1
|
Smith TL, Ryan TL, Escalona MB, Shuryak IE, Balajee AS. Application of FISH based G2-PCC assay for the cytogenetic assessment of high radiation dose exposures: Potential implications for rapid triage biodosimetry. PLoS One 2024; 19:e0312564. [PMID: 39453904 PMCID: PMC11508073 DOI: 10.1371/journal.pone.0312564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 10/08/2024] [Indexed: 10/27/2024] Open
Abstract
The main goal of this study is to test the utility of calyculin A induced G2-PCC assay as a biodosimetry triage tool for assessing a wide range of low and acute high radiation dose exposures of photons. Towards this initiative, chromosome aberrations induced by low and high doses of x-rays were evaluated and characterized in G2-prematurely condensed chromosomes (G2-PCCs) by fluorescence in situ hybridization (FISH) using human centromere and telomere specific PNA (peptide nucleic acid) probes. A dose dependent increase in the frequency of dicentric chromosomes was observed in the G2-PCCs up to 20 Gy of x-rays. The combined yields of dicentrics and rings in the G2-PCCs showed a clear dose dependency up to 20 Gy from 0.02/cell for 0.1 Gy to 14.98/cell for 20 Gy. Centric rings were observed more frequently than acentric ring chromosomes in the G2-PCCs at all the radiation doses from 1 Gy to 20 Gy. A head-to-head comparison was also performed by FISH on the yields of chromosome aberrations induced by different doses of x-rays (0 Gy -7.5 Gy) in colcemid arrested metaphase chromosomes and calyculin A induced G2-PCCs. In general, the frequencies of dicentrics, rings and acentric fragments were slightly higher in G2-PCCs than in colcemid arrested metaphase chromosomes at all the radiation doses, but the differences were not statistically significant. To reduce the turnaround time for absorbed radiation dose estimation, attempt was made to obtain G2-PCCs by reducing the culture time to 36 hrs. The absorbed doses estimated in x-rays irradiated (0,1,2 and 4 Gy) G2-PCCs after 36 hrs of culture were grossly like that of G2-PCCs and colcemid arrested metaphase chromosomes prepared after 48 hrs of culture. Our study indicates that the shortened version of calyculin A induced G2-PCC assay coupled with the FISH staining technique can serve as an effective triage biodosimetry tool for large-scale radiological/nuclear incidents.
Collapse
Affiliation(s)
- Tammy L. Smith
- Cytogenetic Biodosimetry Laboratory, Radiation Emergency Assistance Center/Training Site, Oak Ridge Institute for Science and Education, Oak Ridge Associated Universities, Oak Ridge, Tennessee, United States of America
| | - Terri L. Ryan
- Cytogenetic Biodosimetry Laboratory, Radiation Emergency Assistance Center/Training Site, Oak Ridge Institute for Science and Education, Oak Ridge Associated Universities, Oak Ridge, Tennessee, United States of America
| | - Maria B. Escalona
- Cytogenetic Biodosimetry Laboratory, Radiation Emergency Assistance Center/Training Site, Oak Ridge Institute for Science and Education, Oak Ridge Associated Universities, Oak Ridge, Tennessee, United States of America
| | - Igor E. Shuryak
- Center for Radiological Research, Department of Radiation Oncology, Columbia University Medical Center, New York, New York, United States of America
| | - Adayabalam S. Balajee
- Cytogenetic Biodosimetry Laboratory, Radiation Emergency Assistance Center/Training Site, Oak Ridge Institute for Science and Education, Oak Ridge Associated Universities, Oak Ridge, Tennessee, United States of America
| |
Collapse
|
2
|
Vinnikov VA. Effect of changing the radiation dose range on the in vitro cytogenetic dose response to gamma-rays. Int J Radiat Biol 2024; 100:875-889. [PMID: 38647504 DOI: 10.1080/09553002.2024.2338511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 03/27/2024] [Indexed: 04/25/2024]
Abstract
