1
|
Fukunaga H, Yokoya A, Prise KM. A Brief Overview of Radiation-Induced Effects on Spermatogenesis and Oncofertility. Cancers (Basel) 2022; 14:cancers14030805. [PMID: 35159072 PMCID: PMC8834293 DOI: 10.3390/cancers14030805] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 02/03/2022] [Accepted: 02/03/2022] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Spermatogenesis is one of the most important processes for the propagation of life; however, the testes’ ability to form sperm via this differentiation process is highly radiosensitive and easily impacted by exposure to environmental, occupational, or therapeutic radiation. Furthermore, the possibility that radiation effects on the gonads can be passed on from generation to generation should not be overlooked. This review focuses on the radiation-induced effects on spermatogenesis and the transgenerational effects. We also explore the potential of novel radiobiological approaches to improve male fertility preservation during radiotherapy. Abstract The genotoxicity of radiation on germ cells may be passed on to the next generation, thus its elucidation is not only a scientific issue but also an ethical, legal, and social issue in modern society. In this article, we briefly overview the effects of radiation on spermatogenesis and its associated genotoxicity, including the latest findings in the field of radiobiology. The potential role of transgenerational effects is still poorly understood, and further research in this area is desirable. Furthermore, from the perspective of oncofertility, we discuss the historical background and clinical importance of preserving male fertility during radiation treatment and the potential of microbeam radiotherapy. We hope that this review will contribute to stimulating further discussions and investigations for therapies for pediatric and adolescent/young adult patients.
Collapse
Affiliation(s)
- Hisanori Fukunaga
- Center for Environmental and Health Sciences, Hokkaido University, Sapporo 060-0812, Japan
- Correspondence:
| | - Akinari Yokoya
- Institute for Quantum Life Science, National Institutes for Quantum Science and Technology, Ibaraki 319-1106, Japan;
- Graduate School of Science and Engineering, Ibaraki University, Ibaraki 310-8512, Japan
| | - Kevin M. Prise
- Patrick G Johnstone Centre for Cancer Research, Queen’s University Belfast, Belfast BT9 7AE, UK;
| |
Collapse
|
2
|
Qi J, Geng C, Tang X, Tian F, Han Y, Liu H, Liu Y, Bortolussi S, Guan F. Effect of spatial distribution of boron and oxygen concentration on DNA damage induced from boron neutron capture therapy using Monte Carlo simulations. Int J Radiat Biol 2021; 97:986-996. [PMID: 33970761 DOI: 10.1080/09553002.2021.1928785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 04/03/2021] [Accepted: 04/19/2021] [Indexed: 10/21/2022]
Abstract
PURPOSE This paper aims to investigate how the spatial distribution of boron in cells and oxygen concentration affect the DNA damage induced by charged particles in boron neutron capture therapy (BNCT) by Monte Carlo simulations, and further to evaluate the relative biological effectiveness (RBE) of DNA double-strand breaks (DSBs) induction. MATERIALS AND METHODS The kinetic energy spectra of α, 7Li particles in BNCT arriving at the nucleus surface were obtained from GEANT4 (Geant4 10.05.p01). The DNA damage caused by BNCT was then evaluated using MCDS (MCDS 3.10A). RESULTS When α or 7Li particles were distributed in the cytomembrane or cytoplasm, the difference in DNA damage of the same types was less than 0.5%. Taking the 137Cs photons as the reference radiation, when the oxygen concentration varied from 0% to 50%, the RBE of 0.54MeV protons and recoil protons varied from 5 to 2, whereas it decreased from 10 to 3 for α or 7Li particles. CONCLUSION The RBE of DSB induction all charged particles in BNCT decreased with the increase of oxygen concentration. This work indicated that the RBE of different radiation particles of BNCT might be affected by many factors, which should be paid attention to in theoretical research or clinical application.
