dietrich A, Schröder K, Brandes RP, Gudermann T, Sommer N, Weissmann N. Lung Ischaemia-Reperfusion Injury: The Role of Reactive Oxygen Species. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 967:195-225. [PMID: 29047088 DOI: 10.1007/978-3-319-63245-2_12] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Lung ischaemia-reperfusion injury (LIRI) occurs in many lung diseases and during surgical procedures such as lung transplantation. The re-establishment of blood flow and oxygen delivery into the previously ischaemic lung exacerbates the ischaemic injury and leads to increased microvascular permeability and pulmonary vascular resistance as well as to vigorous activation of the immune response. These events initiate the irreversible damage of the lung with subsequent oedema formation that can result in systemic hypoxaemia and multi-organ failure. Alterations in the production of reactive oxygen species (ROS) and reactive nitrogen species (RNS) have been suggested as crucial mediators of such responses during ischaemia-reperfusion in the lung. Among numerous potential sources of ROS/RNS within cells, nicotinamide adenine dinucleotide phosphate (NADPH) oxidases, xanthine oxidases, nitric oxide synthases and mitochondria have been investigated during LIRI. Against this background, we aim to review here the extensive literature about the ROS-mediated cellular signalling during LIRI, as well as the effectiveness of antioxidants as treatment option for LIRI.
Collapse
Affiliation(s)
- Oleg Pak
- Excellence Cluster Cardio-pulmonary System, University of Giessen Lung Center, German Center for Lung Research (DZL), Justus-Liebig-University Giessen, Aulweg 130, 35392, Giessen, Germany
| | - Akylbek Sydykov
- Excellence Cluster Cardio-pulmonary System, University of Giessen Lung Center, German Center for Lung Research (DZL), Justus-Liebig-University Giessen, Aulweg 130, 35392, Giessen, Germany
| | - Djuro Kosanovic
- Excellence Cluster Cardio-pulmonary System, University of Giessen Lung Center, German Center for Lung Research (DZL), Justus-Liebig-University Giessen, Aulweg 130, 35392, Giessen, Germany
| | - Ralph T Schermuly
- Excellence Cluster Cardio-pulmonary System, University of Giessen Lung Center, German Center for Lung Research (DZL), Justus-Liebig-University Giessen, Aulweg 130, 35392, Giessen, Germany
| | - Alexander Dietrich
- Walther-Straub-Institut für Pharmakologie und Toxikologie, Ludwig-Maximilians-Universität München, Goethestraße 33, 80336, Munich, Germany
| | - Katrin Schröder
- Institut für Kardiovaskuläre Physiologie, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany
| | - Ralf P Brandes
- Institut für Kardiovaskuläre Physiologie, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany
| | - Thomas Gudermann
- Walther-Straub-Institut für Pharmakologie und Toxikologie, Ludwig-Maximilians-Universität München, Goethestraße 33, 80336, Munich, Germany
| | - Natascha Sommer
- Excellence Cluster Cardio-pulmonary System, University of Giessen Lung Center, German Center for Lung Research (DZL), Justus-Liebig-University Giessen, Aulweg 130, 35392, Giessen, Germany
| | - Norbert Weissmann
- Excellence Cluster Cardio-pulmonary System, University of Giessen Lung Center, German Center for Lung Research (DZL), Justus-Liebig-University Giessen, Aulweg 130, 35392, Giessen, Germany.