PURPOSE To examine the distortion of the linear quadratic (LQ) model of in vitro cytogenetic dose response over an extended range of γ-ray doses by analyzing the available literature data, and to establish the dose ranges, in which the LQ dose response curve (DRC) can be most accurately fitted for biological dosimetry. MATERIALS AND METHODS Data on yields of dicentrics (Dic) or dicentrics plus centric rings (Dic + CR) induced in vitro in human lymphocytes by acute γ-rays were extracted from 108 open sources. The overall dose response dataset in the dose range up to 50 Gy was fitted to a fractional-rational (FR) model, which included a 'basic' LQ function in the numerator, and a reduction factor dependent on the square of the dose in the denominator. Cytogenetic dose response data obtained at Grigoriev Institute for Medical Radiology, Kharkiv, Ukraine (GIMRO) in the range 0.1 - 20.3 Gy acute γ-rays were fitted to the LQ model with the progressive changing minimum or maximum radiation dose. RESULTS The overall dose response, as expected, followed the LQ function in the dose range ≤5 Gy, but in the extended dose range appeared to be S-shaped, with intensive saturation and a plateau at doses ≥22 Gy. Coefficients of the 'basic' LQ equation in FR model were very close to many published DRCs; calculated asymptote was 17. Fitting of the GIMRO dataset to the LQ model with the shift of the dose range showed the increase in linear coefficient with the increment of either minimum or maximum radiation dose, while the decline of the quadratic coefficient was regulated mostly by the increase of the highest dose. The best goodness of fit, assessed by lower χ2 values, occurred for dose ranges 0.1 - 1.0 Gy; 0.5 - 5.9 Gy; 1.0 - 7.8 Gy; 2.0 - 9.6 Gy, 3.9 - 16.4 Gy and 5.9 - 20.3 Gy. The 'see-saw' effect in changes of LQ coefficients was confirmed by re-fitting datasets published by other laboratories. CONCLUSIONS The classical LQ model with fixed coefficients appears to have limited applicability for cytogenetic dosimetry at radiation doses >5 Gy due to the saturation of the dose response. Different response of the LQ coefficients to the changes of the dose range must be considered during the DRC construction. Proper selection of minimum and maximum dose in calibration experiments makes it possible to improve the goodness of fit of the LQ DRC.
Collapse
Affiliation(s)
- Volodymyr A Vinnikov
- S.P. Grigoriev Institute for Medical Radiology and Oncology, National Academy of Medical Science of Ukraine, Kharkiv, Ukraine
- Department of Radiobiology, Cancer Research Institute, Biomedical Research Centre of Slovak Academy of Science, Bratislava, Slovak Republic
| |
Collapse
|
3
|
C H A, Maddaly R. Applications of Premature Chromosome Condensation technique for genetic analysis. Toxicol In Vitro 2024; 94:105736. [PMID: 37984482 DOI: 10.1016/j.tiv.2023.105736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 10/29/2023] [Accepted: 11/15/2023] [Indexed: 11/22/2023]
Abstract
Cytogenetic techniques are used to detect aberrations in the genetic material and such techniques have a wide range of applications including for disease diagnosis, drug discovery and for the detection and quantification of mutagenic exposures. Although different types of cytogenetic techniques are in use, the Premature Chromosome Condensation (PCC) is one which is unique by virtue of it not requiring culture of peripheral blood mononucleate cells (PBMNCs) to detect chromatid and chromosomal aberrations. Such an advantage is useful in situations where rapid assessments of genetic damage is required, for example, during radiation exposures. PCC utilizes condensation of interphase chromatin by either biological or chemical means. The most widely used application of PCC is for biodosimetry. However, the rapidness of aberration detection has made PCC a useful technique for other applications such as for cancer diagnosis, drug-induced genotoxicity and preimplantation or assisted reproductive techniques. Also, PCC can be utilized for understanding the fundamental cellular mechanisms involved in chromatin condensation and chromosome morphologies. We present here the various approaches to obtain PCC, its applications and the endpoints which are used while using PCC as a cytogenetic technique.