Collapse
Affiliation(s)
- Jie Qi
- Department of Nuclear Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, China
| | - Changran Geng
- Department of Nuclear Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, China
- Key Laboratory of Nuclear Technology Application and Radiation Protection in Astronautics, Ministry of Industry and Information Technology, Nanjing, China
- Joint International Research Laboratory on Advanced Particle Therapy, Nanjing University of Aeronautics and Astronautics, Nanjing, China
| | - Xiaobin Tang
- Department of Nuclear Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, China
- Key Laboratory of Nuclear Technology Application and Radiation Protection in Astronautics, Ministry of Industry and Information Technology, Nanjing, China
- Joint International Research Laboratory on Advanced Particle Therapy, Nanjing University of Aeronautics and Astronautics, Nanjing, China
| | - Feng Tian
- Department of Nuclear Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, China
| | - Yang Han
- Department of Nuclear Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, China
- Department of Physics, University of Pavia, Pavia, Italy
| | - Huan Liu
- Department of Nuclear Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, China
| | - Yuanhao Liu
- Department of Nuclear Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, China
| | | | - Fada Guan
- Department of Radiation Physics, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
3
|
Impact of hypoxia on the double-strand break repair after photon and carbon ion irradiation of radioresistant HNSCC cells. Sci Rep 2020; 10:21357. [PMID: 33288855 PMCID: PMC7721800 DOI: 10.1038/s41598-020-78354-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 11/12/2020] [Indexed: 02/06/2023] Open
Abstract
DNA double-strand breaks (DSBs) induced by photon irradiation are the most deleterious damage for cancer cells and their efficient repair may contribute to radioresistance, particularly in hypoxic conditions. Carbon ions (C-ions) act independently of the oxygen concentration and trigger complex- and clustered-DSBs difficult to repair. Understanding the interrelation between hypoxia, radiation-type, and DNA-repair is therefore essential for overcoming radioresistance. The DSBs signaling and the contribution of the canonical non-homologous end-joining (NHEJ-c) and homologous-recombination (HR) repair pathways were assessed by immunostaining in two cancer-stem-cell (CSCs) and non-CSCs HNSCC cell lines. Detection and signaling of DSBs were lower in response to C-ions than photons. Hypoxia increased the decay-rate of the detected DSBs (γH2AX) in CSCs after photons and the initiation of DSB repair signaling (P-ATM) in CSCs and non-CSCs after both radiations, but not the choice of DSB repair pathway (53BP1). Additionally, hypoxia increased the NHEJ-c (DNA-PK) and the HR pathway (RAD51) activation only after photons. Furthermore, the involvement of the HR seemed to be higher in CSCs after photons and in non-CSCs after C-ions. Taken together, our results show that C-ions may overcome the radioresistance of HNSCC associated with DNA repair, particularly in CSCs, and independently of a hypoxic microenvironment.
Collapse
|
4
|
Scherthan H, Lee JH, Maus E, Schumann S, Muhtadi R, Chojowski R, Port M, Lassmann M, Bestvater F, Hausmann M. Nanostructure of Clustered DNA Damage in Leukocytes after In-Solution Irradiation with the Alpha Emitter Ra-223. Cancers (Basel) 2019; 11:cancers11121877. [PMID: 31779276 PMCID: PMC6966434 DOI: 10.3390/cancers11121877] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 11/22/2019] [Accepted: 11/23/2019] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Cancer patients are increasingly treated with alpha-particle-emitting radiopharmaceuticals. At the subcellular level, alpha particles induce densely spaced ionizations and molecular damage. Induction of DNA lesions, especially clustered DNA double-strand breaks (DSBs), threatens a cell's survival. Currently, it is under debate to what extent the spatial topology of the damaged chromatin regions and the repair protein arrangements are contributing. METHODS Super-resolution light microscopy (SMLM) in combination with cluster analysis of single molecule signal-point density regions of DSB repair markers was applied to investigate the nano-structure of DNA damage foci tracks of Ra-223 in-solution irradiated leukocytes. RESULTS Alpha-damaged chromatin tracks were efficiently outlined by γ-H2AX that formed large (super) foci composed of numerous 60-80 nm-sized nano-foci. Alpha damage tracks contained 60-70% of all γ-H2AX point signals in a nucleus, while less than 30% of 53BP1, MRE11 or p-ATM signals were located inside γ-H2AX damage tracks. MRE11 and p-ATM protein fluorescent tags formed focal nano-clusters of about 20 nm peak size. There were, on average, 12 (± 9) MRE11 nanoclusters in a typical γ-H2AX-marked alpha track, suggesting a minimal number of MRE11-processed DSBs per track. Our SMLM data suggest regularly arranged nano-structures during DNA repair in the damaged chromatin domain.
