1
|
Rubio K, Müller JM, Mehta A, Watermann I, Olchers T, Koch I, Wessels S, Schneider MA, Araujo-Ramos T, Singh I, Kugler C, Stoleriu MG, Kriegsmann M, Eichhorn M, Muley T, Merkel OM, Braun T, Ammerpohl O, Reck M, Tresch A, Barreto G. Preliminary results from the EMoLung clinical study showing early lung cancer detection by the LC score. Discov Oncol 2023; 14:181. [PMID: 37787775 PMCID: PMC10547665 DOI: 10.1007/s12672-023-00799-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 09/22/2023] [Indexed: 10/04/2023] Open
Abstract
BACKGROUND Lung cancer (LC) causes more deaths worldwide than any other cancer type. Despite advances in therapeutic strategies, the fatality rate of LC cases remains high (95%) since the majority of patients are diagnosed at late stages when patient prognosis is poor. Analysis of the International Association for the Study of Lung Cancer (IASLC) database indicates that early diagnosis is significantly associated with favorable outcome. However, since symptoms of LC at early stages are unspecific and resemble those of benign pathologies, current diagnostic approaches are mostly initiated at advanced LC stages. METHODS We developed a LC diagnosis test based on the analysis of distinct RNA isoforms expressed from the GATA6 and NKX2-1 gene loci, which are detected in exhaled breath condensates (EBCs). Levels of these transcript isoforms in EBCs were combined to calculate a diagnostic score (the LC score). In the present study, we aimed to confirm the applicability of the LC score for the diagnosis of early stage LC under clinical settings. Thus, we evaluated EBCs from patients with early stage, resectable non-small cell lung cancer (NSCLC), who were prospectively enrolled in the EMoLung study at three sites in Germany. RESULTS LC score-based classification of EBCs confirmed its performance under clinical conditions, achieving a sensitivity of 95.7%, 91.3% and 84.6% for LC detection at stages I, II and III, respectively. CONCLUSIONS The LC score is an accurate and non-invasive option for early LC diagnosis and a valuable complement to LC screening procedures based on computed tomography.
Collapse
Affiliation(s)
- Karla Rubio
- Université de Lorraine, CNRS, Laboratoire IMoPA, UMR 7365, 54000, Nancy, France
- Lung Cancer Epigenetic, Max-Planck-Institute for Heart and Lung Research, 61231, Bad Nauheim, Germany
- Universities of Giessen and Marburg Lung Center (UGMLC), Giessen, Germany
- German Center for Lung Research (Deutsches Zentrum für Lungenforschung, DZL), Gießen, Germany
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, 02129, USA
- International Laboratory EPIGEN, Consejo de Ciencia y Tecnología del Estado de Puebla (CONCYTEP), Instituto de Ciencias, EcoCampus, Benemérita Universidad Autónoma de Puebla, 72570, Puebla, Mexico
| | - Jason M Müller
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
- Institute of Medical Statistics and Computational Biology, Faculty of Medicine, University of Cologne, Cologne, Germany
| | - Aditi Mehta
- German Center for Lung Research (Deutsches Zentrum für Lungenforschung, DZL), Gießen, Germany
- Pharmaceutical Technology and Biopharmaceutics, Department of Pharmacy, Ludwig-Maximilians-University (LMU) Munich, 81377, Munich, Germany
- Comprehensive Pneumology Center Munich (CPC-M), Munich, Germany
| | - Iris Watermann
- German Center for Lung Research (Deutsches Zentrum für Lungenforschung, DZL), Gießen, Germany
- LungenClinic Grosshansdorf (GHD), Airway Research Center North (ARCN), German Center for Lung Research (DZL), 22927, Großhansdorf, Germany
| | - Till Olchers
- German Center for Lung Research (Deutsches Zentrum für Lungenforschung, DZL), Gießen, Germany
- LungenClinic Grosshansdorf (GHD), Airway Research Center North (ARCN), German Center for Lung Research (DZL), 22927, Großhansdorf, Germany
| | - Ina Koch
- German Center for Lung Research (Deutsches Zentrum für Lungenforschung, DZL), Gießen, Germany
- Comprehensive Pneumology Center Munich (CPC-M), Munich, Germany
