1
|
Kryshev A, Sazykina T. Dynamic model of changes in the trophic structure of an ecosystem affected by chronic radiation exposure. JOURNAL OF ENVIRONMENTAL RADIOACTIVITY 2024; 276:107444. [PMID: 38723324 DOI: 10.1016/j.jenvrad.2024.107444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 04/02/2024] [Accepted: 05/01/2024] [Indexed: 05/24/2024]
Abstract
The conceptual dynamic ecosystem model was developed to evaluate the self-organization of trophic structure in ecosystems during the course of biogenic succession. This model was applied to analyze the possible changes in the ecosystem under impact of the anthropogenic physical stressor - chronic exposure to ionizing irradiation. The model predicts that amount of the limiting biogenic nutrient in the environment can modify the ecological effects of ionizing radiation. Negative effects of the chronic exposure are less significant in ecosystems with high food supply. The model does not show presence of any ecological effect of radiation at the exposure rates less than the derived consideration reference levels, obtained by International Commission on Radiological Protection for individual nature organisms. If the dose rates are higher than those levels, radiation exposure can affect ecological interactions between species. The model shows that environmental hormesis can exist in the ecosystems, impacted by the chronic radiation exposure. The reason of this effect is change of the ecological coefficients (for example, decrease of the predation rate), which in the certain range of parameters leads to the increase of biomasses of all species at the same amount of the limiting biogenic nutrient in ecosystem. Trigger regimes exist in the model ecosystem with mixed-feeding consumers. Within the trigger area, the realization of a particular trophic structure depends on initial species biomasses. A hysteresis phenomenon exists in such ecosystems, which means that the successive changes in the trophic structures realized following the increase of the influencing factor are not reproduced in the same order if the influencing factor was gradually decreased back to its previous values. The model predicts for this case, that the radioactively contaminated ecosystem does not necessarily return to its initial trophic structure, despite the dose rate decreases to the initial levels.
Collapse
|
2
|
Vives I Batlle J, Biermans G, Copplestone D, Kryshev A, Melintescu A, Mothersill C, Sazykina T, Seymour C, Smith K, Wood MD. Towards an ecological modelling approach for assessing ionizing radiation impact on wildlife populations. JOURNAL OF RADIOLOGICAL PROTECTION : OFFICIAL JOURNAL OF THE SOCIETY FOR RADIOLOGICAL PROTECTION 2022; 42:020507. [PMID: 35467551 DOI: 10.1088/1361-6498/ac5dd0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 03/15/2022] [Indexed: 06/14/2023]
Abstract
The emphasis of the international system of radiological protection of the environment is to protect populations of flora and fauna. Throughout the MODARIA programmes, the United Nations' International Atomic Energy Agency (IAEA) has facilitated knowledge sharing, data gathering and model development on the effect of radiation on wildlife. We present a summary of the achievements of MODARIA I and II on wildlife dose effect modelling, extending to a new sensitivity analysis and model development to incorporate other stressors. We reviewed evidence on historical doses and transgenerational effects on wildlife from radioactively contaminated areas. We also evaluated chemical population modelling approaches, discussing similarities and differences between chemical and radiological impact assessment in wildlife. We developed population modelling methodologies by sourcing life history and radiosensitivity data and evaluating the available models, leading to the formulation of an ecosystem-based mathematical approach. This resulted in an ecologically relevant conceptual population model, which we used to produce advice on the evaluation of risk criteria used in the radiological protection of the environment and a proposed modelling extension for chemicals. This work seeks to inform stakeholder dialogue on factors influencing wildlife population responses to radiation, including discussions on the ecological relevance of current environmental protection criteria. The area of assessment of radiation effects in wildlife is still developing with underlying data and models continuing to be improved. IAEA's ongoing support to facilitate the sharing of new knowledge, models and approaches to Member States is highlighted, and we give suggestions for future developments in this regard.
