1
|
Shiraishi RN, Bombeiro AL, Castro TCL, Della Via FI, Santos I, Rego EM, Saad STO, Torello CO. PML/RARa leukemia induced murine model for immunotherapy evaluation. Transpl Immunol 2023; 81:101919. [PMID: 37598913 DOI: 10.1016/j.trim.2023.101919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 07/31/2023] [Accepted: 08/17/2023] [Indexed: 08/22/2023]
Abstract
Even though leukemia murine models are valuable tools for new drug therapy studies, most of these models consist of immunocompromised mice, which do not exhibit immune responses. In order to obtain an adequate leukemia model, we established an acute promyelocytic leukemia transplantation-based model (PML/RARa) in immunocompetent BALB/c mice, thus making it possible to study drug-induced cellular immune responses in leukemia. The development of PML/RARa leukemia was confirmed by leukocytosis (76.27 ± 21.8 vs. 3.40 ± 1.06; P < 0.0001), anemia (7.46 ± 1.86 vs. 15.10 ± 0.96; P < 0.0001), and thrombocytopenia (131.85 ± 39.32 vs. 839.50 ± 171.20; P < 0.0001), and the presence of blasts in the peripheral blood of mice (approximately 50% blasts; P < 0.0001), 15 days after the transplants. These findings were corroborated through differential counts, flow cytometry, and in vivo imaging, which indicated increased number of immature cells in the bone marrow (15.75 ± 3.30 vs 6.69 ± 0.55; P < 0.001), peripheral blood (7.88 ± 2.67 vs 1.22 ± 0.89; P < 0.001), and spleen (35.21 ± 4.12 vs 1.35 ± 0.86; P < 0.0001), as well as promyelocytes in the bone marrow (41.23 ± 4.80 vs 5.73 ± 1.50; P < 0.0001), peripheral blood (46.08 ± 7.52 vs 1.10 ± 0.59; P < 0.0001) and spleen (35.31 ± 8.26 vs 2.49 ± 0.29; P < 0.0001) of PML/RARa mice. Compared to basal conditions of untransplanted mice, the PML/RARa mice exhibited frequencies of T lymphocytes CD4 helper = 14.85 ± 2.91 vs 20.77 ± 2.9 in the peripheral blood (P < 0.05); 12.75 ± 1.33 vs 45.90 ± 2.02 in the spleen (P < 0.0001); CD8 cytotoxic = 11.27 ± 3.44 vs 11.05 ± 1.22 in the peripheral blood (P > 0.05); 10.48 ± 1.16 vs 30.02 ± 1.80 in the spleen (P < 0.0001); natural killer (NK) cells = 3.68 ± 1.35 vs 6.84 ± 0.52 in the peripheral blood (P < 0.001); 4.43 ± 0.57 vs 6.40 ± 1.14 in the spleen (P < 0.05); B cells 2.50 ± 0.60 vs 15.20 ± 5.34 in the peripheral blood (P < 0.001); 17.77 ± 4.39 vs 46.90 ± 5.92 in the spleen (P < 0.0001); neutrophils = 5.97% ± 1.88 vs 31.57 ± 9.14 (P < 0.0001); and monocytes = 6.45 ± 2.97 vs 15.85 ± 2.57 (P < 0.001), selected as classical (3.33 ± 3.40 vs 57.80 ± 16.51, P < 0.0001), intermediate (57.42 ± 10.61 vs 21.75 ± 5.90, P < 0.0001), and non-classical monocytes (37.51 ± 10.85 vs 18.08 ± 7.13, P < 0.05) in the peripheral blood; and as classically activated (M1) within in the bone marrow (3.70 ± 0.94 vs 1.88 ± 0.39, P < 0.05) and spleen 15.19 ± 3.32 vs 9.47 ± 1.61, P < 0.05), in addition to alternatively activated (M2) macrophages within the bone marrow (23.06 ± 5.25 vs 1.76 ± 0.74, P < 0.0001) and spleen (46.51 ± 11.18 vs 30.58 ± 2.64, P < 0.05) compartments. All-trans retinoic acid (ATRA) treatment of PML/RARa mice reduced blast (immature cells) in the bone marrow (8.62 ± 1.81 vs 15.76 ± 1.25; P < 0.05) and spleen (8.75 ± 1.31 vs 35.21 ± 1.55; P < 0.0001) with no changes in the peripheral blood (10.13 ± 3.33 vs 7.88 ± 1.01; P > 0.05), as well as reduced promyelocytes in the bone marrow (19.79 ± 4.84 vs 41.23 ± 1.81; P < 0.05), peripheral blood (31.65 ± 3.92 vs 46.09 ± 2.84; P < 0.05) and spleen (24.84 ± 2.03 vs 41.46 ± 2.39; P < 0.001), and increased neutrophils of the peripheral blood (35.48 ± 7.24 vs 7.83 ± 1.40; P < 0.05) which was corroborated by reducing of immature cells and increase of neutrophil in the stained smears from PML/RARa mice, thus confirming that this model can be used in drug development studies. Our results show the effective induction of PML/RARa leukemia in BALB/c mice, thus producing a low-priced and reliable tool for investigating cellular immune responses in leukemia.