Collapse
Affiliation(s)
- Harry Scherthan
- Bundeswehr Institute of Radiobiology, University of Ulm, Neuherbergstraße 11, 80937 München, Germany; (J.-H.L.); (E.M.); (R.M.); (M.P.)
- Correspondence: (H.S.); (M.H.); Tel.: +49-89-992692-2272 (H.S.); +49-6221-549824 (M.H.)
| | - Jin-Ho Lee
- Bundeswehr Institute of Radiobiology, University of Ulm, Neuherbergstraße 11, 80937 München, Germany; (J.-H.L.); (E.M.); (R.M.); (M.P.)
- Kirchhoff-Institute for Physics, Heidelberg University, Im Neuenheimer Feld 227, 69120 Heidelberg, Germany;
| | - Emanuel Maus
- Bundeswehr Institute of Radiobiology, University of Ulm, Neuherbergstraße 11, 80937 München, Germany; (J.-H.L.); (E.M.); (R.M.); (M.P.)
- Kirchhoff-Institute for Physics, Heidelberg University, Im Neuenheimer Feld 227, 69120 Heidelberg, Germany;
| | - Sarah Schumann
- Department of Nuclear Medicine, University of Würzburg, Oberdürrbacher Str. 6, 97080 Würzburg, Germany; (S.S.); (M.L.)
| | - Razan Muhtadi
- Bundeswehr Institute of Radiobiology, University of Ulm, Neuherbergstraße 11, 80937 München, Germany; (J.-H.L.); (E.M.); (R.M.); (M.P.)
| | - Robert Chojowski
- Kirchhoff-Institute for Physics, Heidelberg University, Im Neuenheimer Feld 227, 69120 Heidelberg, Germany;
| | - Matthias Port
- Bundeswehr Institute of Radiobiology, University of Ulm, Neuherbergstraße 11, 80937 München, Germany; (J.-H.L.); (E.M.); (R.M.); (M.P.)
| | - Michael Lassmann
- Department of Nuclear Medicine, University of Würzburg, Oberdürrbacher Str. 6, 97080 Würzburg, Germany; (S.S.); (M.L.)
| | - Felix Bestvater
- German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany;
| | - Michael Hausmann
- Kirchhoff-Institute for Physics, Heidelberg University, Im Neuenheimer Feld 227, 69120 Heidelberg, Germany;
- Correspondence: (H.S.); (M.H.); Tel.: +49-89-992692-2272 (H.S.); +49-6221-549824 (M.H.)
| |
Collapse
|
5
|
Ravanat JL, Breton J, Douki T, Gasparutto D, Grand A, Rachidi W, Sauvaigo S. Radiation-mediated formation of complex damage to DNA: a chemical aspect overview. Br J Radiol 2014; 87:20130715. [PMID: 24472775 DOI: 10.1259/bjr.20130715] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
During the last three decades, a considerable amount of work has been undertaken to determine the nature, the mechanism of formation and the biological consequences of radiation-induced DNA lesions. Most of the information was obtained via the development of chemical approaches, including theoretical, analytical and organic synthesis methods. Since it is not possible to present all the results obtained in this review article, we will focus on recent data dealing with the formation of complex DNA lesions produced by a single oxidation event, as these lesions may play a significant role in cellular responses to ionizing radiation and also to other sources of oxidative stress. Through the description of specific results, the contribution of different chemical disciplines in the assessment of the structure, the identification of the mechanism of formation and the biological impacts in terms of repair and mutagenicity of these complex radiation-induced DNA lesions will be highlighted.