Collapse
Affiliation(s)
- J Vives I Batlle
- Belgian Nuclear Research Centre (SCK CEN), Boeretang 200, Mol, 2400, Belgium
| | - G Biermans
- Federal Agency for Nuclear Control, Rue Ravensteinstraat 36, Brussels, 1000, Belgium
| | - D Copplestone
- Faculty of Natural Sciences, University of Stirling, Stirling FK9 4LA, United Kingdom
| | - A Kryshev
- Research and Production Association 'Typhoon', 4 Pobedy Str., Obninsk, Kaluga Region 249038, Russia
| | - A Melintescu
- Horia Hulubei National Institute of Physics & Nuclear Engineering, Bucharest - Magurele, Romania
| | - C Mothersill
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
| | - T Sazykina
- Research and Production Association 'Typhoon', 4 Pobedy Str., Obninsk, Kaluga Region 249038, Russia
| | - C Seymour
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
| | - K Smith
- RadEcol Consulting Ltd, 5 The Chambers, Vineyard, Abingdon OX14 3PX, United Kingdom
| | - M D Wood
- School of Science, Engineering & Environment, University of Salford, Manchester M5 4WT, United Kingdom
| |
Collapse
|
3
|
Modelling the effects of ionising radiation on a vole population from the Chernobyl Red forest in an ecological context. Ecol Modell 2020. [DOI: 10.1016/j.ecolmodel.2020.109306] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
4
|
Natural radionuclides in six selected fish consumed in south Iraq and their committed effective doses. SN APPLIED SCIENCES 2018. [DOI: 10.1007/s42452-018-0019-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
|
5
|
Vives I Batlle J, Aoyama M, Bradshaw C, Brown J, Buesseler KO, Casacuberta N, Christl M, Duffa C, Impens NREN, Iosjpe M, Masqué P, Nishikawa J. Marine radioecology after the Fukushima Dai-ichi nuclear accident: Are we better positioned to understand the impact of radionuclides in marine ecosystems? THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 618:80-92. [PMID: 29127871 DOI: 10.1016/j.scitotenv.2017.11.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 11/01/2017] [Accepted: 11/01/2017] [Indexed: 06/07/2023]
Abstract
This paper focuses on how a community of researchers under the COMET (CO-ordination and iMplementation of a pan European projecT for radioecology) project has improved the capacity of marine radioecology to understand at the process level the behaviour of radionuclides in the marine environment, uptake by organisms and the resulting doses after the Fukushima Dai-ichi nuclear accident occurred in 2011. We present new radioecological understanding of the processes involved, such as the interaction of waterborne radionuclides with suspended particles and sediments or the biological uptake and turnover of radionuclides, which have been better quantified and mathematically described. We demonstrate that biokinetic models can better represent radionuclide transfer to biota in non-equilibrium situations, bringing more realism to predictions, especially when combining physical, chemical and biological interactions that occur in such an open and dynamic environment as the ocean. As a result, we are readier now than we were before the FDNPP accident in terms of having models that can be applied to dynamic situations. The paper concludes with our vision for marine radioecology as a fundamental research discipline and we present a strategy for our discipline at the European and international levels. The lessons learned are presented along with their possible applicability to assess/reduce the environmental consequences of future accidents to the marine environment and guidance for future research, as well as to assure the sustainability of marine radioecology. This guidance necessarily reflects on why and where further research funding is needed, signalling the way for future investigations.
Collapse
Affiliation(s)
- J Vives I Batlle
- Belgian Nuclear Research Centre (SCK•CEN), Boeretang 200, 2400 Mol, Belgium.