Collapse
Affiliation(s)
- Rodrigo N Shiraishi
- Hematology and Transfusion Medicine Center - Hemocentro, University of Campinas, 13083-878 Campinas, São Paulo, Brazil
| | - André L Bombeiro
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas, 13083-862 Campinas, São Paulo, Brazil
| | - Tamara C L Castro
- Department of Pharmacology, School of Medical Sciences, University of Campinas, 13083-887 Campinas, São Paulo, Brazil
| | - Fernanda I Della Via
- Hematology and Transfusion Medicine Center - Hemocentro, University of Campinas, 13083-878 Campinas, São Paulo, Brazil
| | - Irene Santos
- Hematology and Transfusion Medicine Center - Hemocentro, University of Campinas, 13083-878 Campinas, São Paulo, Brazil
| | - Eduardo M Rego
- Hematology and Clinical Oncology Divisions, Department of Internal Medicine, University of São Paulo, 14048-900 Ribeirão Preto, São Paulo, Brazil
| | - Sara T O Saad
- Hematology and Transfusion Medicine Center - Hemocentro, University of Campinas, 13083-878 Campinas, São Paulo, Brazil.
| | - Cristiane O Torello
- Hematology and Transfusion Medicine Center - Hemocentro, University of Campinas, 13083-878 Campinas, São Paulo, Brazil.
| |
Collapse
|
2
|
Klokov D, Applegate K, Badie C, Brede DA, Dekkers F, Karabulutoglu M, Le Y, Rutten EA, Lumniczky K, Gomolka M. International expert group collaboration for developing an adverse outcome pathway for radiation induced leukaemia. Int J Radiat Biol 2022; 98:1802-1815. [PMID: 36040845 DOI: 10.1080/09553002.2022.2117873] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
PURPOSE The concept of the adverse outcome pathway (AOP) has recently gained significant attention as to its potential for incorporation of mechanistic biological information into the assessment of adverse health outcomes following ionizing radiation (IR) exposure. This work is an account of the activities of an international expert group formed specifically to develop an AOP for IR-induced leukaemia. Group discussions were held during dedicated sessions at the international AOP workshop jointly organized by the MELODI (Multidisciplinary European Low Dose Initiative) and the ALLIANCE (European Radioecology Alliance) associations to consolidate knowledge into a number of biological key events causally linked by key event relationships and connecting a molecular initiating event with the adverse outcome. Further knowledge review to generate a weight of evidence support for the Key Event Relationships (KERs) was undertaken using a systematic review approach. CONCLUSIONS An AOP for IR-induced acute myeloid leukaemia was proposed and submitted for review to the OECD-curated AOP-wiki (aopwiki.org). The systematic review identified over 500 studies that link IR, as a stressor, to leukaemia, as an adverse outcome. Knowledge gap identification, although requiring a substantial effort via systematic review of literature, appears to be one of the major added values of the AOP concept. Further work, both within this leukaemia AOP working group and other similar working groups, is warranted and is anticipated to produce highly demanded products for the radiation protection research community.