Collapse
Affiliation(s)
- J-L Ravanat
- Laboratoire Lésions des Acides Nucléiques, Université Joseph Fourier/CEA/Institut Nanoscience et Cryogénie/SCIB, UMR-E3, Grenoble, France
| | | | | | | | | | | | | |
Collapse
|
6
|
|
7
|
Ionizing radiation-induced metabolic oxidative stress and prolonged cell injury. Cancer Lett 2011; 327:48-60. [PMID: 22182453 DOI: 10.1016/j.canlet.2011.12.012] [Citation(s) in RCA: 948] [Impact Index Per Article: 67.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2011] [Revised: 12/07/2011] [Accepted: 12/07/2011] [Indexed: 12/18/2022]
Abstract
Cellular exposure to ionizing radiation leads to oxidizing events that alter atomic structure through direct interactions of radiation with target macromolecules or via products of water radiolysis. Further, the oxidative damage may spread from the targeted to neighboring, non-targeted bystander cells through redox-modulated intercellular communication mechanisms. To cope with the induced stress and the changes in the redox environment, organisms elicit transient responses at the molecular, cellular and tissue levels to counteract toxic effects of radiation. Metabolic pathways are induced during and shortly after the exposure. Depending on radiation dose, dose-rate and quality, these protective mechanisms may or may not be sufficient to cope with the stress. When the harmful effects exceed those of homeostatic biochemical processes, induced biological changes persist and may be propagated to progeny cells. Physiological levels of reactive oxygen and nitrogen species play critical roles in many cellular functions. In irradiated cells, levels of these reactive species may be increased due to perturbations in oxidative metabolism and chronic inflammatory responses, thereby contributing to the long-term effects of exposure to ionizing radiation on genomic stability. Here, in addition to immediate biological effects of water radiolysis on DNA damage, we also discuss the role of mitochondria in the delayed outcomes of ionization radiation. Defects in mitochondrial functions lead to accelerated aging and numerous pathological conditions. Different types of radiation vary in their linear energy transfer (LET) properties, and we discuss their effects on various aspects of mitochondrial physiology. These include short and long-term in vitro and in vivo effects on mitochondrial DNA, mitochondrial protein import and metabolic and antioxidant enzymes.
Collapse
|
8
|
ROS-generating NADPH oxidase NOX4 is a critical mediator in oncogenic H-Ras-induced DNA damage and subsequent senescence. Oncogene 2011; 31:1117-29. [PMID: 21841825 PMCID: PMC3307059 DOI: 10.1038/onc.2011.327] [Citation(s) in RCA: 230] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Activated Ras oncogene induces DNA-damage response by triggering reactive oxygen species (ROS) production and this is critical for oncogene-induced senescence. Until now, little connections between oncogene expression, ROS-generating NADPH oxidases and DNA-damage response have emerged from different studies. Here we report that H-RasV12 positively regulates the NADPH oxidase system NOX4-p22(phox) that produces H(2)O(2). Knocking down the NADPH oxidase with small interference RNA decreases H-RasV12-induced DNA-damage response detected by γ-H2A.X foci analysis. Using HyPer, a specific probe for H(2)O(2), we detected an increase in H(2)O(2) in the nucleus correlated with NOX4-p22(phox) perinuclear localization. DNA damage response can be caused not only by H-RasV12-driven accumulation of ROS but also by a replicative stress due to a sustained oncogenic signal. Interestingly, NOX4 downregulation by siRNA abrogated H-RasV12 regulation of CDC6 expression, an essential regulator of DNA replication. Moreover, senescence markers, such as senescence-associated heterochromatin foci, PML bodies, HP1β foci and p21 expression, induced under H-RasV12 activation were decreased with NOX4 inactivation. Taken together, our data indicate that NADPH oxidase NOX4 is a critical mediator in oncogenic H-RasV12-induced DNA-damage response and subsequent senescence.