Collapse
Affiliation(s)
- Anjali C H
- Department of Human Genetics, Faculty of Biomedical Sciences and Technology, Sri Ramachandra Institute of Higher Education and Research, Chennai, Tamil Nadu 600116, India
| | - Ravi Maddaly
- Department of Human Genetics, Faculty of Biomedical Sciences and Technology, Sri Ramachandra Institute of Higher Education and Research, Chennai, Tamil Nadu 600116, India.
| |
Collapse
|
4
|
Meenakshi C, Venkatachalam P, Satish Srinivas K, Chandrasekaran S, Venkatraman B. Chromosome length ratio as a biomarker of DNA damage in cells exposed to high dose ionizing radiation. MUTATION RESEARCH. GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2022; 879-880:503501. [PMID: 35914861 DOI: 10.1016/j.mrgentox.2022.503501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 04/28/2022] [Accepted: 05/13/2022] [Indexed: 06/15/2023]
Abstract
The premature chromosome condensation (PCC) assay is considered as complementary bio-dosimetry tool for chromosome aberration assay and the PCC assay can be used to estimate high dose exposure. Though the PCC ring is considered as prospective biomarker, chromosome length ratio (ratio of longest and shortest chromosome length in PCC spreads) of chemically induced PCC is shown to be very good indicator of ionizing radiation. In view of this, an in-vitro study has been performed using PCC assay to suggest chromosome length ratio (LR) as potential bio-dosimeter induced by high dose ionizing radiation. Blood samples were collected from healthy subjects (n = 3) after prior consent and irradiated to ten different doses ranging between 0 and 20 Gy using 6 MV LINAC X-rays with dose rate of 5.6 Gy/min. Irradiated lymphocytes were cultured and calyculin induced PCC spreads were prepared. PCC spreads were captured using image analysis system and chromosome lengths were measured using open-source ImageJ software. For each dose, LR for 50 chromosome spreads were computed and mean LR value was calculated. LR varies between 6.0 ± 0.08 and 23.6 ± 0.55 for the dose range between 2 and 20 Gy. The dose response curve for LR was observed to be linear with y = 1.02x + 3.36, R2 = 0.97. Linear dose response relationship obtained in the present study confirms the prospective use of LR measurement. This study is first of its kind to examine chromosome length ratio as a biomarker of DNA damage in cells exposed to high dose X-ray exposure.
Collapse
Affiliation(s)
- C Meenakshi
- Human Genetics Department, Sri Ramachandra Institute of Higher Education and Research, Chennai 600116, India.
| | - P Venkatachalam
- Human Genetics Department, Sri Ramachandra Institute of Higher Education and Research, Chennai 600116, India
| | - K Satish Srinivas
- Department of Radiation Oncology, Sri Ramachandra Institute of Higher Education and Research, Chennai 600116, India
| | - S Chandrasekaran
- Health, Safety and Environmental Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603102, India
| | - B Venkatraman
- Health, Safety and Environmental Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603102, India
| |
Collapse
|
5
|
Healthy Tissue Damage Following Cancer Ion Therapy: A Radiobiological Database Predicting Lymphocyte Chromosome Aberrations Based on the BIANCA Biophysical Model. Int J Mol Sci 2021; 22:ijms221910877. [PMID: 34639218 PMCID: PMC8509193 DOI: 10.3390/ijms221910877] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/06/2021] [Accepted: 10/06/2021] [Indexed: 12/20/2022] Open
Abstract
Chromosome aberrations are widely considered among the best biomarkers of radiation health risk due to their relationship with late cancer incidence. In particular, aberrations in peripheral blood lymphocytes (PBL) can be regarded as indicators of hematologic toxicity, which is a major limiting factor of radiotherapy total dose. In this framework, a radiobiological database describing the induction of PBL dicentrics as a function of ion type and energy was developed by means of the BIANCA (BIophysical ANalysis of Cell death and chromosome Aberrations) biophysical model, which has been previously applied to predict the effectiveness of therapeutic-like ion beams at killing tumour cells. This database was then read by the FLUKA Monte Carlo transport code, thus allowing us to calculate the Relative Biological Effectiveness (RBE) for dicentric induction along therapeutic C-ion beams. A comparison with previous results showed that, while in the higher-dose regions (e.g., the Spread-Out Bragg Peak, SOBP), the RBE for dicentrics was lower than that for cell survival. In the lower-dose regions (e.g., the fragmentation tail), the opposite trend was observed. This work suggests that, at least for some irradiation scenarios, calculating the biological effectiveness of a hadrontherapy beam solely based on the RBE for cell survival may lead to an underestimation of the risk of (late) damage to healthy tissues. More generally, following this work, BIANCA has gained the capability of providing RBE predictions not only for cell killing, but also for healthy tissue damage.