Collapse
Affiliation(s)
- Dmitry Klokov
- Laboratory of Experimental Radiotoxicology and Radiobiology, Institute for Radiological Protection and Nuclear Safety, Fontenay-aux-Roses, France.,Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Canada
| | - Kimberly Applegate
- Department of Radiology, University of Kentucky College of Medicine (retired), Lexington, KY, USA
| | - Christophe Badie
- Cancer Mechanisms and Biomarkers group, Department of Radiation Effects, Radiation, Chemical and Environmental, UK Health Security Agency, Oxfordshire, United Kingdom
| | - Dag Anders Brede
- Centre for Environmental Radioactivity (CERAD), Faculty of Environmental Sciences and Natural Resource Management (MINA), Norwegian University of Life Sciences (NMBU), Norway
| | - Fieke Dekkers
- Mathematical Institute, Utrecht University, Utrecht, The Netherlands.,Netherlands National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Melis Karabulutoglu
- Cancer Mechanisms and Biomarkers group, Department of Radiation Effects, Radiation, Chemical and Environmental, UK Health Security Agency, Oxfordshire, United Kingdom
| | | | - Eric Andreas Rutten
- Cancer Mechanisms and Biomarkers group, Department of Radiation Effects, Radiation, Chemical and Environmental, UK Health Security Agency, Oxfordshire, United Kingdom
| | - Katalin Lumniczky
- Radiation Biology, Federal Office for Radiation Protection BfS, Oberschleißheim, Germany
| | - Maria Gomolka
- Unit of Radiation Medicine, Department of Radiobiology and Radiohygiene, National Public Health Centre, Budapest, Hungary
| |
Collapse
|
3
|
Stouten S, Balkenende B, Roobol L, Lunel SV, Badie C, Dekkers F. Hyper-radiosensitivity affects low-dose acute myeloid leukemia incidence in a mathematical model. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2022; 61:361-373. [PMID: 35864346 PMCID: PMC9334435 DOI: 10.1007/s00411-022-00981-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 06/11/2022] [Indexed: 06/15/2023]
Abstract
In vitro experiments show that the cells possibly responsible for radiation-induced acute myeloid leukemia (rAML) exhibit low-dose hyper-radiosensitivity (HRS). In these cells, HRS is responsible for excess cell killing at low doses. Besides the endpoint of cell killing, HRS has also been shown to stimulate the low-dose formation of chromosomal aberrations such as deletions. Although HRS has been investigated extensively, little is known about the possible effect of HRS on low-dose cancer risk. In CBA mice, rAML can largely be explained in terms of a radiation-induced Sfpi1 deletion and a point mutation in the remaining Sfpi1 gene copy. The aim of this paper is to present and quantify possible mechanisms through which HRS may influence low-dose rAML incidence in CBA mice. To accomplish this, a mechanistic rAML CBA mouse model was developed to study HRS-dependent AML onset after low-dose photon irradiation. The rAML incidence was computed under the assumptions that target cells: (1) do not exhibit HRS; (2) HRS only stimulates cell killing; or (3) HRS stimulates cell killing and the formation of the Sfpi1 deletion. In absence of HRS (control), the rAML dose-response curve can be approximated with a linear-quadratic function of the absorbed dose. Compared to the control, the assumption that HRS stimulates cell killing lowered the rAML incidence, whereas increased incidence was observed at low doses if HRS additionally stimulates the induction of the Sfpi1 deletion. In conclusion, cellular HRS affects the number of surviving pre-leukemic cells with an Sfpi1 deletion which, depending on the HRS assumption, directly translates to a lower/higher probability of developing rAML. Low-dose HRS may affect cancer risk in general by altering the probability that certain mutations occur/persist.
Collapse
Affiliation(s)
- Sjors Stouten
- Center for Environmental Safety and Security, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
- Department of Mathematics, Utrecht University, Utrecht, The Netherlands
| | - Ben Balkenende
- Department of Mathematics, Utrecht University, Utrecht, The Netherlands
| | - Lars Roobol
- Center for Environmental Safety and Security, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | | | - Christophe Badie
- Cancer Mechanisms and Biomarkers group, Radiation Effects Department, Radiation, Chemical and Environmental Hazards, UK Health Security Agency, Chilton, Didcot, Oxon, OX11 0RQ UK
| | - Fieke Dekkers
- Center for Environmental Safety and Security, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
- Department of Mathematics, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
4
|
Stouten S, Verduyn Lunel S, Finnon R, Badie C, Dekkers F. Modeling low-dose radiation-induced acute myeloid leukemia in male CBA/H mice. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2021; 60:49-60. [PMID: 33221961 PMCID: PMC7902600 DOI: 10.1007/s00411-020-00880-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 11/01/2020] [Indexed: 06/11/2023]
Abstract
The effect of low-dose ionizing radiation exposure on leukemia incidence remains poorly understood. Possible dose-response curves for various forms of leukemia are largely based on cohorts of atomic bomb survivors. Animal studies can contribute to an improved understanding of radiation-induced acute myeloid leukemia (rAML) in humans. In male CBA/H mice, incidence of rAML can be described by a two-hit model involving a radiation-induced deletion with Sfpi1 gene copy loss and a point mutation in the remaining Sfpi1 allele. In the present study (historical) mouse data were used and these processes were translated into a mathematical model to study photon-induced low-dose AML incidence in male CBA/H mice following acute exposure. Numerical model solutions for low-dose rAML incidence and diagnosis times could respectively be approximated with a model linear-quadratic in radiation dose and a normal cumulative distribution function. Interestingly, the low-dose incidence was found to be proportional to the modeled number of cells carrying the Sfpi1 deletion present per mouse following exposure. After making only model-derived high-dose rAML estimates available to extrapolate from, the linear-quadratic model could be used to approximate low-dose rAML incidence calculated with our mouse model. The accuracy in estimating low-dose rAML incidence when extrapolating from a linear model using a low-dose effectiveness factor was found to depend on whether a data transformation was used in the curve fitting procedure.
