1
|
El-Hady AMA, Azzoz RM, Soliman SM, Abdelrahman IY, Khalil WM, Ali SA. Studies on the effect of curcumin and quercetin in the liver of male albino rats exposed to gamma irradiation. Histochem Cell Biol 2024; 162:299-309. [PMID: 38913116 PMCID: PMC11364652 DOI: 10.1007/s00418-024-02300-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/15/2024] [Indexed: 06/25/2024]
Abstract
Ionizing radiation produces deleterious effects on living organisms. The present investigation has been carried out to study the prophylactic as well as the therapeutic effects of treated rats with quercetin (Quer) and curcumin (Cur), which are two medicinal herbs known for their antioxidant activities against damages induced by whole-body fractionated gamma irradiation. Exposure of rats to whole-body gamma irradiation induced a significant decrease in erythrocyte (RBC), leukocyte (WBCs), platelet count (Plt), hemoglobin concentration (Hb), hematocrit (Hct %), mean erythrocyte hemoglobin (MCH), mean corpuscular hemoglobin concentration (MCHC), and mean erythrocyte volume (MCV); a high increase in plasma thiobarbituric acid reactive substances (TBARS); a nonsignificant statistical decrease in the mean value of serum glutathione (GSH); a significant increase in plasma alanine transferase (ALT), aspartate transferase (AST), alkaline phosphates (ALP), serum total protein, serum total cholesterol levels, total triglycerides levels, high-density lipoprotein (HDL), and low-density lipoprotein (LDL) levels; and with marked histological changes and structural changes measured by Fourier transform infrared (FTIR). Applying both quercetin and curcumin pre- and postexposure to gamma radiation revealed a remarkable improvement in all the studied parameters. The cellular damage by gamma radiation is greatly mitigated by the coadministration of curcumin and quercetin before radiation exposure.
Collapse
Affiliation(s)
- Amr M Abd El-Hady
- Radiology and Medical Imaging Technology Department, Faculty of Applied Health Sciences Technology, Misr University for Science and Technology (MUST), Cairo, Egypt.
| | - Rady M Azzoz
- Radiology and Medical Imaging Technology Department, Faculty of Applied Health Sciences Technology, Misr University for Science and Technology (MUST), Cairo, Egypt
| | - Saeed M Soliman
- Radiation Biology Department, National Centre for Radiation Research and Technology, P.O. Box 29, Nasr City, Egypt
| | - Ibrahim Y Abdelrahman
- Radiation Biology Department, National Centre for Radiation Research and Technology, P.O. Box 29, Nasr City, Egypt
| | - Wafaa M Khalil
- Biophysics Department, Faculty of Science, Cairo University, Giza, Egypt
| | - Said A Ali
- Biophysics Department, Faculty of Science, Cairo University, Giza, Egypt
| |
Collapse
|
2
|
Feng H, Li W, Zhang Y, Chang C, Hua L, Feng Y, Lai Y, Geng L. Mechanistic modelling of relative biological effectiveness of carbon ion beams and comparison with experiments. Phys Med Biol 2024; 69:035020. [PMID: 38157549 DOI: 10.1088/1361-6560/ad1998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 12/29/2023] [Indexed: 01/03/2024]
Abstract
Objective.Relative biological effectiveness (RBE) plays a vital role in carbon ion radiotherapy, which is a promising treatment method for reducing toxic effects on normal tissues and improving treatment efficacy. It is important to have an effective and precise way of obtaining RBE values to support clinical decisions. A method of calculating RBE from a mechanistic perspective is reported.Approach.Ratio of dose to obtain the same number of double strand breaks (DSBs) between different radiation types was used to evaluate RBE. Package gMicroMC was used to simulate DSB yields. The DSB inductions were then analyzed to calculate RBE. The RBE values were compared with experimental results.Main results.Furusawa's experiment yielded RBE values of 1.27, 2.22, 3.00 and 3.37 for carbon ion beam with dose-averaged LET of 30.3 keVμm-1, 54.5 keVμm-1, 88 keVμm-1and 137 keVμm-1, respectively. RBE values computed from gMicroMC simulations were 1.75, 2.22, 2.87 and 2.97. When it came to a more sophisticated carbon ion beam with 6 cm spread-out Bragg peak, RBE values were 1.61, 1.63, 2.19 and 2.36 for proximal, middle, distal and distal end part, respectively. Values simulated by gMicroMC were 1.50, 1.87, 2.19 and 2.34. The simulated results were in reasonable agreement with the experimental data.Significance.As a mechanistic way for the evaluation of RBE for carbon ion radiotherapy by combining the macroscopic simulation of energy spectrum and microscopic simulation of DNA damages, this work provides a promising tool for RBE calculation supporting clinical applications such as treatment planning.