Collapse
|
6
|
Cai TJ, Li S, Lu X, Zhang CF, Yuan JL, Zhang QZ, Tian XL, Lian DX, Li MS, Zhang Z, Liu G, Zhao H, Niu LM, Tian M, Hou CS, Liu QJ. Dose-effect relationships of 12C 6+ ions-induced dicentric plus ring chromosomes, micronucleus and nucleoplasmic bridges in human lymphocytes in vitro. Int J Radiat Biol 2021; 97:657-663. [PMID: 33704009 DOI: 10.1080/09553002.2021.1900945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 02/10/2021] [Accepted: 02/25/2021] [Indexed: 10/21/2022]
Abstract
PURPOSE The objective of this research was to explore the dose-effect relationships of dicentric plus ring (dic + r), micronucleus (MN) and nucleoplasmic bridges (NPB) induced by carbon ions in human lymphocytes. MATERIALS AND METHODS Venous blood samples were collected from three healthy donors. 12C6+ ions beam was used to irradiate the blood samples at the energy of 330 MeV and linear energy transfer (LET) of 50 keV/μm with a dose rate of 1 Gy/min in the spread-out Bragg peak. The irradiated doses were 0 (sham irradiation), 1, 2, 3, 4, 5 and 6 Gy. Dic + r chromosomes aberrations were scored in metaphases. The cytokinesis-block micronucleus cytome (CBMN) was conducted to analyze MN and NPB. The maximum low-dose relative biological effectiveness (RBEM) values of the induction of dic + r, MN and NPB in human lymphocytes for 12C6+ ions irradiation was calculated relative to 60Co γ-rays. RESULTS The frequencies of dic + r, MN and NPB showed significantly increases in a dose-depended manner after exposure to 12C6+ ions. The distributions of dic + r and MN exhibited overdispersion, while the distribution of NPB agreed with Poisson distribution at all doses. Linear-quadratic equations were established based on the frequencies of dic + r and MN. The dose-response curves of NPB frequencies followed a linear model. The derived RBEM values for dic + r, MN and NPB in human lymphocytes irradiated with 12C6+ ions were 8.07 ± 2.73, 2.69 ± 0.20 and 4.00 ± 2.69 in comparison with 60Co γ-rays. CONCLUSION The dose-response curves of carbon ions-induced dic + r, MN and NPB were constructed. These results could be helpful to improve radiation risk assessment and dose estimation after exposed to carbon ions irradiation.
Collapse
Affiliation(s)
- Tian-Jing Cai
- China CDC Key Laboratory of Radiological Protection and Nuclear Emergency, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing, P. R. China
| | - Shuang Li
- China CDC Key Laboratory of Radiological Protection and Nuclear Emergency, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing, P. R. China
| | - Xue Lu
- China CDC Key Laboratory of Radiological Protection and Nuclear Emergency, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing, P. R. China
| | - Chun-Fei Zhang
- Central Medical District of PLA General Hospital, Beijing, P. R. China
| | - Ji-Long Yuan
- China CDC Key Laboratory of Radiological Protection and Nuclear Emergency, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing, P. R. China
| | - Qing-Zhao Zhang
- China CDC Key Laboratory of Radiological Protection and Nuclear Emergency, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing, P. R. China
| | - Xue-Lei Tian
- China CDC Key Laboratory of Radiological Protection and Nuclear Emergency, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing, P. R. China
| | - De-Xing Lian
- China CDC Key Laboratory of Radiological Protection and Nuclear Emergency, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing, P. R. China
| | - Ming-Sheng Li
- China CDC Key Laboratory of Radiological Protection and Nuclear Emergency, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing, P. R. China
| | - Zhen Zhang
- China CDC Key Laboratory of Radiological Protection and Nuclear Emergency, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing, P. R. China
| | - Gang Liu
- Gansu Province Center for Disease Control and Prevention, Lanzhou, Gansu, P. R. China
| | - Hua Zhao
- China CDC Key Laboratory of Radiological Protection and Nuclear Emergency, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing, P. R. China