Collapse
Affiliation(s)
- Sjors Stouten
- Netherlands National Institute for Public Health and the Environment, Bilthoven, The Netherlands.
- Mathematical Institute, Utrecht University, Utrecht, 3508 TA, The Netherlands.
| | | | - Rosemary Finnon
- Cancer Mechanisms and Biomarkers Group, Radiation Effects Department, Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Didcot, OX11 ORQ, UK
| | - Christophe Badie
- Cancer Mechanisms and Biomarkers Group, Radiation Effects Department, Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Didcot, OX11 ORQ, UK
| | - Fieke Dekkers
- Netherlands National Institute for Public Health and the Environment, Bilthoven, The Netherlands
- Mathematical Institute, Utrecht University, Utrecht, 3508 TA, The Netherlands
| |
Collapse
|
5
|
Abstract
Public health policymakers face increasingly complex questions and decisions and need to deal with an increasing quantity of data and information. For policy advisors to make use of scientific evidence and to assess available intervention options effectively and therefore indirectly for those deciding on and implementing public health policies, mathematical modeling has proven to be a useful tool. In some areas, the use of mathematical modeling for public health policy support has become standard practice at various levels of decision-making. To make use of this tool effectively within public health organizations, it is necessary to provide good infrastructure and ensure close collaboration between modelers and policymakers. Based on experience from a national public health institute, we discuss the strategic requirements for good modeling practice for public health. For modeling to be of maximal value for a public health institute, the organization and budgeting of mathematical modeling should be transparent, and a long-term strategy for how to position and develop mathematical modeling should be in place.
Collapse
|
6
|
Gault N, Verbiest T, Badie C, Romeo PH, Bouffler S. Hematopoietic stem and progenitor cell responses to low radiation doses - implications for leukemia risk. Int J Radiat Biol 2019; 95:892-899. [PMID: 30652952 DOI: 10.1080/09553002.2019.1569777] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Studies of the responses of hematopoietic stem and progenitor cells (HSPCs) to low doses of ionizing radiation formed an important aspect of the RISK-IR project ( www.risk-ir.eu ). A brief overview of these studies is presented here. The findings confirm the sensitivity of HSPCs to radiation even at low doses, and illustrate the substantial impact that differentiation state has upon cell sensitivity. The work provides mechanistic support for epidemiological findings of leukemia risk at dose levels used in diagnostic CT imaging, and further suggests that low-dose irradiation may facilitate bone marrow transplantation, a finding that could lead to refinements in clinical practice.
Collapse
Affiliation(s)
- Nathalie Gault
- a CEA/DRF/IBFJ/iRCM/LRTS , Fontenay-aux-Roses Cedex , France.,b Inserm U967 , Fontenay-aux-Roses Cedex , France.,c CEA/DRF/IBFJ/iRCM/LRTS-U1274 Inserm-Université Paris-Diderot , Paris , France.,d CEA/DRF/IBFJ/iRCM/LRTS-U1274 Inserm-Université Paris-Sud , Paris , France
| | - Tom Verbiest
- e Public Health England , Centre for Radiation, Chemical and Environmental Hazards , Oxfordshire , UK
| | - Christophe Badie
- e Public Health England , Centre for Radiation, Chemical and Environmental Hazards , Oxfordshire , UK
| | - Paul-Henri Romeo
- a CEA/DRF/IBFJ/iRCM/LRTS , Fontenay-aux-Roses Cedex , France.,b Inserm U967 , Fontenay-aux-Roses Cedex , France.,c CEA/DRF/IBFJ/iRCM/LRTS-U1274 Inserm-Université Paris-Diderot , Paris , France.,d CEA/DRF/IBFJ/iRCM/LRTS-U1274 Inserm-Université Paris-Sud , Paris , France
| | - Simon Bouffler
- e Public Health England , Centre for Radiation, Chemical and Environmental Hazards , Oxfordshire , UK
| |
Collapse
|
7
|
Almosailleakh M, Schwaller J. Murine Models of Acute Myeloid Leukaemia. Int J Mol Sci 2019; 20:E453. [PMID: 30669675 PMCID: PMC6358780 DOI: 10.3390/ijms20020453] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 01/08/2019] [Accepted: 01/11/2019] [Indexed: 01/08/2023] Open
Abstract
Acute myeloid leukaemia (AML) is a rare but severe form of human cancer that results from a limited number of functionally cooperating genetic abnormalities leading to uncontrolled proliferation and impaired differentiation of hematopoietic stem and progenitor cells. Before the identification of genetic driver lesions, chemically, irradiation or viral infection-induced mouse leukaemia models provided platforms to test novel chemotherapeutics. Later, transgenic mouse models were established to test the in vivo transforming potential of newly cloned fusion genes and genetic aberrations detected in patients' genomes. Hereby researchers constitutively or conditionally expressed the respective gene in the germline of the mouse or reconstituted the hematopoietic system of lethally irradiated mice with bone marrow virally expressing the mutation of interest. More recently, immune deficient mice have been explored to study patient-derived human AML cells in vivo. Unfortunately, although complementary to each other, none of the currently available strategies faithfully model the initiation and progression of the human disease. Nevertheless, fast advances in the fields of next generation sequencing, molecular technology and bioengineering are continuously contributing to the generation of better mouse models. Here we review the most important AML mouse models of each category, briefly describe their advantages and limitations and show how they have contributed to our understanding of the biology and to the development of novel therapies.