Collapse
Affiliation(s)
- Haonan Feng
- School of Physics, Beihang University, Beijing 102206, People's Republic of China
- Department of Medical Management, Chinese Academy of Science Heavy Ion Medicine (CASHIM) Co. Ltd, Beijing 100083, People's Republic of China
| | - Weiguang Li
- School of Physics, Beihang University, Beijing 102206, People's Republic of China
- Department of Medical Management, Chinese Academy of Science Heavy Ion Medicine (CASHIM) Co. Ltd, Beijing 100083, People's Republic of China
| | - Yibao Zhang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Radiation Oncology, Peking University Cancer Hospital & Institute, Beijing 100142, People's Republic of China
| | - Cheng Chang
- Department of Medical Management, Chinese Academy of Science Heavy Ion Medicine (CASHIM) Co. Ltd, Beijing 100083, People's Republic of China
| | - Ling Hua
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Radiation Oncology, Peking University Cancer Hospital & Institute, Beijing 100142, People's Republic of China
| | - Yiwen Feng
- Beijing University of Posts and Telecommunications, Beijing 100876, People's Republic of China
| | - Youfang Lai
- Department of Medical Management, Chinese Academy of Science Heavy Ion Medicine (CASHIM) Co. Ltd, Beijing 100083, People's Republic of China
| | - LiSheng Geng
- School of Physics, Beihang University, Beijing 102206, People's Republic of China
- Peng Huanwu Collaborative Center for Research and Education, Beihang University, Beijing 100191, People's Republic of China
- Beijing Key Laboratory of Advanced Nuclear Materials and Physics, Beihang University, Beijing 102206, People's Republic of China
- Southern Center for Nuclear-Science Theory (SCNT), Institute of Modern Physics, Chinese Academy of Sciences, Huizhou 516000, Guangdong Province, People's Republic of China
| |
Collapse
|
3
|
Shiraishi Y, Matsuya Y, Kusumoto T, Fukunaga H. Modeling for predicting survival fraction of cells after ultra-high dose rate irradiation. Phys Med Biol 2023; 69:015017. [PMID: 38056015 DOI: 10.1088/1361-6560/ad131b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 12/06/2023] [Indexed: 12/08/2023]
Abstract
Objective. FLASH radiotherapy (FLASH-RT) with ultra-high dose rate (UHDR) irradiation (i.e. > 40 Gy s-1) spares the function of normal tissues while preserving antitumor efficacy, known as the FLASH effect. The biological effects after conventional dose rate-radiotherapy (CONV-RT) with ≤0.1 Gy s-1have been well modeled by considering microdosimetry and DNA repair processes, meanwhile modeling of radiosensitivities under UHDR irradiation is insufficient. Here, we developed anintegrated microdosimetric-kinetic(IMK)model for UHDR-irradiationenabling the prediction of surviving fraction after UHDR irradiation.Approach.TheIMK model for UHDR-irradiationconsiders the initial DNA damage yields by the modification of indirect effects under UHDR compared to CONV dose rate. The developed model is based on the linear-quadratic (LQ) nature with the dose and dose square coefficients, considering the reduction of DNA damage yields as a function of dose rate.Main results.The estimate by the developed model could successfully reproduce thein vitroexperimental dose-response curve for various cell line types and dose rates.Significance.The developed model would be useful for predicting the biological effects under the UHDR irradiation.