Collapse
|
9
|
Biologie des radiations : avancées majeures et perspectives pour la radiothérapie. Cancer Radiother 2011; 15:348-54. [DOI: 10.1016/j.canrad.2011.05.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2010] [Revised: 05/05/2011] [Accepted: 05/10/2011] [Indexed: 11/22/2022]
|
10
|
Cadet J, Douki T, Ravanat JL. Measurement of oxidatively generated base damage in cellular DNA. Mutat Res 2011; 711:3-12. [PMID: 21329709 DOI: 10.1016/j.mrfmmm.2011.02.004] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2010] [Revised: 01/26/2011] [Accepted: 02/06/2011] [Indexed: 05/30/2023]
Abstract
This survey focuses on the critical evaluation of the main methods that are currently available for monitoring single and complex oxidatively generated damage to cellular DNA. Among chromatographic methods, HPLC-ESI-MS/MS and to a lesser extent HPLC-ECD which is restricted to a few electroactive nucleobases and nucleosides are appropriate for measuring the formation of single and clustered DNA lesions. Such methods that require optimized protocols for DNA extraction and digestion are sensitive enough for measuring base lesions formed under conditions of severe oxidative stress including exposure to ionizing radiation, UVA light and high intensity UVC laser pulses. In contrast application of GC-MS and HPLC-MS methods that are subject to major drawbacks have been shown to lead to overestimated values of DNA damage. Enzymatic methods that are based on the use of DNA repair glycosylases in order to convert oxidized bases into strand breaks are suitable, even if they are far less specific than HPLC methods, to deal with low levels of single modifications. Several other methods including immunoassays and (32)P-postlabeling methods that are still used suffer from drawbacks and therefore are not recommended. Another difficult topic is the measurement of oxidatively generated clustered DNA lesions that is currently achieved using enzymatic approaches and that would necessitate further investigations.
Collapse
Affiliation(s)
- Jean Cadet
- Laboratoire "Lésions des Acides Nucléiques", SCIB-UMR-E n°3 (CEA/UJF), FRE CNRS 3200, Département de Recherche Fondamentale sur la Matière Condensée, CEA/Grenoble, F-38054 Grenoble Cedex 9, France.
| | | | | |
Collapse
|
11
|
Averbeck D. Does scientific evidence support a change from the LNT model for low-dose radiation risk extrapolation? HEALTH PHYSICS 2009; 97:493-504. [PMID: 19820459 DOI: 10.1097/hp.0b013e3181b08a20] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
The linear no-threshold (LNT) model has been widely used to establish international rules and standards in radiation protection. It is based on the notion that the physical energy deposition of ionizing radiation (IR) increases carcinogenic risk linearly with increasing dose (i.e., the carcinogenic effectiveness remains constant irrespective of dose) and, within a factor of two, also with dose-rate. However, recent findings have strongly put into question the LNT concept and its scientific validity, especially for very low doses and dose-rates. Low-dose effects are more difficult to ascertain than high-dose effects. Epidemiological studies usually lack sufficient statistical power to determine health risks from very low-dose exposures. In this situation, studies of the fundamental mechanisms involved help to understand and assess short- and long-term effects of low-dose IR and to evaluate low-dose radiation risks. Several lines of evidence demonstrate that low-dose and low dose-rate effects are generally lower than expected from high-dose exposures. DNA damage signaling, cell cycle checkpoint activation, DNA repair, gene and protein expression, apoptosis, and cell transformation differ qualitatively and quantitatively at high- and low-dose IR exposures, and most animal and epidemiological data support this conclusion. Thus, LNT appears to be scientifically invalid in the low-dose range.
Collapse
Affiliation(s)
- Dietrich Averbeck
- Dietrich Averbeck, Institut Curie-Section de Recherche, UMR2027 CNRS/I.C., Centre Universitaire, F-91405 ORSAY Cedex, France.