Collapse
MESH Headings
- Animals
- Bone Marrow Transplantation
- Carcinogens/administration & dosage
- Cell Transformation, Viral
- Disease Models, Animal
- Gene Editing
- Heterografts
- Humans
- Immunocompromised Host
- Leukemia, Myeloid, Acute/etiology
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/pathology
- Mice
- Mice, Transgenic
- Radiation, Ionizing
Collapse
Affiliation(s)
- Marwa Almosailleakh
- Department of Biomedicine, University Children's Hospital beider Basel (UKBB), University of Basel, 4031 Basel, Switzerland.
| | - Juerg Schwaller
- Department of Biomedicine, University Children's Hospital beider Basel (UKBB), University of Basel, 4031 Basel, Switzerland.
| |
Collapse
|
8
|
Imaoka T, Nishimura M, Daino K, Takabatake M, Moriyama H, Nishimura Y, Morioka T, Shimada Y, Kakinuma S. Risk of second cancer after ion beam radiotherapy: insights from animal carcinogenesis studies. Int J Radiat Biol 2019; 95:1431-1440. [PMID: 30495977 DOI: 10.1080/09553002.2018.1547848] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Purpose: To review recent studies to better understand the risk of second cancer after ion beam radiotherapy and to clarify the importance of animal radiobiology therein. Results: Risk of developing second cancer after radiotherapy is a concern, particularly for survivors of childhood tumors. Ion beam radiotherapy is expected to reduce the risk of second cancer by reducing exposure of normal tissues to radiation. Large uncertainty lies, however, in the choice of relative biological effectiveness (RBE) of high linear energy transfer (LET) radiation (e.g. carbon ions and neutrons) in cancer induction, especially for children. Studies have attempted to predict the risk of second cancer after ion beam radiotherapy based on an assessment of radiation dose, the risk of low LET radiation, and assumptions about RBE. Animal experiments have yielded RBE values for selected tissues, radiation types, and age at the time of irradiation; the results indicate potentially variable RBE which depends on tissues, ages, and dose levels. Animal studies have also attempted to identify genetic alterations in tumors induced by high LET radiation. Conclusions: Estimating the RBE value for cancer induction is important for understanding the risk of second cancer after ion beam radiotherapy. More comprehensive animal radiobiology studies are needed.