Collapse
Affiliation(s)
- Yuta Shiraishi
- Graduate school of Health Sciences, Hokkaido University, Kita-12, Nishi-5, Kita-ku, Sapporo, Hokkaido, 060-0812, Japan
- Faculty of Health Sciences, Japan Healthcare University, 3-11-1-50 Tsukisamu-higashi, Toyohira-ku, Sapporo, Hokkaido, 062-0053, Japan
| | - Yusuke Matsuya
- Faculty of Health Sciences, Hokkaido University, Kita-12, Nishi-5, Kita-ku, Sapporo, Hokkaido, 060-0812, Japan
- Nuclear Science and Engineering Center, Japan Atomic Energy Agency, 2-4 Shirakata, Tokai, Ibaraki, 319-1195, Japan
| | - Tamon Kusumoto
- National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba, 263-8555, Japan
| | - Hisanori Fukunaga
- Faculty of Health Sciences, Hokkaido University, Kita-12, Nishi-5, Kita-ku, Sapporo, Hokkaido, 060-0812, Japan
| |
Collapse
|
4
|
Matsuya Y, Kai T, Parisi A, Yoshii Y, Sato T. Application of a simple DNA damage model developed for electrons to proton irradiation. Phys Med Biol 2022; 67. [DOI: 10.1088/1361-6560/ac9a20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 10/13/2022] [Indexed: 01/18/2023]
Abstract
Abstract
Proton beam therapy allows irradiating tumor volumes with reduced side effects on normal tissues with respect to conventional x-ray radiotherapy. Biological effects such as cell killing after proton beam irradiations depend on the proton kinetic energy, which is intrinsically related to early DNA damage induction. As such, DNA damage estimation based on Monte Carlo simulations is a research topic of worldwide interest. Such simulation is a mean of investigating the mechanisms of DNA strand break formations. However, past modellings considering chemical processes and DNA structures require long calculation times. Particle and heavy ion transport system (PHITS) is one of the general-purpose Monte Carlo codes that can simulate track structure of protons, meanwhile cannot handle radical dynamics simulation in liquid water. It also includes a simple model enabling the efficient estimation of DNA damage yields only from the spatial distribution of ionizations and excitations without DNA geometry, which was originally developed for electron track-structure simulations. In this study, we investigated the potential application of the model to protons without any modification. The yields of single-strand breaks, double-strand breaks (DSBs) and the complex DSBs were assessed as functions of the proton kinetic energy. The PHITS-based estimation showed that the DSB yields increased as the linear energy transfer (LET) increased, and reproduced the experimental and simulated yields of various DNA damage types induced by protons with LET up to about 30 keV μm−1. These results suggest that the current DNA damage model implemented in PHITS is sufficient for estimating DNA lesion yields induced after protons irradiation except at very low energies (below 1 MeV). This model contributes to evaluating early biological impacts in radiation therapy.
Collapse
|
5
|
Loan M, Bhat A. Effect of overdispersion of lethal lesions on cell survival curves. Biomed Phys Eng Express 2022; 8. [PMID: 35671734 DOI: 10.1088/2057-1976/ac7667] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 06/07/2022] [Indexed: 01/03/2023]
Abstract
The linear-quadratic (LQ) model is the most commonly used mechanism to predict radiobiological outcomes. It has been used extensively to describe dose-responsein vitroandin vivo. There are, however, some questions about its applicability in terms of its capacity to represent some profound mechanistic behaviour. Specifically, empirical evidence suggests that the LQ model underestimates the survival of cells at low doses while overestimating cell death at higher doses. It is believed to be driven from the usual LQ model assumption that radiogenic lesions are Poisson distributed. In this context, we use a negative binomial (NB) distribution to study the effect of overdispersion on the shapes and the possibility of reducing dose-response curvature at higher doses. We develop an overdispersion model for cell survival using the non-homologous end-joining (NHEJ) pathway double-strand break (DSB) repair mechanism to investigate the effects of the overdispersion on probabilities of repair of DSBs. The error distribution is customised to ensure that the refined overdispersion parameter depends on the mean of the distribution. The predicted cell survival responses for V79, AG and HSG cells exposed to protons, helium and carbon ions are compared with the experimental data in low and high dose regions at various linear energy transfer (LET) values. The results indicate straightening of dose-response and approaching a log-linear behaviour at higher doses. The model predictions with the measured data show that the NB modelled survival curves agree with the data following medium and high doses. Model predictions are not validated at very tiny and very high doses; the approach presented provides an analysis of mechanisms at the microscopic level. This may help improve the understanding of radiobiological responses of survival curves and resolve discrepancies between experimental and theoretical predictions of cell survival models.
Collapse
Affiliation(s)
- M Loan
- ANU College, Australian National University, Canberra, 2600, Australia
| | - A Bhat
- Department of Oncology, East Tennessee State University, TN, 37614, United States of America
| |
Collapse
|
6
|
Kozłowska WS, Carante MP, Aricò G, Embriaco A, Ferrari A, Magro G, Mairani A, Ramos R, Sala P, Georg D, Ballarini F. First application of the BIANCA biophysical model to carbon-ion patient cases. Phys Med Biol 2022; 67. [DOI: 10.1088/1361-6560/ac702b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 05/16/2022] [Indexed: 11/11/2022]
Abstract
Abstract
Objective. The main objective of this work consists of applying, for the first time, the BIANCA (BIophysical ANalysis of Cell death and chromosome Aberrations) biophysical model to the RBE calculation for C-ion cancer patients, and comparing the outcomes with those obtained by the LEM I model, which is applied in clinics. Indeed, the continuous development of heavy-ion cancer therapy requires modelling of biological effects of ion beams on tumours and normal tissues. The relative biological effectiveness (RBE) of heavy ions is higher than that of protons, with a significant variation along the beam path. Therefore, it requires a precise modelling, especially for the pencil-beam scanning technique. Currently, two radiobiological models, LEM I and MKM, are in use for heavy ions in scanned pencil-beam facilities. Approach. Utilizing an interface with the FLUKA Particle Therapy Tool, BIANCA was applied to re-calculate the RBE-weighted dose distribution for carbon-ion treatment of three patients (chordoma, head-and-neck and prostate) previously irradiated at CNAO, where radiobiological optimization was based on LEM I. The predictions obtained by BIANCA were based either on chordoma cell survival (RBE
surv
), or on dicentric aberrations in peripheral blood lymphocytes (RBE
ab
), which are indicators of late normal tissue damage, including secondary tumours. The simulation outcomes were then compared with those provided by LEM I. Main results. While in the target and in the entrance channel BIANCA predictions were lower than those obtained by LEM I, the two models provided very similar results in the considered OAR. The observed differences between RBE
surv
and RBE
ab
(which were also dependent on fractional dose and LET) suggest that in normal tissues the information on cell survival should be integrated by information more closely related to the induction of late damage, such as chromosome aberrations. Significance. This work showed that BIANCA is suitable for treatment plan optimization in ion-beam therapy, especially considering that it can predict both cell survival and chromosome aberrations and has previously shown good agreement with carbon-ion experimental data.