| | - M Aoyama
- Institute of Environmental Radioactivity, Fukushima University, Fukushima 960-1296, Japan
| | - C Bradshaw
- Department of Ecology, Environment, and Plant Sciences, Stockholm University, 10691 Stockholm, Sweden
| | - J Brown
- Norwegian Radiation Protection Authority (NRPA), Department of Emergency Preparedness and Environmental Radioactivity, Grini Næringspark 13, Postbox 55, NO-1332, Østerås, Norway
| | - K O Buesseler
- Woods Hole Oceanographic Institution, Woods Hole, MA 02543, United States
| | - N Casacuberta
- Laboratory of Ion Beam Physics, ETH-Zurich, Otto Stern Weg 5, 8093 Zurich, Switzerland; Institute of Biogeochemistry and Pollutant Dynamics, Environmental Physics, ETH-Zurich, Universitätstrasse 16, 8092 Zurich, Switzerland
| | - M Christl
- Laboratory of Ion Beam Physics, ETH-Zurich, Otto Stern Weg 5, 8093 Zurich, Switzerland
| | - C Duffa
- Institut de Radioprotection et de Sureté Nucléaire (IRSN), Centre de Cadarache, 13115 St Paul Lez Durance, France
| | - N R E N Impens
- Belgian Nuclear Research Centre (SCK•CEN), Boeretang 200, 2400 Mol, Belgium
| | - M Iosjpe
- Norwegian Radiation Protection Authority (NRPA), Department of Emergency Preparedness and Environmental Radioactivity, Grini Næringspark 13, Postbox 55, NO-1332, Østerås, Norway
| | - P Masqué
- School of Science and Centre for Marine Ecosystems Research, Edith Cowan University, 270 Joondalup Drive, Joondalup, WA 6027, Australia; Departament de Física & Institut de Ciència i Tecnologia Ambientals, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - J Nishikawa
- School of Marine Science and Technology, Tokai University, Shizuoka 424-8610, Japan
| |
Collapse
|
6
|
Sazykina TG. Population sensitivities of animals to chronic ionizing radiation-model predictions from mice to elephant. JOURNAL OF ENVIRONMENTAL RADIOACTIVITY 2018; 182:177-182. [PMID: 29157914 DOI: 10.1016/j.jenvrad.2017.11.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 11/09/2017] [Accepted: 11/10/2017] [Indexed: 06/07/2023]
Abstract
Model predictions of population response to chronic ionizing radiation (endpoint 'morbidity') were made for 11 species of warm-blooded animals, differing in body mass and lifespan - from mice to elephant. Predictions were made also for 3 bird species (duck, pigeon, and house sparrow). Calculations were based on analytical solutions of the mathematical model, simulating a population response to low-LET ionizing radiation in an ecosystem with a limiting resource (Sazykina, Kryshev, 2016). Model parameters for different species were taken from biological and radioecological databases; allometric relationships were employed for estimating some parameter values. As a threshold of decreased health status in exposed populations ('health threshold'), a 10% reduction in self-repairing capacity of organisms was suggested, associated with a decline in ability to sustain environmental stresses. Results of the modeling demonstrate a general increase of population vulnerability to ionizing radiation in animal species of larger size and longevity. Populations of small widespread species (mice, house sparrow; body mass 20-50 g), which are characterized by intensive metabolism and short lifespan, have calculated 'health thresholds' at dose rates about 6.5-7.5 mGy day-1. Widespread animals with body mass 200-500 g (rat, common pigeon) - demonstrate 'health threshold' values at 4-5 mGy day-1. For populations of animals with body mass 2-5 kg (rabbit, fox, raccoon), the indicators of 10% health decrease are in the range 2-3.4 mGy day-1. For animals with body mass 40-100 kg (wolf, sheep, wild boar), thresholds are within 0.5-0.8 mGy day-1; for herbivorous animals with body mass 200-300 kg (deer, horse) - 0.5-0.6 mGy day-1. The lowest health threshold was estimated for elephant (body mass around 5000 kg) - 0.1 mGy day-1. According to the model results, the differences in population sensitivities of warm-blooded animal species to ionizing radiation are generally depended on the metabolic rate and longevity of organisms, also on individual radiosensitivity of biological tissues. The results of 'health threshold' calculations are formulated as a graded scale of wildlife sensitivities to chronic radiation stress, ranging from potentially vulnerable to more resistant species. Further studies are needed to expand the scale of population sensitivities to radiation, including other groups of wildlife - cold-blooded species, invertebrates, and plants.
Collapse
Affiliation(s)
- Tatiana G Sazykina
- Research and Production Association "Typhoon", 4 Pobedy Str., Obninsk, Kaluga Region 249038, Russia.