| | - Li-Mei Niu
- Gansu Province Center for Disease Control and Prevention, Lanzhou, Gansu, P. R. China
| | - Mei Tian
- China CDC Key Laboratory of Radiological Protection and Nuclear Emergency, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing, P. R. China
| | - Chang-Song Hou
- China CDC Key Laboratory of Radiological Protection and Nuclear Emergency, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing, P. R. China
| | - Qing-Jie Liu
- China CDC Key Laboratory of Radiological Protection and Nuclear Emergency, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing, P. R. China
| |
Collapse
|
7
|
Sun M, Moquet J, Lloyd D, Ainsbury E. A faster and easier biodosimetry method based on calyculin A-induced premature chromosome condensation (PCC) by scoring excess objects. JOURNAL OF RADIOLOGICAL PROTECTION : OFFICIAL JOURNAL OF THE SOCIETY FOR RADIOLOGICAL PROTECTION 2020; 40:892-905. [PMID: 32590374 DOI: 10.1088/1361-6498/aba085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Dicentric analysis and the ring PCC assay as established biodosimetry methods both have limitations in the estimation of absorbed doses in suspected overexposure cases between 5 and 10 Gy. The proposed method based on calyculin A-induced PCC overcomes these limitations by scoring excess objects as the endpoint. This new scoring method can potentially serve as a faster and up-scalable approach that complements the existing methods with higher accuracy at different dose ranges. It can also potentially be performed by less skilled workers when no automated system is available in mass casualty emergency cases to assist with the triage of patients. Additionally, it offers the possibility to further reduce the sample size and PCC induction time. In this pilot study, a calibration curve for excess objects was constructed using the new scoring method for the first time and a blind validation test composed of three unknown doses was carried out. Almost all the dose estimates were within the 95% confidence limits of the actual test doses by scoring only 50-100 PCC spreads. This method was found to be more accurate than ring PCC for doses below 10 Gy.
Collapse
|
8
|
Park S, Park JH, Ryu SH, Yeom J, Ryu JW, Park EY, Choi KC, Heo SH, Kim KH, Ha CH, Chang SK, Lee SW. Radiation-Induced Phosphorylation of Serine 360 of SMC1 in Human Peripheral Blood Mononuclear Cells. Radiat Res 2019; 191:262-270. [PMID: 30702968 DOI: 10.1667/rr15179.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
In the event of a mass casualty radiation scenario, biodosimetry has the potential to quantify individual exposures for triaging and providing dose-appropriate medical intervention. Structural maintenance of chromosomes 1 (SMC1) is phosphorylated in response to ionizing radiation. The goal of this study was to develop a new biodosimetry method using SMC1 phosphorylation as a measure of exposure to radiation. In the initial experiments, two normal human cell lines (WI-38VA-13 and HaCaT) and four lymphoblastoid cell lines were irradiated, and the levels of SMC1 phosphorylation at Ser-360 and Ser-957 were assessed using Western blotting. Subsequently, similar experiments were performed using peripheral blood mononuclear cells (PBMCs) obtained from 20 healthy adults. Phosphorylation of SMC1 at Ser-957 and Ser-360 was increased by exposure in a dose-dependent manner, peaked at 1-3 h postirradiation and then decreased gradually. Ser-360 was identified as a new phosphorylation site and was more sensitive to radiation than Ser-957, especially at doses below 1 Gy. Our results demonstrate a robust ex vivo response of phospho-SMC1-(Ser-360) to ionizing radiation in human PBMCs. Detection of phosphorylation at Ser-360 in SMC1 could be used as a marker of radiation exposure. Our findings suggest that it is feasible to measure blood cell-based changes in the phosphorylation level of a protein as an ex vivo radiation exposure detection method, even after low-dose exposure.