Collapse
|
7
|
Balajee AS, Livingston GK, Escalona MB, Ryan TL, Goans RE, Iddins CJ. Cytogenetic follow-up studies on humans with internal and external exposure to ionizing radiation. JOURNAL OF RADIOLOGICAL PROTECTION : OFFICIAL JOURNAL OF THE SOCIETY FOR RADIOLOGICAL PROTECTION 2021; 41:S578-S601. [PMID: 34233319 DOI: 10.1088/1361-6498/ac125a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 07/07/2021] [Indexed: 06/13/2023]
Abstract
Cells exposed to ionizing radiation have a wide spectrum of DNA lesions that include DNA single-strand breaks, DNA double-strand breaks (DSBs), oxidative base damage and DNA-protein crosslinks. Among them, DSB is the most critical lesion, which when mis-repaired leads to unstable and stable chromosome aberrations. Currently, chromosome aberration analysis is the preferred method for biological monitoring of radiation-exposed humans. Stable chromosome aberrations, such as inversions and balanced translocations, persist in the peripheral blood lymphocytes of radiation-exposed humans for several years and, therefore, are potentially useful tools to prognosticate the health risks of radiation exposure, particularly in the hematopoietic system. In this review, we summarize the cytogenetic follow-up studies performed by REAC/TS (Radiation Emergency Assistance Center/Training site, Oak Ridge, USA) on humans exposed to internal and external radiation. In the light of our observations as well as the data existing in the literature, this review attempts to highlight the importance of follow-up studies for predicting the extent of genomic instability and its impact on delayed health risks in radiation-exposed victims.
Collapse
Affiliation(s)
- Adayabalam S Balajee
- Cytogenetic Biodosimetry Laboratory, Radiation Emergency Assistance Centre/Training Site, Oak Ridge Institute for Science and Education, Oak Ridge Associated Universities, Oak Ridge, TN, United States of America
| | - Gordon K Livingston
- Cytogenetic Biodosimetry Laboratory, Radiation Emergency Assistance Centre/Training Site, Oak Ridge Institute for Science and Education, Oak Ridge Associated Universities, Oak Ridge, TN, United States of America
| | - Maria B Escalona
- Cytogenetic Biodosimetry Laboratory, Radiation Emergency Assistance Centre/Training Site, Oak Ridge Institute for Science and Education, Oak Ridge Associated Universities, Oak Ridge, TN, United States of America
| | - Terri L Ryan
- Cytogenetic Biodosimetry Laboratory, Radiation Emergency Assistance Centre/Training Site, Oak Ridge Institute for Science and Education, Oak Ridge Associated Universities, Oak Ridge, TN, United States of America
| | - Ronald E Goans
- Cytogenetic Biodosimetry Laboratory, Radiation Emergency Assistance Centre/Training Site, Oak Ridge Institute for Science and Education, Oak Ridge Associated Universities, Oak Ridge, TN, United States of America
| | - Carol J Iddins
- Cytogenetic Biodosimetry Laboratory, Radiation Emergency Assistance Centre/Training Site, Oak Ridge Institute for Science and Education, Oak Ridge Associated Universities, Oak Ridge, TN, United States of America
| |
Collapse
|
8
|
Healthy Tissue Damage Following Cancer Ion Therapy: A Radiobiological Database Predicting Lymphocyte Chromosome Aberrations Based on the BIANCA Biophysical Model. Int J Mol Sci 2021; 22:ijms221910877. [PMID: 34639218 PMCID: PMC8509193 DOI: 10.3390/ijms221910877] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/06/2021] [Accepted: 10/06/2021] [Indexed: 12/20/2022] Open
Abstract
Chromosome aberrations are widely considered among the best biomarkers of radiation health risk due to their relationship with late cancer incidence. In particular, aberrations in peripheral blood lymphocytes (PBL) can be regarded as indicators of hematologic toxicity, which is a major limiting factor of radiotherapy total dose. In this framework, a radiobiological database describing the induction of PBL dicentrics as a function of ion type and energy was developed by means of the BIANCA (BIophysical ANalysis of Cell death and chromosome Aberrations) biophysical model, which has been previously applied to predict the effectiveness of therapeutic-like ion beams at killing tumour cells. This database was then read by the FLUKA Monte Carlo transport code, thus allowing us to calculate the Relative Biological Effectiveness (RBE) for dicentric induction along therapeutic C-ion beams. A comparison with previous results showed that, while in the higher-dose regions (e.g., the Spread-Out Bragg Peak, SOBP), the RBE for dicentrics was lower than that for cell survival. In the lower-dose regions (e.g., the fragmentation tail), the opposite trend was observed. This work suggests that, at least for some irradiation scenarios, calculating the biological effectiveness of a hadrontherapy beam solely based on the RBE for cell survival may lead to an underestimation of the risk of (late) damage to healthy tissues. More generally, following this work, BIANCA has gained the capability of providing RBE predictions not only for cell killing, but also for healthy tissue damage.
Collapse
|
9
|
Carante MP, Embriaco A, Aricò G, Ferrari A, Mairani A, Mein S, Ramos R, Sala P, Ballarini F. Biological effectiveness of He-3 and He-4 ion beams for cancer hadrontherapy: a study based on the BIANCA biophysical model. Phys Med Biol 2021; 66. [PMID: 34507306 DOI: 10.1088/1361-6560/ac25d4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 09/10/2021] [Indexed: 11/12/2022]
Abstract
While cancer therapy with protons and C-ions is continuously spreading, in the near future patients will be also treated with He-ions which, in comparison to photons, combine the higher precision of protons with the higher relative biological effectiveness (RBE) of C-ions. Similarly to C-ions, also for He-ions the RBE variation along the beam must be known as precisely as possible, especially for active beam delivery systems. In this framework the BIANCA biophysical model, which has already been applied to calculate the RBE along proton and C-ion beams, was extended to4He-ions and, following interface with the FLUKA code, was benchmarked against cell survival data on CHO normal cells and Renca tumour cells irradiated at different positions along therapeutic-like4He-ion beams at the Heidelberg Ion-beam Therapy centre, where the first He-ion patient will be treated soon. Very good agreement between simulations and data was obtained, showing that BIANCA can now be used to predict RBE following irradiation with all ion types that are currently used, or will be used soon, for hadrontherapy. Thanks to the development of a reference simulation database describing V79 cell survival for ion and photon irradiation, these predictions can be cell-type specific because analogous databases can be produced, in principle, for any cell line. Furthermore, survival data on CHO cells irradiated by a He-3 beam were reproduced to compare the biophysical properties of He-4 and He-3 beams, which is currently an open question. This comparison showed that, at the same depth, He-4 beams tend to have a higher RBE with respect to He-3 beams, and that this difference is also modulated by the considered physical dose, as well as the cell radiosensitivity. However, at least for the considered cases, no significant difference was found for the ratio between the RBE-weighted dose in the SOBP and that in the entrance plateau.