| |
Collapse
|
7
|
Sazykina TG, Kryshev AI. Simulation of population response to ionizing radiation in an ecosystem with a limiting resource--Model and analytical solutions. JOURNAL OF ENVIRONMENTAL RADIOACTIVITY 2016; 151 Pt 1:50-57. [PMID: 26408836 DOI: 10.1016/j.jenvrad.2015.09.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Revised: 07/24/2015] [Accepted: 09/15/2015] [Indexed: 06/05/2023]
Abstract
A dynamic mathematical model is formulated, predicting the development of radiation effects in a generic animal population, inhabiting an elemental ecosystem 'population-limiting resource'. Differential equations of the model describe the dynamic responses to radiation damage of the following population characteristics: gross biomass; intrinsic fractions of healthy and reversibly damaged tissues in biomass; intrinsic concentrations of the self-repairing pool and the growth factor; and amount of the limiting resource available in the environment. Analytical formulae are found for the steady states of model variables as non-linear functions of the dose rate of chronic radiation exposure. Analytical solutions make it possible to predict the expected severity of radiation effects in a model ecosystem, including such endpoints as morbidity, mortality, life shortening, biosynthesis, and population biomass. Model parameters are selected from species data on lifespan, physiological growth and mortality rates, and individual radiosensitivity. Thresholds for population extinction can be analytically calculated for different animal species, examples are provided for generic mice and wolf populations. The ecosystem model demonstrates a compensatory effect of the environment on the development of radiation effects in wildlife. The model can be employed to construct a preliminary scale 'radiation exposure-population effects' for different animal species; species can be identified, which are vulnerable at a population level to chronic radiation exposure.
Collapse
Affiliation(s)
- Tatiana G Sazykina
- Research and Production Association "Typhoon", 4 Pobedy Str., Obninsk, Kaluga Region, 249038, Russia.
| | - Alexander I Kryshev
- Research and Production Association "Typhoon", 4 Pobedy Str., Obninsk, Kaluga Region, 249038, Russia
| |
Collapse
|
8
|
Ivanov DV, Shishkina EA, Osipov DI, Razumeev RA, Pryakhin EA. Internal in vitro dosimetry for fish using hydroxyapatite-based EPR detectors. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2015; 54:257-263. [PMID: 25822591 DOI: 10.1007/s00411-015-0593-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Accepted: 03/21/2015] [Indexed: 06/04/2023]
Abstract
A number of aquatic ecosystems were exposed to ionizing radiation as a result of the activities of the Mayak Production Association in the Southern Urals, former Soviet Union, in the 1950s. Currently, fishes inhabiting contaminated lakes are being actively studied. These investigations need dosimetric support. In the present paper the results of a pilot study for elaborating an EPR dosimeter which can be used for internal dosimetry in vitro are described. Biological hydroxyapatite is proposed here to be used as a detecting substance. More specifically, small hydroxyapatite grains are proposed for use as point detectors fixed in a solid matrix. After having been pelletized, the detectors were covered by Mylar and placed in the body of a fish to be stored in the fridge for several months. Application of the detectors for internal fish dosimetry demonstrated that the enamel sensitivity is sufficient for passive detection of ionizing radiation in fishes inhabiting contaminated lakes in the Southern Urals.
Collapse
Affiliation(s)
- D V Ivanov
- Institute of Metal Physics, Urals Division of Russian Academy of Sciences, 18, S. Kovalevskaya Str, 620137, Yekaterinburg, Russia,
| | | | | | | | | |
Collapse
|
9
|
Kryshev AI, Sazykina TG. Modelling the effects of ionizing radiation on survival of animal population: acute versus chronic exposure. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2015; 54:103-109. [PMID: 25481246 DOI: 10.1007/s00411-014-0578-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Accepted: 11/29/2014] [Indexed: 06/04/2023]
Abstract
The objective of the present paper was application of a model, which was originally developed to simulate chronic ionizing radiation effects in a generic isolated population, to the case of acute exposure, and comparison of the dynamic features of radiation effects on the population survival in cases of acute and chronic exposure. Two modes of exposure were considered: acute exposure (2-35 Gy) and chronic lifetime exposure with the same integrated dose. Calculations were made for a generic mice population; however, the model can be applied for other animals with proper selection of parameter values. In case of acute exposure, in the range 2-11 Gy, the population response was in two phases. During a first phase, there was a depletion in population survival; the second phase was a recovery period due to reparation of damage and biosynthesis of new biomass. Model predictions indicate that a generic mice population, living in ideal conditions, has the potential for recovery (within a mouse lifetime period) from acute exposure with dose up to 10-11 Gy, i.e., the population may recover from doses above an LD50 (6.2 Gy). Following acute doses above 14 Gy, however, the mice population went to extinction without recovery. In contrast, under chronic lifetime exposures (500 days), radiation had little effect on population survival up to integrated doses of 14-15 Gy, so the survival of a population subjected to chronic exposure was much better compared with that after an acute exposure with the same dose. Due to the effect of "wasted radiation", the integrated dose of chronic exposure could be about two times higher than acute dose, producing the same effect on survival. It is concluded that the developed generic population model including the repair of radiation damage can be applied both to acute and chronic modes of exposure; results of calculations for generic mice population are in qualitative agreement with published data on radiation effects in mice.