- Asklepios Biobank für Lungenerkrankungen, Asklepios Klinik Gauting GmbH, 82131, Gauting, Germany
| | - Sabine Wessels
- German Center for Lung Research (Deutsches Zentrum für Lungenforschung, DZL), Gießen, Germany
- Translational Research Unit, Thoraxklinik at Heidelberg University Hospital, 69126, Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC), 69120, Heidelberg, Germany
| | - Marc A Schneider
- German Center for Lung Research (Deutsches Zentrum für Lungenforschung, DZL), Gießen, Germany
- Translational Research Unit, Thoraxklinik at Heidelberg University Hospital, 69126, Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC), 69120, Heidelberg, Germany
| | - Tania Araujo-Ramos
- German Cancer Research Center (DKFZ) Heidelberg, Division Chronic Inflammation and Cancer, Emmy Noether Research Group Epigenetic Machineries and Cancer, 69120, Heidelberg, Germany
| | - Indrabahadur Singh
- German Cancer Research Center (DKFZ) Heidelberg, Division Chronic Inflammation and Cancer, Emmy Noether Research Group Epigenetic Machineries and Cancer, 69120, Heidelberg, Germany
| | - Christian Kugler
- German Center for Lung Research (Deutsches Zentrum für Lungenforschung, DZL), Gießen, Germany
- LungenClinic Grosshansdorf (GHD), Airway Research Center North (ARCN), German Center for Lung Research (DZL), 22927, Großhansdorf, Germany
| | - Mircea Gabriel Stoleriu
- German Center for Lung Research (Deutsches Zentrum für Lungenforschung, DZL), Gießen, Germany
- Comprehensive Pneumology Center Munich (CPC-M), Munich, Germany
- Asklepios Biobank für Lungenerkrankungen, Asklepios Klinik Gauting GmbH, 82131, Gauting, Germany
| | - Mark Kriegsmann
- German Center for Lung Research (Deutsches Zentrum für Lungenforschung, DZL), Gießen, Germany
- Translational Lung Research Center Heidelberg (TLRC), 69120, Heidelberg, Germany
- Institute of Pathology, University of Heidelberg, 69120, Heidelberg, Germany
| | - Martin Eichhorn
- German Center for Lung Research (Deutsches Zentrum für Lungenforschung, DZL), Gießen, Germany
- Translational Lung Research Center Heidelberg (TLRC), 69120, Heidelberg, Germany
- Department of Thoracic Surgery, University of Heidelberg, 69120, Heidelberg, Germany
| | - Thomas Muley
- German Center for Lung Research (Deutsches Zentrum für Lungenforschung, DZL), Gießen, Germany
- Translational Research Unit, Thoraxklinik at Heidelberg University Hospital, 69126, Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC), 69120, Heidelberg, Germany
| | - Olivia M Merkel
- German Center for Lung Research (Deutsches Zentrum für Lungenforschung, DZL), Gießen, Germany
- Pharmaceutical Technology and Biopharmaceutics, Department of Pharmacy, Ludwig-Maximilians-University (LMU) Munich, 81377, Munich, Germany
- Comprehensive Pneumology Center Munich (CPC-M), Munich, Germany
| | - Thomas Braun
- Universities of Giessen and Marburg Lung Center (UGMLC), Giessen, Germany
- Department of Cardiac Development, Max-Planck-Institute for Heart and Lung Research, 61231, Bad Nauheim, Germany
| | - Ole Ammerpohl
- German Center for Lung Research (Deutsches Zentrum für Lungenforschung, DZL), Gießen, Germany
- Institute of Human Genetics, University Medical Center Ulm, 89081, Ulm, Germany
| | - Martin Reck
- German Center for Lung Research (Deutsches Zentrum für Lungenforschung, DZL), Gießen, Germany
- LungenClinic Grosshansdorf (GHD), Airway Research Center North (ARCN), German Center for Lung Research (DZL), 22927, Großhansdorf, Germany
| | - Achim Tresch
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany.
- Institute of Medical Statistics and Computational Biology, Faculty of Medicine, University of Cologne, Cologne, Germany.
- Center for Data and Simulation Science, University of Cologne, Cologne, Germany.
| | - Guillermo Barreto
- Université de Lorraine, CNRS, Laboratoire IMoPA, UMR 7365, 54000, Nancy, France.
- Lung Cancer Epigenetic, Max-Planck-Institute for Heart and Lung Research, 61231, Bad Nauheim, Germany.
- Universities of Giessen and Marburg Lung Center (UGMLC), Giessen, Germany.