Collapse
Affiliation(s)
- Sunmin Park
- a Department of Radiation Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Jin-Hong Park
- a Department of Radiation Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Seung-Hee Ryu
- a Department of Radiation Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Jeonghun Yeom
- c Department of Convergence Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Je-Won Ryu
- d Asan Institute for Life Sciences, Asan Medical Center, Seoul, Republic of Korea
| | - Eun-Young Park
- a Department of Radiation Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Kyung-Chul Choi
- b Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Seung-Ho Heo
- d Asan Institute for Life Sciences, Asan Medical Center, Seoul, Republic of Korea
| | - Kang Hyun Kim
- d Asan Institute for Life Sciences, Asan Medical Center, Seoul, Republic of Korea
| | - Chang Hoon Ha
- b Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Sei-Kyung Chang
- e Department of Radiation Oncology, CHA Bundang Medical Center, CHA University, Seongnam, Republic of Korea
| | - Sang-Wook Lee
- a Department of Radiation Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
9
|
Dose response of multiple parameters for calyculin A-induced premature chromosome condensation in human peripheral blood lymphocytes exposed to high doses of cobalt-60 gamma-rays. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2016; 807:47-54. [DOI: 10.1016/j.mrgentox.2016.06.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 06/16/2016] [Accepted: 06/29/2016] [Indexed: 11/18/2022]
|
10
|
Romero I, Lamadrid AI, González JE, Mandina T, García O. Culture time and reagent minimization in the chemical PCC assay. Int J Radiat Biol 2016; 92:558-62. [DOI: 10.1080/09553002.2016.1206236] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Ivonne Romero
- Center of Radiation Protection and Hygiene, Playa, La Habana, Cuba
| | | | | | - Tania Mandina
- Center of Radiation Protection and Hygiene, Playa, La Habana, Cuba
| | - Omar García
- Center of Radiation Protection and Hygiene, Playa, La Habana, Cuba
| |
Collapse
|
11
|
Puig R, Pujol M, Barrios L, Caballín MR, Barquinero JF. Analysis of α-particle-induced chromosomal aberrations by chemically-induced PCC. Elaboration of dose-effect curves. Int J Radiat Biol 2016; 92:493-501. [DOI: 10.1080/09553002.2016.1206238] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Roser Puig
- Unitat d’Antropologia Biològica, Departament de Biologia Animal, Biologia Vegetal i Ecologia, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Mònica Pujol
- Unitat d’Antropologia Biològica, Departament de Biologia Animal, Biologia Vegetal i Ecologia, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Leonardo Barrios
- Unitat de Biologia Cel·lular, Departament de Biologia Cel·lular, Fisiologia, i Inmunologia, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - María Rosa Caballín
- Unitat d’Antropologia Biològica, Departament de Biologia Animal, Biologia Vegetal i Ecologia, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Joan-Francesc Barquinero
- Unitat d’Antropologia Biològica, Departament de Biologia Animal, Biologia Vegetal i Ecologia, Universitat Autònoma de Barcelona, Bellaterra, Spain
| |
Collapse
|
12
|
González JE, Romero I, Gregoire E, Martin C, Lamadrid AI, Voisin P, Barquinero JF, García O. Biodosimetry estimation using the ratio of the longest:shortest length in the premature chromosome condensation (PCC) method applying autocapture and automatic image analysis. JOURNAL OF RADIATION RESEARCH 2014; 55:862-5. [PMID: 24789085 PMCID: PMC4202288 DOI: 10.1093/jrr/rru030] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The combination of automatic image acquisition and automatic image analysis of premature chromosome condensation (PCC) spreads was tested as a rapid biodosimeter protocol. Human peripheral lymphocytes were irradiated with (60)Co gamma rays in a single dose of between 1 and 20 Gy, stimulated with phytohaemaglutinin and incubated for 48 h, division blocked with Colcemid, and PCC-induced by Calyculin A. Images of chromosome spreads were captured and analysed automatically by combining the Metafer 4 and CellProfiler platforms. Automatic measurement of chromosome lengths allows the calculation of the length ratio (LR) of the longest and the shortest piece that can be used for dose estimation since this ratio is correlated with ionizing radiation dose. The LR of the longest and the shortest chromosome pieces showed the best goodness-of-fit to a linear model in the dose interval tested. The application of the automatic analysis increases the potential use of the PCC method for triage in the event of massive radiation causalities.