Collapse
Affiliation(s)
- A I Kryshev
- Research and Production Association "Typhoon", 4 Pobedy Str., Obninsk, Kaluga Region, 249038, Russia.
| | - T G Sazykina
- Research and Production Association "Typhoon", 4 Pobedy Str., Obninsk, Kaluga Region, 249038, Russia
| |
Collapse
|
10
|
Vives I Batlle J, Sazykina TG, Kryshev A, Monte L, Kawaguchi I. Inter-comparison of population models for the calculation of radiation dose effects on wildlife. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2012; 51:399-410. [PMID: 22790120 DOI: 10.1007/s00411-012-0430-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Accepted: 06/30/2012] [Indexed: 06/01/2023]
Abstract
An inter-comparison of five models designed to predict the effect of ionizing radiation on populations of non-human wildlife, performed under the IAEA EMRAS II programme, is presented and discussed. A benchmark scenario 'Population response to chronic irradiation' was developed in which stable generic populations of mice, hare/rabbit, wolf/wild dog and deer were modelled as subjected to chronic low-LET radiation with dose rates of 0-5 × 10(-2) Gy day(-1) in increments of 10(-2) Gy day(-1). The duration of exposure simulations was 5 years. Results are given for the size of each surviving population for each of the applied dose rates at the end of the 1st to 5th years of exposure. Despite the theoretical differences in the modelling approaches, the inter-comparison allowed the identification of a series of common findings. At dose rates of about 10(-2) Gy day(-1) for 5 years, the survival of populations of short-lived species was better than that of long-lived species: significant reduction in large mammals was predicted whilst small mammals survive at 80-100 % of the control. Dose rates in excess of 2 × 10(-2) Gy day(-1) for 5 years produced considerable reduction in all populations. From this study, a potential relationship between higher reproduction rates and lower radiation effects at population level can be hypothesized. The work signals the direction for future investigations to validate and improve the predictive ability of different population dose effects models.
Collapse
|
11
|
Vives i Batlle J. Dual-age-class population model to assess radiation dose effects on non-human biota populations. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2012; 51:225-243. [PMID: 22544082 DOI: 10.1007/s00411-012-0420-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Accepted: 04/14/2012] [Indexed: 05/31/2023]
Abstract
In the present paper, a two-age-class group, logistic growth model for generic populations of non-human biota is described in order to assess non-stochastic effects of low linear energy-transfer radiation using three endpoints: repairable radiation damage, impairment of reproductive ability and, at higher radiation dose rates, mortality. This model represents mathematically the exchange between two life stages considering fecundity, growth and mortality. Radiation effects are modeled with a built-in self-recovery pool whereupon individuals can repair themselves. In acute effects mode, the repairing pool becomes depleted due to radiation and the model tends to lethality mode. A base calibration of the model's two free parameters is possible assuming that in acute mode 50% of the individuals die on 30 days when a radiation dose equal to the LD(50/30) is applied during that period. The model, which requires 10 species-dependent life-history parameters, was applied to fish and mammals. Its use in the derivation of dose-rate screening values for the protection of non-human biota from the effects of ionizing radiation is demonstrated through several applications. First, results of model testing with radiation effects data for fish populations from the EPIC project show the predictive capability of the model in a practical case. Secondly, the model was further verified with FREDERICA radiation effects data for mice and voles. Then, consolidated predictions for mouse, rabbit, dog and deer were generated for use in a population model comparison made within the IAEA EMRAS II project. Taken together, model predictions suggest that radiation effects are more harmful for larger organisms that generate lower numbers of offspring. For small mammal and fish populations, dose rates that are below 0.02 Gy day(-1) are not fatal; in contrast, for large mammals, chronic exposure at this level is predicted to be harmful. At low exposure rates similar to the ERICA screening dose rate of 2.4 × 10(-4) Gy day(-1), long-term effects on the survivability of populations are negligible, supporting the appropriateness of this value for radiological assessments to wildlife.