Collapse
Affiliation(s)
- Tatsuhiko Imaoka
- Department of Radiation Effects Research, National Institute of Radiological Sciences (NIRS), National Institutes for Quantum and Radiological Science and Technology (QST) , Chiba , Japan.,Tokyo Metropolitan University , Tokyo , Japan.,QST Advanced Study Laboratory, QST , Chiba , Japan
| | - Mayumi Nishimura
- Department of Radiation Effects Research, National Institute of Radiological Sciences (NIRS), National Institutes for Quantum and Radiological Science and Technology (QST) , Chiba , Japan
| | - Kazuhiro Daino
- Department of Radiation Effects Research, National Institute of Radiological Sciences (NIRS), National Institutes for Quantum and Radiological Science and Technology (QST) , Chiba , Japan
| | - Masaru Takabatake
- Department of Radiation Effects Research, National Institute of Radiological Sciences (NIRS), National Institutes for Quantum and Radiological Science and Technology (QST) , Chiba , Japan.,Tokyo Metropolitan University , Tokyo , Japan
| | - Hitomi Moriyama
- Department of Radiation Effects Research, National Institute of Radiological Sciences (NIRS), National Institutes for Quantum and Radiological Science and Technology (QST) , Chiba , Japan.,Tokyo Metropolitan University , Tokyo , Japan
| | - Yukiko Nishimura
- Department of Radiation Effects Research, National Institute of Radiological Sciences (NIRS), National Institutes for Quantum and Radiological Science and Technology (QST) , Chiba , Japan
| | - Takamitsu Morioka
- Department of Radiation Effects Research, National Institute of Radiological Sciences (NIRS), National Institutes for Quantum and Radiological Science and Technology (QST) , Chiba , Japan
| | | | - Shizuko Kakinuma
- Department of Radiation Effects Research, National Institute of Radiological Sciences (NIRS), National Institutes for Quantum and Radiological Science and Technology (QST) , Chiba , Japan
| |
Collapse
|
9
|
Verbiest T, Bouffler S, Badie C. No equal opportunity for leukemia initiating cells. Oncotarget 2018; 9:37078-37079. [PMID: 30647845 PMCID: PMC6324679 DOI: 10.18632/oncotarget.26454] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 12/04/2018] [Indexed: 12/31/2022] Open
Affiliation(s)
- Tom Verbiest
- Cancer Mechanisms and Biomarkers Group, Radiation Effects Department, Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Didcot, United Kingdom
| | - Simon Bouffler
- Cancer Mechanisms and Biomarkers Group, Radiation Effects Department, Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Didcot, United Kingdom
| | - Christophe Badie
- Cancer Mechanisms and Biomarkers Group, Radiation Effects Department, Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Didcot, United Kingdom
| |
Collapse
|
10
|
Tracking preleukemic cells in vivo to reveal the sequence of molecular events in radiation leukemogenesis. Leukemia 2018; 32:1435-1444. [PMID: 29556020 PMCID: PMC5990525 DOI: 10.1038/s41375-018-0085-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 02/05/2018] [Accepted: 02/06/2018] [Indexed: 12/16/2022]
Abstract
Epidemiological studies have demonstrated an increased leukemia incidence following ionizing radiation exposure, but to date, the target cells and underlying mechanisms of radiation leukemogenesis remain largely unidentified. We engineered a mouse model carrying a different fluorescent marker on each chromosome 2, located inside the minimum deleted region occurring after radiation exposure and recognized as the first leukemogenic event. Using this tailored model, we report that following radiation exposure, more than half of asymptomatic CBA Sfpi1GFP/mCh mice presented with expanding clones of preleukemic hematopoietic cells harboring a hemizygous interstitial deletion of chromosome 2. Moreover, following isolation of preleukemic hematopoietic stem and progenitor cells irradiated in their native microenvironment, we identified the presence of Sfpi1 point mutations within a subpopulation of these preleukemic cells expanding rapidly (increasing from 6% to 55% in 21 days in peripheral blood in one case), hence identifying for the first time the presence of such cells within a living animal. Importantly, we also report a previously undescribed gender difference in the phenotype of the preleukemic cells and leukemia, suggesting a gender imbalance in the radiation-induced leukemic target cell. In conclusion, we provide novel insights into the sequence of molecular events occurring during the (radiation-induced) leukemic clonal evolution.
Collapse
|
11
|
Abstract
Potential ionising radiation exposure scenarios are varied, but all bring risks beyond the simple issues of short-term survival. Whether accidentally exposed to a single, whole-body dose in an act of terrorism or purposefully exposed to fractionated doses as part of a therapeutic regimen, radiation exposure carries the consequence of elevated cancer risk. The long-term impact of both intentional and unintentional exposure could potentially be mitigated by treatments specifically developed to limit the mutations and precancerous replication that ensue in the wake of irradiation The development of such agents would undoubtedly require a substantial degree of in vitro testing, but in order to accurately recapitulate the complex process of radiation-induced carcinogenesis, well-understood animal models are necessary. Inbred strains of the laboratory mouse, Mus musculus, present the most logical choice due to the high number of molecular and physiological similarities they share with humans. Their small size, high rate of breeding and fully sequenced genome further increase its value for use in cancer research. This chapter will review relevant m. musculus inbred and F1 hybrid animals of radiation-induced myeloid leukemia, thymic lymphoma, breast and lung cancers. Method of cancer induction and associated molecular pathologies will also be described for each model.