| |
Collapse
|
7
|
Inflammatory response and pneumocyte apoptosis during lung ischemia-reperfusion injury in an experimental pulmonary thromboembolism model. J Thromb Thrombolysis 2016; 40:42-53. [PMID: 25677043 PMCID: PMC4445764 DOI: 10.1007/s11239-015-1182-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Lung ischemia-reperfusion injury (LIRI) may occur in the region of the affected lung after reperfusion therapy. The inflammatory response mechanisms related to LIRI in pulmonary thromboembolism (PTE), especially in chronic PTE, need to be studied further. In a PTE model, inflammatory response and apoptosis may occur during LIRI and nitric oxide (NO) inhalation may alleviate the inflammatory response and apoptosis of pneumocytes during LIRI. A PTE canine model was established through blood clot embolism to the right lower lobar pulmonary artery. Two weeks later, we performed embolectomy with reperfusion to examine the LIRI changes among different groups. In particular, the ratio of arterial oxygen partial pressure to fractional inspired oxygen (PaO2/FiO2), serum concentrations of tumor necrosis factor-α (TNF-α), myeloperoxidase concentrations in lung homogenates, alveolar polymorphonuclear neutrophils (PMNs), lobar lung wet to dry ratio (W/D ratio), apoptotic pneumocytes, and lung sample ultrastructure were assessed. The PaO2/FiO2 in the NO inhalation group increased significantly when compared with the reperfusion group 4 and 6 h after reperfusion (368.83 ± 55.29 vs. 287.90 ± 54.84 mmHg, P < 0.05 and 380.63 ± 56.83 vs. 292.83 ± 6 0.34 mmHg, P < 0.05, respectively). In the NO inhalation group, TNF-α concentrations and alveolar PMN infiltration were significantly decreased as compared with those of the reperfusion group, 6 h after reperfusion (7.28 ± 1.49 vs. 8.90 ± 1.43 pg/mL, P < 0.05 and [(19 ± 6)/10 high power field (HPF) vs. (31 ± 11)/10 HPF, P < 0.05, respectively]. The amount of apoptotic pneumocytes in the lower lobar lung was negatively correlated with the arterial blood PaO2/FiO2, presented a positive correlation trend with the W/D ratio of the lower lobar lung, and a positive correlation with alveolar PMN in the reperfusion group and NO inhalation group. NO provided at 20 ppm for 6 h significantly alleviated LIRI in the PTE model. Our data indicate that, during LIRI, an obvious inflammatory response and apoptosis occur in our PTE model and NO inhalation may be useful in treating LIRI by alleviating the inflammatory response and pneumocyte apoptosis. This potential application warrants further investigation.
Collapse
|
8
|
Cao W, Li M, Li J, Li C, Xu X, Gu W. Geranylgeranylacetone ameliorates lung ischemia/reperfusion injury by HSP70 and thioredoxin redox system: NF-kB pathway involved. Pulm Pharmacol Ther 2015; 32:109-15. [PMID: 25748490 DOI: 10.1016/j.pupt.2015.02.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Revised: 01/29/2015] [Accepted: 02/23/2015] [Indexed: 12/31/2022]
Abstract
Geranylgeranylacetone (GGA) has been clinically used as an anti-ulcer drug. In the present study, we explored the protective effects of GGA on lung ischemia/reperfusion injury (IRI) and the underlying mechanism. The results demonstrated that GGA ameliorated the lung biochemical and histological alterations induced by IRI, which was reversed by HSP70 inhibition. To further explore the mechanism of GGA action, we focused on NF-kB and thioredoxin (Trx) redox system. It was shown that GGA induced the HSP70 and Trx-1 expression, NF-kB nuclear translocation and activated thioredoxin reductase (TrxR). The Trx-1 expression and TrxR activity was suppressed by HSP70 and NF-kB inhibition, while the nuclear NF-kB p65 expression was suppressed by HSP70 inhibitor. These results indicated that GGA may protect rat lung against IRI by HSP70 and Trx redox system, in which NF-kB pathway may be involved.
Collapse
Affiliation(s)
- Weijun Cao
- Department of Respiratory Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China.