Collapse
Affiliation(s)
- J Vives i Batlle
- Belgian Nuclear Research Centre, Boeretang 200, 2400 Mol, Belgium.
| |
Collapse
|
12
|
Kryshev AI, Sazykina TG. Comparative analysis of doses to aquatic biota in water bodies impacted by radioactive contamination. JOURNAL OF ENVIRONMENTAL RADIOACTIVITY 2012; 108:9-14. [PMID: 21924530 DOI: 10.1016/j.jenvrad.2011.07.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2010] [Revised: 04/04/2011] [Accepted: 07/07/2011] [Indexed: 05/31/2023]
Abstract
Comparative analysis of doses to the reference species of freshwater biota was performed for the following water bodies in Russia or former USSR: Chernobyl NPPs cooling pond, Lakes Uruskul and Berdenish located in the Eastern Urals Radioactive Trace, Techa River, Yenisei River. It was concluded that the doses to biota were considerably different in the acute and chronic periods of radioactive contamination. The most vulnerable part of all considered aquatic ecosystems was benthic trophic chain. A numerical scale on the "dose rate - effects" relationships for fish was formulated. Threshold dose rates above which radiation effects can be expected in fish were evaluated to be the following: 1 mGy d(-1) for appearance of the first morbidity effects in fish; 5 mGy d(-1) for the first negative effects on reproduction system; 10 mGy d(-1) for the first effects on life shortening of fish. The results of dose assessment to biota were compared with the scale "dose rate - effects" and the literature data on the radiobiological effects observed in the considered water bodies. It was shown that in the most contaminated water bodies the dose rates were high enough to cause the radiobiological effects in fish.
Collapse
Affiliation(s)
- A I Kryshev
- State Institution Research and Production Association Typhoon, 4 Pobedy Str., Obninsk, Kaluga Region 249038, Russia.
| | | |
Collapse
|
13
|
Sazykina TG, Kryshev AI. Radiation effects in generic populations inhabiting a limiting environment. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2012; 51:215-221. [PMID: 22302184 DOI: 10.1007/s00411-012-0404-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2011] [Accepted: 01/15/2012] [Indexed: 05/31/2023]
Abstract
A generic population model is formulated for radiation risk assessment of natural biota. The model demonstrates that effects of radiation on the population survival do not follow directly the effects on individual organisms. Dose rates resulting in population extinction can be analytically calculated. Besides individual radiosensitivity, two key parameters were found to determine the survival potential of a population under chronic radiation stress: the ratio “biomass losses/biomass synthesis,” and the lump amount of limiting resource in the environment. A benchmark scenario “Population response to chronic irradiation” developed within the IAEA Programme EMRAS II was calculated for generic populations of mice, hare/rabbit, wolf/wild dog, and deer/goat chronically exposed to different levels of ionizing radiation. In the conditions of the benchmark scenario, model populations survived normally (>90% of the control value) at dose rates below the following levels: 3 mGy day(-1) for wolf/wild dog; 10 mGy day(-1) for deer/goat; 14 mGy day(-1) for hare/rabbit; and 20 mGy day(-1) for mice. The model predictions showed a relatively high survival potential of short-lived and productive species such as mice. At the same time, populations of long-lived animals with slow and radiosensitive reproduction such as wolf/wild dog were candidates to extinction at chronic exposures above 5 mGy day(-1). Recovery of short-lived and productive species took a much shorter time compared with long-lived and slow reproductive species.