- German Center for Lung Research (Deutsches Zentrum für Lungenforschung, DZL), Gießen, Germany.
| |
Collapse
|
3
|
Youngren-Ortiz SR, Hill DB, Hoffmann PR, Morris KR, Barrett EG, Forest MG, Chougule MB. Development of Optimized, Inhalable, Gemcitabine-Loaded Gelatin Nanocarriers for Lung Cancer. J Aerosol Med Pulm Drug Deliv 2017; 30:299-321. [PMID: 28277892 PMCID: PMC5650720 DOI: 10.1089/jamp.2015.1286] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Accepted: 01/11/2017] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Aerosol delivery of chemotherapeutic nanocarriers represents a promising alternative for lung cancer therapy. This study optimized gemcitabine (Gem)-loaded gelatin nanocarriers (GNCs) cross-linked with genipin (Gem-GNCs) to evaluate their potential for nebulized lung cancer treatment. METHODS Gem-GNCs were prepared by two-step desolvation and optimized through Taguchi design and characterized for physicochemical properties. Particle size and morphology were confirmed by scanning and transmission electron microscopy. In vitro release of Gem from Gem-GNCs performed in Dulbecco's phosphate-buffered saline and simulated lung fluid was evaluated to determine release mechanisms. Particle size stability was assessed under varying pH. Differential scanning calorimetry and powder X-ray diffraction were used to determine the presence and stability of Gem-GNC components and amorphization of Gem, respectively. Gem-GNC efficacy within A549 and H460 cells was evaluated using MTT assays. Mucus rheology upon treatment with Gem-GNCs, lactose, and normal saline control was measured. Andersen cascade impaction identified the aerodynamic particle size distribution of the nebulized formulation. RESULTS Gem-GNCs had particle size, zeta potential, entrapment efficiency, and loading efficiency of 178 ± 7.1 nm, -18.9 mV, 92.5%, and 9.1%, respectively. The Gem and formulation excipients where molecularly dispersed and configured amorphously. Gem-GNCs were stable at pH 5.4-7.4 for 72 hours. Gem release from Gem-GNCs was governed by non-Fickian controlled release due to diffusion/erosion from a matrix-based nanocarrier. Gem-GNCs elicited a 40% reduction of the complex viscosity η*(1 Hz) of human bronchial epithelial cell mucus containing 3 wt% solids to mimic mild airway disease. The nebulized Gem-GNCs had a mass median aerodynamic diameter (MMAD) of 2.0 ± 0.16 μm, geometric standard deviation (GSD) of 2.7 ± 0.16, and fine particle fraction (FPF) of 75.2% ± 2.4%. The Gem-GNC formulation did not outperform the Gem solution in A549 cells. However, in H460, Gem-GNCs outperformed the Gem IC50 reduction by ∼5-fold at 48 and 10-fold 72 hours. CONCLUSION Stable, effective, and sustained-release Gem-GNCs were developed. The nebulized Gem-GNCs had satisfactory MMAD, GSD, and FPF and the formulation reduced the dynamic complex viscosity of mucus consistent with increased mobility of nanoparticles.
Collapse
Affiliation(s)
- Susanne R. Youngren-Ortiz
- Translational Drug Delivery Research (TransDDR) Laboratory, Department of Pharmaceutical Sciences, The Daniel K. Inouye College of Pharmacy, University of Hawai'i at Hilo, Hilo, Hawai'i
| | - David B. Hill
- Department of Physics and Astronomy, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
- Marsico Lung Institute/CF Center, The University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | - Peter R. Hoffmann
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawai'i, Honolulu, Hawai'i
| | - Kenneth R. Morris
- Translational Drug Delivery Research (TransDDR) Laboratory, Department of Pharmaceutical Sciences, The Daniel K. Inouye College of Pharmacy, University of Hawai'i at Hilo, Hilo, Hawai'i
- The Lachman Institute for Pharmaceutical Analysis, Arnold & Marie Schwartz College of Pharmacy and Health Sciences, Long Island University–Brooklyn Campus, Brooklyn, New York
| | - Edward G. Barrett
- Respiratory and Asthma Program, Lovelace Respiratory Research Institute, Albuquerque, New Mexico
| | - M. Gregory Forest
- Carolina Center for Interdisciplinary Applied Mathematics, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Mahavir B. Chougule
- Translational Drug Delivery Research (TransDDR) Laboratory, Department of Pharmaceutical Sciences, The Daniel K. Inouye College of Pharmacy, University of Hawai'i at Hilo, Hilo, Hawai'i
- Pii Center for Pharmaceutical Technology, Research Institute of Pharmaceutical Sciences, University of Mississippi, Oxford, Mississippi
- Translational Drug and Gene Delivery Research (TransDGDR) Laboratory, Department of Pharmaceutics and Drug Delivery, School of Pharmacy, University of Mississippi, Oxford, Mississippi
- Natural Products and Experimental Therapeutics Program, University of Hawai'i Cancer Center, University of Hawai'i, Honolulu, Hawai'i
| |
Collapse
|