Collapse
|
12
|
Verbiest T, Bouffler S, Nutt SL, Badie C. PU.1 downregulation in murine radiation-induced acute myeloid leukaemia (AML): from molecular mechanism to human AML. Carcinogenesis 2015; 36:413-9. [PMID: 25750172 PMCID: PMC4392607 DOI: 10.1093/carcin/bgv016] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 02/24/2015] [Indexed: 01/06/2023] Open
Abstract
The transcription factor PU.1, encoded by the murine Sfpi1 gene (SPI1 in humans), is a member of the Ets transcription factor family and plays a vital role in commitment and maturation of the myeloid and lymphoid lineages. Murine studies directly link primary acute myeloid leukaemia (AML) and decreased PU.1 expression in specifically modified strains. Similarly, a radiation-induced chromosome 2 deletion and subsequent Sfpi1 point mutation in the remaining allele lead to murine radiation-induced AML. Consistent with murine data, heterozygous deletion of the SPI1 locus and mutation of the −14kb SPI1 upstream regulatory element were described previously in human primary AML, although they are rare events. Other mechanisms linked to PU.1 downregulation in human AML include TP53 deletion, FLT3-ITD mutation and the recurrent AML1-ETO [t(8;21)] and PML-RARA [t(15;17)] translocations. This review provides an up-to-date overview on our current understanding of the involvement of PU.1 in the initiation and development of radiation-induced AML, together with recommendations for future murine and human studies.
Collapse
Affiliation(s)
- Tom Verbiest
- Biological Effects Department, Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Didcot OX11 ORQ, UK, CRUK & MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK
| | - Simon Bouffler
- Biological Effects Department, Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Didcot OX11 ORQ, UK
| | - Stephen L Nutt
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3052, Australia and Department of Medical Biology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Christophe Badie
- Biological Effects Department, Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Didcot OX11 ORQ, UK,
| |
Collapse
|
13
|
Genik PC, Vyazunova I, Steffen LS, Bacher JW, Bielefeldt-Ohmann H, McKercher S, Ullrich RL, Fallgren CM, Weil MM, Ray FA. Leukemogenesis in heterozygous PU.1 knockout mice. Radiat Res 2014; 182:310-5. [PMID: 25076114 DOI: 10.1667/rr13738.1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Most murine radiation-induced acute myeloid leukemias involve biallelic inactivation of the PU.1 gene, with one allele being lost through a radiation-induced chromosomal deletion and the other allele affected by a recurrent point mutation in codon 235 that is likely to be spontaneous. The short latencies of acute myeloid leukemias occurring in nonirradiated mice engineered with PU.1 conditional knockout or knockdown alleles suggest that once both copies of PU.1 have been lost any other steps involved in leukemogenesis occur rapidly. Yet, spontaneous acute myeloid leukemias have not been reported in mice heterozygous for a PU.1 knockout allele, an observation that conflicts with the understanding that the PU.1 codon 235 mutation is spontaneous. Here we describe experiments that show that the lack of spontaneous leukemia in PU.1 heterozygous knockout mice is not due to insufficient monitoring times or mouse numbers or the genetic background of the knockout mice. The results reveal that spontaneous leukemias that develop in mice of the mixed 129S2/SvPas and C57BL/6 background of knockout mice arise by a pathway that does not involve biallelic PU.1 mutation. In addition, the latency of radiation-induced leukemia in PU.1 heterozygous mice on a genetic background susceptible to radiation-induced leukemia indicates that the codon 235 mutation is not a rate-limiting step in radiation leukemogenesis driven by PU.1 loss.
Collapse
Affiliation(s)
- Paula C Genik
- a Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, Colorado
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Rivina L, Davoren M, Schiestl RH. Radiation-induced myeloid leukemia in murine models. Hum Genomics 2014; 8:13. [PMID: 25062865 PMCID: PMC4128013 DOI: 10.1186/1479-7364-8-13] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Accepted: 06/26/2014] [Indexed: 12/18/2022] Open
Abstract
The use of radiation therapy is a cornerstone of modern cancer treatment. The number of patients that undergo radiation as a part of their therapy regimen is only increasing every year, but this does not come without cost. As this number increases, so too does the incidence of secondary, radiation-induced neoplasias, creating a need for therapeutic agents targeted specifically towards incidence reduction and treatment of these cancers. Development and efficacy testing of these agents requires not only extensive in vitro testing but also a set of reliable animal models to accurately recreate the complex situations of radiation-induced carcinogenesis. As radiation-induced leukemic progression often involves genomic changes such as rearrangements, deletions, and changes in methylation, the laboratory mouse Mus musculus, with its fully sequenced genome, is a powerful tool in cancer research. This fact, combined with the molecular and physiological similarities it shares with man and its small size and high rate of breeding in captivity, makes it the most relevant model to use in radiation-induced leukemia research. In this work, we review relevant M. musculus inbred and F1 hybrid animal models, as well as methods of induction of radiation-induced myeloid leukemia. Associated molecular pathologies are also included.