Collapse
Affiliation(s)
- T G Sazykina
- Research and Production Association Typhoon, Obninsk, Kaluga Region, Russia.
| | | |
Collapse
|
14
|
Morley NJ. The effects of radioactive pollution on the dynamics of infectious diseases in wildlife. JOURNAL OF ENVIRONMENTAL RADIOACTIVITY 2012; 106:81-97. [PMID: 22265006 DOI: 10.1016/j.jenvrad.2011.12.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2011] [Revised: 12/10/2011] [Accepted: 12/19/2011] [Indexed: 05/31/2023]
Abstract
The interactions between infectious diseases and chemical pollution are well known and recognised as important factors in regulating the way wild animals respond to contaminant exposure. However, the impact of ionising radiation and radionuclides has often been overlooked when assessing host-pathogen interactions in polluted habitats, despite often occurring together with chemical contamination. Nevertheless, a comprehensive body of literature exists from laboratory and field studies on host-pathogen relationships under radiation exposure, and with a renewed interest in radioecology developing; an evaluation of infectious disease dynamics under these conditions would be timely. The present study assesses the impact of external ionising radiation and radionuclides on animal hosts and pathogens (viruses, bacteria, protozoans, helminths, arthropods) in laboratory studies and collates the data from field studies, including the large number of investigations undertaken after the Chernobyl accident. It is apparent that radiation exposure has substantial effects on host-pathogen relationships. Although damage to the host immune system is a major factor other variables, such as damage to host tissue barriers and inhibition of pathogen viability are also important in affecting the prevalence and intensity of parasitic diseases. Field studies indicate that the occurrence of host-pathogen associations in radioactively contaminated sites is complex with a variety of biotic and abiotic factors influencing both pathogen and host(s), resulting in changes to the dynamics of infectious diseases.
Collapse
Affiliation(s)
- N J Morley
- School of Biological Sciences, Royal Holloway, University of London, Egham, Surrey TW20 0EX, UK.
| |
Collapse
|
15
|
Sazykina TG, Kryshev AI. Manifestation of radiation effects in cold environment: data review and modeling. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2011; 50:105-114. [PMID: 20878527 DOI: 10.1007/s00411-010-0336-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2010] [Accepted: 09/14/2010] [Indexed: 05/29/2023]
Abstract
The peculiarities of radiation response in animals at low environmental temperatures are analyzed in the context of radiation safety of the Arctic/Northern wildlife. The paper includes a data review on radiation effects in cold environments based on international and Russian publications since 1948, which forms a supplement to the EPIC and FREDERICA data collections. In homoiothermic and heterothermic animals, imbalances in thermoregulation caused by ionizing radiation are discussed, which increase energy loss of animals, and decrease their fitness to the Arctic/Northern climate. In poikilothermic animals, both radiation damage and recovery are temperature dependent, their rates being slow in the cold environment. At low temperatures, radiation damage of biological tissues is conserved in hidden form; when the temperature of poikilothermic animal rises to a normal level, radiation injury is developed rapidly similar to acute dose response. Additionally, a mathematical model is described, demonstrating the combined effects of chronic radiation exposures and seasonal temperature variations on a fish population. Computer simulations show that at the same level of irradiation, the overall radiation damage to Arctic/Northern poikilothermic fish is higher than that to the fish from warm climate. Considering the peculiarities of radiation effects in the cold climate, the Arctic/Northern fauna might be expected to be more vulnerable to chronic radiation stress compared to temperate fauna. In the case of acute radiation exposure during winter periods, hibernation of heterothermic and cooling of poikilothermic animals may provide temporary protection from acute radiation effects.
Collapse
Affiliation(s)
- T G Sazykina
- Research and Production Association Typhoon, 4 Pobedy Str, 249038, Obninsk, Kaluga Region, Russia.
| | | |
Collapse
|
16
|
|
17
|
Wilson RC, Vives i Batlle J, Watts SJ, McDonald P, Jones SR, Craze A. An approach for the assessment of risk from chronic radiation to populations of phytoplankton and zooplankton. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2010; 49:87-95. [PMID: 19924427 DOI: 10.1007/s00411-009-0254-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2009] [Accepted: 10/27/2009] [Indexed: 05/28/2023]
Abstract
A conceptual model of the effects of chronic radiation on a population of phytoplankton and zooplankton in an oceanic nutrient layer is presented. The model shows that there are distinct threshold dose rates at which the different plankton populations become unsustainable. These are 10,400 microGy h(-1) for phytoplankton and 125 microGy h(-1) for zooplankton. Both these values are considerably greater than the current screening values for protection of 10 microGy h(-1). The model highlights the effects of predator-prey dynamics in predicting that when the zooplankton is affected by the radiation dose, the phytoplankton population can increase. In addition, the model was altered to replicate the dose rates to the plankton of a previous ERICA Irish Sea assessment (24 microGy h(-1) for zooplankton and 430 microGy h(-1) to phytoplankton). The results showed only a 10% decrease in the zooplankton population and a 15% increase in the phytoplankton population. Therefore, at this level of dose, the model predicts that although the dose rate exceeds the guideline value, populations are not significantly affected. This result highlights the limitations of a single screening value for different groups of organisms.