Collapse
Affiliation(s)
- M P Carante
- INFN (Italian National Institute for Nuclear Physics), Sezione di Pavia, via Bassi 6, I-27100 Pavia, Italy.,University of Pavia, Physics Department, via Bassi 6, I-27100 Pavia, Italy
| | - A Embriaco
- INFN (Italian National Institute for Nuclear Physics), Sezione di Pavia, via Bassi 6, I-27100 Pavia, Italy
| | - G Aricò
- CERN-European Organization for Nuclear Research, Geneva, Switzerland
| | - A Ferrari
- University Hospital Heidelberg, Germany.,Gangneung-Wonju National University-Gangneung, Republic of Korea
| | - A Mairani
- HIT (Heidelberg Ion-beam Therapy center), Heidelberg, Germany
| | - S Mein
- HIT (Heidelberg Ion-beam Therapy center), Heidelberg, Germany
| | - R Ramos
- INFN (Italian National Institute for Nuclear Physics), Sezione di Pavia, via Bassi 6, I-27100 Pavia, Italy
| | - P Sala
- INFN (Italian National Institute for Nuclear Physics), Sezione di Milano, via Celoria 16, I-20133 Milano, Italy
| | - F Ballarini
- INFN (Italian National Institute for Nuclear Physics), Sezione di Pavia, via Bassi 6, I-27100 Pavia, Italy.,University of Pavia, Physics Department, via Bassi 6, I-27100 Pavia, Italy
| |
Collapse
|
10
|
Saga R, Matsuya Y, Takahashi R, Hasegawa K, Date H, Hosokawa Y. 4-Methylumbelliferone administration enhances radiosensitivity of human fibrosarcoma by intercellular communication. Sci Rep 2021; 11:8258. [PMID: 33859324 PMCID: PMC8050271 DOI: 10.1038/s41598-021-87850-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 04/06/2021] [Indexed: 12/12/2022] Open
Abstract
Hyaluronan synthesis inhibitor 4-methylumbelliferone (4-MU) is a candidate of radiosensitizers which enables both anti-tumour and anti-metastasis effects in X-ray therapy. The curative effects under such 4-MU administration have been investigated in vitro; however, the radiosensitizing mechanisms remain unclear. Here, we investigated the radiosensitizing effects under 4-MU treatment from cell experiments and model estimations. We generated experimental surviving fractions of human fibrosarcoma cells (HT1080) after 4-MU treatment combined with X-ray irradiation. Meanwhilst, we also modelled the pharmacological effects of 4-MU treatment and theoretically analyzed the synergetic effects between 4-MU treatment and X-ray irradiation. The results show that the enhancement of cell killing by 4-MU treatment is the greatest in the intermediate dose range of around 4 Gy, which can be reproduced by considering intercellular communication (so called non-targeted effects) through the model analysis. As supposed to be the involvement of intercellular communication in radiosensitization, the oxidative stress level associated with reactive oxygen species (ROS), which leads to DNA damage induction, is significantly higher by the combination of 4-MU treatment and irradiation than only by X-ray irradiation, and the radiosensitization by 4-MU can be suppressed by the ROS inhibitors. These findings suggest that the synergetic effects between 4-MU treatment and irradiation are predominantly attributed to intercellular communication and provide more efficient tumour control than conventional X-ray therapy.
Collapse
Affiliation(s)
- Ryo Saga
- Department of Radiation Science, Graduate School of Health Sciences, Hirosaki University, 66-1 Hon-cho, Hirosaki, Aomori, 036-8564, Japan.
| | - Yusuke Matsuya
- Nuclear Science and Engineering Center, Research Group for Radiation Transport Analysis, Japan Atomic Energy Agency, 2-4 Shirakata, Tokai, Ibaraki, 319-1195, Japan.,Faculty of Health Sciences, Hokkaido University, Kita-12 Nishi-5, Kita-ku, Sapporo, Hokkaido, 060-0812, Japan