| |
Collapse
|
12
|
Biston MC, Joubert A, Charvet AM, Balosso J, Foray N. In vitro and in vivo optimization of an anti-glioma modality based on synchrotron X-ray photoactivation of platinated drugs. Radiat Res 2009; 172:348-58. [PMID: 19708784 DOI: 10.1667/rr1650.1] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
For the past 5 years, a radio-chemotherapy approach based on the photoactivation of platinum atoms (PAT-Plat) consisting of treating tumors with platinated compounds and irradiating them above the platinum K edge (78.4 keV) has been developed at the European Synchrotron Radiation Facility (Grenoble, France). Compared to other preclinical modalities, PAT-Plat provides the highest survivals of rats bearing the rodent F98 glioma. However, further investigations are required to optimize its efficiency and to allow its clinical application. Here we examined in vitro and in vivo whether monochromatic X rays are more efficient than high-energy photons in producing the PAT-Plat effect by measuring DNA double-strand breaks (DSBs) and survival of glioma-bearing rats and whether an increase in the platinum concentration in the tumor results in increased rat survival. DSBs were assessed by pulsed-field gel electrophoresis with different DNA fragment migration programs and with gamma-H2AX immunofluorescence. In vivo, F98 glioma cells were injected intracerebrally, treated with a single intracranial injection of cisplatin or carboplatin 13 days after tumor implantation, and irradiated the day after with 78.8 keV X rays or 6 MV photons. Our results indicate that 78.8 keV X rays are more efficient than high-energy photons at producing the PAT-Plat effect. At low concentrations, cisplatin is more efficient than carboplatin; this is likely due to more efficient DNA binding and DSB repair inhibition. High concentrations of carboplatin inside tumors do not necessarily lead to protracted survival of rats. The therapeutic benefit of anti-glioma synchrotron strategies appears to be correlated with the percentage of unrepaired DSBs but not with the number of DSBs induced.
Collapse
|
13
|
Held KD. Effects of low fluences of radiations found in space on cellular systems. Int J Radiat Biol 2009; 85:379-90. [DOI: 10.1080/09553000902838558] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
14
|
Batra V, Devasagayam TPA. Interaction between cytotoxic effects of gamma-radiation and folate deficiency in relation to choline reserves. Toxicology 2008; 255:91-9. [PMID: 19010378 DOI: 10.1016/j.tox.2008.10.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2008] [Revised: 10/06/2008] [Accepted: 10/16/2008] [Indexed: 01/18/2023]
Abstract
The search for non-toxic radio-protective drugs has yielded many potential agents but most of these compounds have certain amount of toxicity. Recent studies have indicated that bio-molecules such as folate and choline might be of radio-protective value as they are, within broad dose ranges, non-toxic to humans and experimental animals. The objective of the present study was to investigate choline dependent adaptive response to potential synergistic cytotoxic effect of folate deficiency and gamma-radiation. Male Swiss mice maintained on folate sufficient diet (FSD) and folate free diet (FFD) based on AIN-93M formula, were subjected to 1-4Gy total body gamma-irradiation. To investigate liver DNA damage, apurinic/apyrimidinic sites (AP sites) were quantified. A significant increase in liver DNA AP sites with concomitant depletion of liver choline reserves was observed when gamma-radiation was combined with folate deficiency. Further work in this direction suggested that cytotoxic interaction between folate deficiency and gamma radiation might induce utilization of choline and choline containing moieties by modifying levels of key regulatory enzymes dihydrofolate reductase (DHFR) and choline oxidase (ChoOx). Another major finding of these studies is that significant liver damage at higher doses of radiation (3-4Gy), might release considerable amounts of choline reserves to serum. In conclusion, a plausible interpretation of the present studies is that folate deprivation and gamma-radiation interact to mobilize additional choline reserves of hepatic tissue, for redistribution to other organs, which could not be utilized by folate deficiency alone. Present results clearly indicated a distinct choline pool in liver and kidney tissues that could be utilized by folate deficient animals only under radiation stress conditions.