Collapse
Affiliation(s)
- R C Wilson
- Westlakes Scientific Consulting Ltd, The Princess Royal Building, Westlakes Science and Technology Park, Moor Row, Cumbria, CA24 3LN, UK.
| | | | | | | | | | | |
Collapse
|
18
|
Vives i Batlle J, Wilson RC, Watts SJ, McDonald P, Jones SR, Vives-Lynch SM, Craze A. An approach to the assessment of risk from chronic radiation to populations of European lobster, Homarus gammarus (L.). RADIATION AND ENVIRONMENTAL BIOPHYSICS 2010; 49:67-85. [PMID: 19855992 DOI: 10.1007/s00411-009-0251-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2009] [Accepted: 10/04/2009] [Indexed: 05/28/2023]
Abstract
The basic principles underlying a four-discrete age group, logistic, growth model for the European lobster Homarus gammarus are presented and discussed at proof-of-concept level. The model considers reproduction, removal by predation, natural death, fishing, radiation and migration. Non-stochastic effects of chronic low linear energy transfer (LET) radiation are modelled with emphasis on (99)Tc, using three endpoints: repairable radiation damage, impairment of reproductive ability and, at higher dose rates, mortality. An allometric approach for the calculation of LD(50/30) as a function of the mass of each life stage is used in model calibration. The model predicts that at a dose rate of 1 Gy day(-1), lobster population reproduction and survival become severely compromised, leading eventually to population extinction. At 0.01 Gy day(-1), the survival rate of an isolated population is reduced by 10%, mainly through loss of fecundity, comparable to natural migration losses. Fishing is the main ecological stress and only dose rates in the range 0.03-0.1 Gy day(-1) can achieve discernible effects above it. On the balance of radiation and other ecological stresses, a benchmark value of 0.01 Gy day(-1) is proposed for the protection of lobster populations. This value appears consistent with available information on radiation effects in wildlife.
Collapse
Affiliation(s)
- Jordi Vives i Batlle
- Westlakes Scientific Consulting Ltd., The Princess Royal Building, Westlakes Science and Technology Park, Moor Row, Cumbria, CA24 3LN, UK.
| | | | | | | | | | | | | |
Collapse
|
19
|
Ulanovsky A, Pröhl G. Tables of dose conversion coefficients for estimating internal and external radiation exposures to terrestrial and aquatic biota. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2008; 47:195-203. [PMID: 18288480 DOI: 10.1007/s00411-008-0159-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2007] [Accepted: 01/20/2008] [Indexed: 05/25/2023]
Abstract
Dose conversion coefficients (DCCs) for assessment of internal and external radiation exposures to terrestrial and aquatic biota are compiled for 75 radionuclides, for 14 terrestrial and 22 aquatic reference organisms. DCC values for internal exposure are calculated based on a homogeneous distribution of the radionuclides in both types of organisms. DCC values for external exposure of aquatic organisms are calculated for complete immersion in water. For external exposure of terrestrial organisms the soil is considered as a planar and homogenously contaminated volume source with a surface roughness of 3 mm and a thickness of 10 cm, respectively. For in-soil-organisms, DCC values for external exposure are given assuming that these organisms live in the middle of a uniformly contaminated 50 cm-thick soil layer. The tables can be used for assessment of exposures of animals and plants living in various habitats. The list of considered organisms covers the Reference Animals and Plants as adopted by the ICRP.
Collapse
Affiliation(s)
- A Ulanovsky
- Helmholtz Zentrum München - German Research Center for Environmental Health, Institute of Radiation Protection, Ingolstädter Landstrasse 1, 85764 Neuherberg, Germany.
| | | |
Collapse
|