| | - Rei Takahashi
- Department of Radiation Science, Graduate School of Health Sciences, Hirosaki University, 66-1 Hon-cho, Hirosaki, Aomori, 036-8564, Japan
| | - Kazuki Hasegawa
- Department of Radiation Science, Graduate School of Health Sciences, Hirosaki University, 66-1 Hon-cho, Hirosaki, Aomori, 036-8564, Japan
| | - Hiroyuki Date
- Faculty of Health Sciences, Hokkaido University, Kita-12 Nishi-5, Kita-ku, Sapporo, Hokkaido, 060-0812, Japan
| | - Yoichiro Hosokawa
- Department of Radiation Science, Graduate School of Health Sciences, Hirosaki University, 66-1 Hon-cho, Hirosaki, Aomori, 036-8564, Japan
| |
Collapse
|
11
|
Carante MP, Ballarini F. Radiation Damage in Biomolecules and Cells. Int J Mol Sci 2020; 21:ijms21218188. [PMID: 33139616 PMCID: PMC7662447 DOI: 10.3390/ijms21218188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 10/28/2020] [Indexed: 11/23/2022] Open
Affiliation(s)
- Mario P. Carante
- INFN (Italian National Institute for Nuclear Physics), Sezione di Pavia, via Bassi 6, I-27100 Pavia, Italy;
| | - Francesca Ballarini
- INFN (Italian National Institute for Nuclear Physics), Sezione di Pavia, via Bassi 6, I-27100 Pavia, Italy;
- Physics Department, University of Pavia, via Bassi 6, I-27100 Pavia, Italy
- Correspondence:
| |
Collapse
|
12
|
Schneider U, Vasi F, Schmidli K, Besserer J. A model of radiation action based on nanodosimetry and the application to ultra-soft X-rays. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2020; 59:439-450. [PMID: 32277259 DOI: 10.1007/s00411-020-00842-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 03/30/2020] [Indexed: 06/11/2023]
Abstract
A radiation action model based on nanodosimetry is presented. It is motivated by the finding that the biological effects of various types of ionizing radiation lack a consistent relation with absorbed dose. It is postulated that the common fundamental cause of these effects is the production of elementary sublesions (DSB), which are created at a rate that is proportional to the probability to produce more than two ionisations within a volume of 10 base pairs of the DNA. The concepts of nanodosimetry allow for a quantitative characterization of this process in terms of the cumulative probability F2. The induced sublesions can interact in two ways to produce lethal damage. First, if two or more sublesions accumulate in a locally limited spherical volume of 3-10 nm in diameter, clustered DNA damage is produced. Second, consequent interactions or rearrangements of some of the initial damage over larger distances (~ µm) can produce additional lethal damage. From the comparison of theoretical predictions deduced from this concept with experimental data on relative biological effectiveness, a cluster volume with a diameter of 7.5 nm could be determined. It is shown that, for electrons, the predictions agree well with experimental data over a wide energy range. The only free parameter needed to model cell survival is the intersection cross-section which includes all relevant cell-specific factors. Using ultra-soft X-rays it could be shown that the energy dependence of cell survival is directly governed by the nanodosimetric characteristics of the radiation track structure. The cell survival model derived in this work exhibits exponential cell survival at a high dose and a finite gradient of cell survival at vanishing dose, as well as the dependence on dose-rate.