| | - Manhui Li
- Department of Respiratory Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
| | - Jianxiong Li
- Department of Respiratory Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
| | - Chengwei Li
- Department of Respiratory Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
| | - Xin Xu
- Department of Respiratory Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
| | - Weiqing Gu
- Department of Respiratory Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
| |
Collapse
|
9
|
Abreu MDM, Pazetti R, Almeida FMD, Correia AT, Parra ER, Silva LPD, Vieira RDP, Pêgo-Fernandes PM, Jatene FB. Methylene blue attenuates ischemia--reperfusion injury in lung transplantation. J Surg Res 2014; 192:635-41. [PMID: 25151469 DOI: 10.1016/j.jss.2014.07.043] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Revised: 07/13/2014] [Accepted: 07/18/2014] [Indexed: 02/08/2023]
Abstract
BACKGROUND Ischemia-reperfusion injury (IRI) is one of the principal obstacles for the lung transplantation (LTx) success. Several strategies have been adopted to minimize the effects of IRI in lungs, including ex vivo conditioning of the grafts and the use of antioxidant drugs, such as methylene blue (MB). We hypothesized that MB could minimize the effects of IRI in a LTx rodent model. METHODS Forty rats were divided into four groups (n = 10) according to treatment (saline solution or MB) and graft cold ischemic time (3 or 6 h). All animals underwent unilateral LTx. Recipients received 2 mL of saline or MB intraperitoneally before transplantation. After 2 h of reperfusion, arterial blood and exhaled nitric oxide samples were collected and bronchoalveolar lavage performed. Then animals were euthanized, and histopathology analysis as well as cell counts and cytokine levels measurements in bronchoalveolar lavage fluid were performed. RESULTS There was a significant decrease in exhaled nitric oxide, neutrophils, interleukin-6, and tumor necrosis factor-α in MB-treated animals. PaO2 and uric acid levels were higher in MB group. CONCLUSIONS MB was able in attenuating IRI in this LTx model.
Collapse
Affiliation(s)
- Marcus da Matta Abreu
- Department of Cardiopneumology, Heart Institute (InCor), Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil.
| | - Rogerio Pazetti
- Department of Cardiopneumology, Heart Institute (InCor), Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Francine Maria de Almeida
- Department of Cardiopneumology, Heart Institute (InCor), Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Aristides Tadeu Correia
- Department of Cardiopneumology, Heart Institute (InCor), Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Edwin Roger Parra
- Department of Pathology, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Laís Pereira da Silva
- Department of Cardiopneumology, Heart Institute (InCor), Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | | | - Paulo Manuel Pêgo-Fernandes
- Department of Cardiopneumology, Heart Institute (InCor), Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Fabio Biscegli Jatene
- Department of Cardiopneumology, Heart Institute (InCor), Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
10
|
Azad GK, Tomar RS. Ebselen, a promising antioxidant drug: mechanisms of action and targets of biological pathways. Mol Biol Rep 2014; 41:4865-79. [DOI: 10.1007/s11033-014-3417-x] [Citation(s) in RCA: 196] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
11
|
Ozgur T, Tutanc M, Zararsiz I, Motor S, Ozturk OH, Yaldiz M, Kurtgoz OY. The protective effect of ebselen on radiocontrast-induced nephrotoxicity. Ren Fail 2013; 34:991-7. [PMID: 22880804 DOI: 10.3109/0886022x.2012.706880] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
AIM Radiocontrast-induced nephropathy has become one of the most important causes of renal acute failure. The most effective management of reducing the incidence of contrast nephropathy is to understand and prevent its causes. We aimed to investigate the protective role of ebselen against radiocontrast-induced nephrotoxicity in terms of tissue oxidant/antioxidant parameters and light microscopy in rats. METHODS Albino Wistar rats were randomly separated into four groups. The Group 1 rats were treated with sodium chloride as the control group, Group 2 with radiocontrast, Group 3 with radiocontrast plus ebselen, and Group 4 with ebselen alone. After 24 h, the animals over the experimental period were euthanized and blood samples were analyzed for blood urea nitrogen (BUN) and serum creatinine (Cr) levels. Kidney sections were analyzed for malondialdehyde (MDA) levels and superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-Px) activities, as well as histopathological changes. RESULTS In the radiocontrast group, BUN, MDA, and GSH-Px levels increased while SOD activity decreased compared with the control group. These decays were improved by ebselen administration in the radiocontrast group. Significant histological deteriorations were observed in the radiocontrast group. We noted improvement in the histologic findings with ebselen administration. CONCLUSION These results indicate that ebselen might produce a protective mechanism against radiocontrast-induced nephrotoxicity.
Collapse
Affiliation(s)
- Tumay Ozgur
- Department of Pathology, School of Medicine, Mustafa Kemal University, Hatay, Turkey.
| | | | | | | | | | | | | |
Collapse
|
12
|
Toxicology and pharmacology of selenium: emphasis on synthetic organoselenium compounds. Arch Toxicol 2011; 85:1313-59. [DOI: 10.1007/s00204-011-0720-3] [Citation(s) in RCA: 330] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2011] [Accepted: 05/18/2011] [Indexed: 02/07/2023]
|