Collapse
Affiliation(s)
- Jorge E González
- Centro de Protección e Higiene de las Radiaciones, Calle 20 No. 4113, e/41 y 47, Playa, CP 11300, La Habana, Cuba
| | - Ivonne Romero
- Centro de Protección e Higiene de las Radiaciones, Calle 20 No. 4113, e/41 y 47, Playa, CP 11300, La Habana, Cuba
| | - Eric Gregoire
- Institut de Radioprotection et de Sûreté Nucléaire, BP 17, 92262 Fontenay-aux-Roses, France
| | - Cécile Martin
- Institut de Radioprotection et de Sûreté Nucléaire, BP 17, 92262 Fontenay-aux-Roses, France
| | - Ana I Lamadrid
- Centro de Protección e Higiene de las Radiaciones, Calle 20 No. 4113, e/41 y 47, Playa, CP 11300, La Habana, Cuba
| | - Philippe Voisin
- Institut de Radioprotection et de Sûreté Nucléaire, BP 17, 92262 Fontenay-aux-Roses, France
| | | | - Omar García
- Centro de Protección e Higiene de las Radiaciones, Calle 20 No. 4113, e/41 y 47, Playa, CP 11300, La Habana, Cuba
| |
Collapse
|
13
|
Miura T, Blakely WF. Optimization of calyculin A-induced premature chromosome condensation assay for chromosome aberration studies. Cytometry A 2011; 79:1016-22. [DOI: 10.1002/cyto.a.21154] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2011] [Revised: 09/08/2011] [Accepted: 09/20/2011] [Indexed: 01/16/2023]
|
14
|
Vinnikov VA, Ainsbury EA, Maznyk NA, Lloyd DC, Rothkamm K. Limitations Associated with Analysis of Cytogenetic Data for Biological Dosimetry. Radiat Res 2010; 174:403-14. [DOI: 10.1667/rr2228.1] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Volodymyr A. Vinnikov
- Grigoriev Institute for Medical Radiology of the Academy of Medical Science of Ukraine, Kharkiv, 61024, Ukraine
| | - Elizabeth A. Ainsbury
- Health Protection Agency Centre for Radiation, Chemical and Environmental Hazards, Chilton, Didcot, Oxon OX11 0RQ, United Kingdom
| | - Nataliya A. Maznyk
- Grigoriev Institute for Medical Radiology of the Academy of Medical Science of Ukraine, Kharkiv, 61024, Ukraine
| | - David C. Lloyd
- Health Protection Agency Centre for Radiation, Chemical and Environmental Hazards, Chilton, Didcot, Oxon OX11 0RQ, United Kingdom
| | - Kai Rothkamm
- Health Protection Agency Centre for Radiation, Chemical and Environmental Hazards, Chilton, Didcot, Oxon OX11 0RQ, United Kingdom
| |
Collapse
|
15
|
Wang Z, Li W, Zhi D, Gao Q, Qu Y, Wang B. Prematurely condensed chromosome fragments in human lymphocytes induced by high doses of high-linear-energy-transfer irradiation. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2009; 679:9-12. [DOI: 10.1016/j.mrgentox.2009.08.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2009] [Revised: 07/04/2009] [Accepted: 08/01/2009] [Indexed: 10/20/2022]
|
16
|
Ivey RG, Subramanian O, Lorentzen TD, Paulovich AG. Antibody-based screen for ionizing radiation-dependent changes in the Mammalian proteome for use in biodosimetry. Radiat Res 2009; 171:549-61. [PMID: 19580490 DOI: 10.1667/rr1638.1] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
In an effort to identify proteomic changes that may be useful for radiation biodosimetry, human cells of hematological origin were treated with ionizing radiation or mock-irradiated and then harvested at different times after treatment. Protein lysates were generated from these cells and evaluated by Western blotting using a panel of 301 commercially available antibodies targeting 161 unique proteins. From this screen, we identified 55 ionizing radiation-responsive proteins, including 14 proteins not previously reported to be radiation-responsive at the protein level. The data from this large-scale screen have been assembled into a public website ( http://labs.fhcrc.org/paulovich/biodose_index.html ) that may be of value to the radiation community both as a source of putative biomarkers for biodosimetry and also as a source of validation data on commercially available antibodies that detect radiation-responsive proteins. Using a panel of candidate radiation biomarkers in human cell lines, we demonstrate the feasibility of assembling a complementary panel of radiation-responsive proteins. Furthermore, we demonstrate the feasibility of using blood cell-based proteomic changes for biodosimetry by demonstrating detection of protein changes in circulating cells after total-body irradiation in a canine model.
Collapse
Affiliation(s)
- Richard G Ivey
- Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | | | | | | |
Collapse
|