Collapse
Affiliation(s)
- Uwe Schneider
- Department of Physics, Science Faculty, University of Zürich, Zurich, Switzerland.
- Radiotherapy Hirslanden, Witellikerstrasse 40, 8032, Zurich, Switzerland.
| | - Fabiano Vasi
- Department of Physics, Science Faculty, University of Zürich, Zurich, Switzerland
- Radiotherapy Hirslanden, Witellikerstrasse 40, 8032, Zurich, Switzerland
| | - Kevin Schmidli
- Department of Physics, Science Faculty, University of Zürich, Zurich, Switzerland
- Radiotherapy Hirslanden, Witellikerstrasse 40, 8032, Zurich, Switzerland
| | - Jürgen Besserer
- Department of Physics, Science Faculty, University of Zürich, Zurich, Switzerland
- Radiotherapy Hirslanden, Witellikerstrasse 40, 8032, Zurich, Switzerland
| |
Collapse
|
13
|
In Vivo Validation of the BIANCA Biophysical Model: Benchmarking against Rat Spinal Cord RBE Data. Int J Mol Sci 2020; 21:ijms21113973. [PMID: 32492909 PMCID: PMC7312044 DOI: 10.3390/ijms21113973] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 05/25/2020] [Accepted: 05/29/2020] [Indexed: 12/25/2022] Open
Abstract
(1) Background: Cancer ion therapy is constantly growing thanks to its increased precision and, for heavy ions, its increased biological effectiveness (RBE) with respect to conventional photon therapy. The complex dependence of RBE on many factors demands biophysical modeling. Up to now, only the Local Effect Model (LEM), the Microdosimetric Kinetic Model (MKM), and the "mixed-beam" model are used in clinics. (2) Methods: In this work, the BIANCA biophysical model, after extensive benchmarking in vitro, was applied to develop a database predicting cell survival for different ions, energies, and doses. Following interface with the FLUKA Monte Carlo transport code, for the first time, BIANCA was benchmarked against in vivo data obtained by C-ion or proton irradiation of the rat spinal cord. The latter is a well-established model for CNS (central nervous system) late effects, which, in turn, are the main dose-limiting factors for head-and-neck tumors. Furthermore, these data have been considered to validate the LEM version applied in clinics. (3) Results: Although further benchmarking is desirable, the agreement between simulations and data suggests that BIANCA can predict RBE for C-ion or proton treatment of head-and-neck tumors. In particular, the agreement with proton data may be relevant if the current assumption of a constant proton RBE of 1.1 is revised. (4) Conclusions: This work provides the basis for future benchmarking against patient data, as well as the development of other databases for specific tumor types and/or normal tissues.