Collapse
Affiliation(s)
- Vipen Batra
- Radiation Biology and Health Sciences Division, Bhabha Atomic Research Centre, Mumbai - 400085, India.
| | | |
Collapse
|
15
|
Hada M, Georgakilas AG. Formation of clustered DNA damage after high-LET irradiation: a review. JOURNAL OF RADIATION RESEARCH 2008; 49:203-10. [PMID: 18413977 DOI: 10.1269/jrr.07123] [Citation(s) in RCA: 320] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Radiation can cause as well as cure cancer. The risk of developing radiation-induced cancer has traditionally been estimated from cancer incidence among survivors of the atomic bombs in Hiroshima and Nagasaki.(1)) These data provide the best estimate of human cancer risk over the dose range for low linear energy transfer (LET) radiations, such as X- or gamma-rays. The situation of estimating the real biological effects becomes even more difficult in the case of high LET particles encountered in space or as the result of domestic exposure to alpha-particles from radon gas emitters or other radioactive emitters like uranium-238. Complex DNA damage, i.e., the signature of high-LET radiations comprises of closely spaced DNA lesions forming a cluster of DNA damage. The two basic groups of complex DNA damage are double strand breaks (DSBs) and non-DSB oxidative clustered DNA lesions (OCDL). Theoretical analysis and experimental evidence suggest an increased complexity and severity of complex DNA damage with increasing LET (linear energy transfer) and a high mutagenic or carcinogenic potential. Data available on the formation of clustered DNA damage (DSBs and OCDL) by high-LET radiations are often controversial suggesting a variable response to dose and type of radiation. The chemical nature and cellular repair mechanisms of complex DNA damage have been much less characterized than those of isolated DNA lesions like an oxidized base or a single strand break especially in the case of high-LET radiation. This review will focus on the induction of clustered DNA damage by high-LET radiations presenting the earlier and recent relative data.
Collapse
Affiliation(s)
- Megumi Hada
- NASA Johnson Space Center, Houston, Texas 77058, USA
| | | |
Collapse
|
16
|
Abstract
Radiation-induced DNA damage clusters have been proposed and are usually considered to pose the threat of serious biological damage. This has been attributed to DNA repair debilitation or cessation arising from the complexity of cluster damage. It will be shown here, contrary to both previous suggestions and perceived wisdom, that radiation induced damage clusters contribute to non-problematic risks in the low-dose, low-LET regime. The very complexity of cluster damage which inhibits and/or compromises DNA repair will ultimately be responsible for the elimination and/or diminution of precancerous and cancerous cells.
Collapse
Affiliation(s)
- Daniel P Hayes
- Office of Radiological Health, New York City Department of Health & Mental Hygiene, 2 Lafayette Street, New York, NY 10007, USA.
| |
Collapse
|
17
|
Déterminants et facteurs prédictifs pour la radiosensibilité tumorale. Cancer Radiother 2008; 12:3-13. [DOI: 10.1016/j.canrad.2007.11.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2007] [Revised: 11/22/2007] [Accepted: 11/23/2007] [Indexed: 11/16/2022]
|
18
|
Georgakilas AG. Processing of DNA damage clusters in human cells: current status of knowledge. MOLECULAR BIOSYSTEMS 2007; 4:30-5. [PMID: 18075671 DOI: 10.1039/b713178j] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Eukaryotic cells exposed to DNA damaging agents activate important defensive pathways by inducing multiple proteins involved in DNA repair, cell cycle checkpoint control and potentially apoptosis. After the acceptance of the hypothesis that oxidatively generated clustered DNA lesions (OCDL: closely spaced DNA lesions) can be induced even by low doses of ionizing radiation or even endogenously, and significant advances have been made in the understanding of the biochemistry underlying the repair of closely spaced DNA lesions, many questions still remain unanswered. The major questions that have to be answered in the near future are: 1) how human cells process these types of DNA damage if they repair them at all, 2) under what conditions a double strand break (DSB) may be created during the processing of two closely spaced DNA lesions and 3) what type of repair protein interactions govern the processing of complex DNA damage? The data existing so far on human cells and tissues are very limited and in some cases contradicting. All of them though agree however on the major importance of gaining mechanistic insights on the pathways used by the cell to confront and process complex DNA damage located in a small DNA volume and the need of more in depth analytical studies. We selectively review recently-obtained data on the processing of non-DSB DNA damage clusters in human cells and tissues and discuss the current status of knowledge in the field.
Collapse
Affiliation(s)
- Alexandros G Georgakilas
- Department of Biology, Thomas Harriot College of Arts and Sciences, East Carolina University, Greenville NC 27858, USA.
| |
Collapse
|