Collapse
Affiliation(s)
| | - Michael Davoren
- Department of Environmental Health Sciences, University of California, Los Angeles, 650 Charles E, Young Dr, South, CHS 71-295, Los Angeles, CA 90095, USA.
| | | |
Collapse
|
15
|
Hlatky L, Hahnfeldt P. Beyond the cancer cell: progression-level determinants highlight the multiscale nature of carcinogenesis risk. Cancer Res 2013; 74:659-64. [PMID: 24272486 DOI: 10.1158/0008-5472.can-13-2508] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Over the last several decades, improved awareness of the prevalence of carcinogens in the environment, along with a growing appreciation of the complexity of the carcinogenesis process, has shifted policy on cancer risk from one of strict avoidance of carcinogens to one of adherence to exposure limits deemed "safe" based on quantitative risk estimation. Meanwhile, given the mutagenic nature of most carcinogens, attention has gravitated to developing a genetic rationale for measuring and comparing risks. This focus has culminated in the now well-established multistage mutational paradigm, which holds that a stepwise sequence of mutations drives cell "initiation" and the subsequent "transformation" of an initiated cell into a cancer cell, and that, once created, a cancer cell will inevitably undergo "progression" to become overt disease. Unanticipated by this paradigm is the effect progression-phase population- and tissue-level bottleneck events may have on this process. Attesting to this is the prevalence of tumor dormancy, a state of arrested growth of an otherwise fully malignant, often microscopic cancer mass, maintained by interactions among cancer cells and between cancer and host cells. The proper inclusion of such progression-modifying influences would clearly behoove risk estimation and improve our understanding of the natural history of cancer by accounting for the less-than-certain risk of eventual cancer disease even when cancer cells are present. Such an improved understanding, in turn, stands to better inform policy-making and influence such clinical practice decisions as whether to treat the increasingly smaller tumors detectable with advancing technologies.
Collapse
Affiliation(s)
- Lynn Hlatky
- Authors' Affiliation: Center of Cancer Systems Biology, Genesys Research Institute, Tufts University School of Medicine, Boston, Massachusetts
| | | |
Collapse
|
16
|
Abstract
Radiation-induced (RI) secondary cancers were not a major clinical concern even as little as 15 years ago. However, advances in cancer diagnostics, therapy, and supportive care have saved numerous lives and many former cancer patients are now living for 5, 10, 20, and more years beyond their initial diagnosis. The majority of these patients have received radiotherapy as a part of their treatment regimen and are now beginning to develop secondary cancers arising from normal tissue exposure to damaging effects of ionizing radiation. Because historically patients rarely survived past the extended latency periods inherent to these RI cancers, very little effort was channeled towards the research leading to the development of therapeutic agents intended to prevent or ameliorate oncogenic effects of normal tissue exposure to radiation. The number of RI cancers is expected to increase very rapidly in the near future, but the field of cancer biology might not be prepared to address important issues related to this phenomena. One such issue is the ability to accurately differentiate between primary tumors and de novo arising secondary tumors in the same patient. Another issue is the lack of therapeutic agents intended to reduce such cancers in the future. To address these issues, large-scale epidemiological studies must be supplemented with appropriate animal modeling studies. This work reviews relevant mouse (Mus musculus) models of inbred and F1 animals and methodologies of induction of most relevant radiation-associated cancers: leukemia, lymphoma, and lung and breast cancers. Where available, underlying molecular pathologies are included.
Collapse
Affiliation(s)
- Leena Rivina
- Department of Urology, Stanford University School of Medicine, Stanford, California, USA.
| | | |
Collapse
|
17
|
Mouse models for efficacy testing of agents against radiation carcinogenesis—a literature review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2012; 10:107-43. [PMID: 23271302 PMCID: PMC3564133 DOI: 10.3390/ijerph10010107] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/06/2012] [Revised: 11/26/2012] [Accepted: 12/11/2012] [Indexed: 12/12/2022]
Abstract
As the number of cancer survivors treated with radiation as a part of their therapy regimen is constantly increasing, so is concern about radiation-induced cancers. This increases the need for therapeutic and mitigating agents against secondary neoplasias. Development and efficacy testing of these agents requires not only extensive in vitro assessment, but also a set of reliable animal models of radiation-induced carcinogenesis. The laboratory mouse (Mus musculus) remains one of the best animal model systems for cancer research due to its molecular and physiological similarities to man, small size, ease of breeding in captivity and a fully sequenced genome. This work reviews relevant M. musculus inbred and F1 hybrid animal models and methodologies of induction of radiation-induced leukemia, thymic lymphoma, breast, and lung cancer in these models. Where available, the associated molecular pathologies are also included.
Collapse
|