Collapse
|
14
|
Matsuya Y, Fukunaga H, Omura M, Date H. A Model for Estimating Dose-Rate Effects on Cell-Killing of Human Melanoma after Boron Neutron Capture Therapy. Cells 2020; 9:cells9051117. [PMID: 32365916 PMCID: PMC7290789 DOI: 10.3390/cells9051117] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 04/28/2020] [Accepted: 04/29/2020] [Indexed: 12/16/2022] Open
Abstract
Boron neutron capture therapy (BNCT) is a type of radiation therapy for eradicating tumor cells through a 10B(n,α)7Li reaction in the presence of 10B in cancer cells. When delivering a high absorbed dose to cancer cells using BNCT, both the timeline of 10B concentrations and the relative long dose-delivery time compared to photon therapy must be considered. Changes in radiosensitivity during such a long dose-delivery time can reduce the probability of tumor control; however, such changes have not yet been evaluated. Here, we propose an improved integrated microdosimetric-kinetic model that accounts for changes in microdosimetric quantities and dose rates depending on the 10B concentration and investigate the cell recovery (dose-rate effects) of melanoma during BNCT irradiation. The integrated microdosimetric–kinetic model used in this study considers both sub-lethal damage repair and changes in microdosimetric quantities during irradiation. The model, coupled with the Monte Carlo track structure simulation code of the Particle and Heavy Ion Transport code System, shows good agreement with in vitro experimental data for acute exposure to 60Co γ-rays, thermal neutrons, and BNCT with 10B concentrations of 10 ppm. This indicates that microdosimetric quantities are important parameters for predicting dose-response curves for cell survival under BNCT irradiations. Furthermore, the model estimation at the endpoint of the mean activation dose exhibits a reduced impact of cell recovery during BNCT irradiations with high linear energy transfer (LET) compared to 60Co γ-rays irradiation with low LET. Throughout this study, we discuss the advantages of BNCT for enhancing the killing of cancer cells with a reduced dose-rate dependency. If the neutron spectrum and the timelines for drug and dose delivery are provided, the present model will make it possible to predict radiosensitivity for more realistic dose-delivery schemes in BNCT irradiations.
Collapse
Affiliation(s)
- Yusuke Matsuya
- Nuclear Science and Engineering Center, Research Group for Radiation Transport Analysis, Ibaraki 319-1195, Japan
- Faculty of Health Sciences, Hokkaido University, Hokkaiddo 060-0812, Japan;
- Correspondence:
| | - Hisanori Fukunaga
- Department of Radiation Oncology, Shonan Kamakura General Hospital, Kanagawa 247-8533, Japan; (H.F.); (M.O.)
| | - Motoko Omura
- Department of Radiation Oncology, Shonan Kamakura General Hospital, Kanagawa 247-8533, Japan; (H.F.); (M.O.)
| | - Hiroyuki Date
- Faculty of Health Sciences, Hokkaido University, Hokkaiddo 060-0812, Japan;
| |
Collapse
|
15
|
Matsuya Y, Sato T, Nakamura R, Naijo S, Date H. A theoretical cell-killing model to evaluate oxygen enhancement ratios at DNA damage and cell survival endpoints in radiation therapy. Phys Med Biol 2020; 65:095006. [PMID: 32135526 DOI: 10.1088/1361-6560/ab7d14] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Radio-resistance induced under low oxygen pressure plays an important role in malignant progression in fractionated radiotherapy. For the general approach to predict cell killing under hypoxia, cell-killing models (e.g. the Linear-Quadratic model) have to be fitted to in vitro experimental survival data for both normoxia and hypoxia to obtain the oxygen enhancement ratio (OER). In such a case, model parameters for every oxygen condition needs to be considered by model-fitting approaches. This is inefficient for fractionated irradiation planning. Here, we present an efficient model for fractionated radiotherapy the integrated microdosimetric-kinetic model including cell-cycle distribution and the OER at DNA double-strand break endpoint (OERDSB). The cell survival curves described by this model can reproduce the in vitro experimental survival data for both acute and chronic low oxygen concentrations. The OERDSB used for calculating cell survival agrees well with experimental DSB ratio of normoxia to hypoxia. The important parameters of the model are oxygen pressure and cell-cycle distribution, which enables us to predict cell survival probabilities under chronic hypoxia and chronic anoxia. This work provides biological effective dose (BED) under various oxygen conditions including its uncertainty, which can contribute to creating fractionated regimens for multi-fractionated radiotherapy. If the oxygen concentration in a tumor can be quantified by medical imaging, the present model will make it possible to estimate the cell-killing and BED under hypoxia in more realistic intravital situations.
Collapse
Affiliation(s)
- Yusuke Matsuya
- Japan Atomic Energy Agency, Nuclear Science and Engineering Center, Research Group for Radiation Transport Analysis, 2-4 Shirakata, Tokai, Ibaraki 319-1195, Japan. Faculty of Health Sciences, Hokkaido University, Kita-12 Nishi-5, Kita-ku, Sapporo, Hokkaiddo 060-0812, Japan
| | | | | | | | | |
Collapse
|
16
|
Ab Initio Molecular Dynamics Simulations to Interpret the Molecular Fragmentation Induced in Deoxyribose by Synchrotron Soft X-Rays. QUANTUM BEAM SCIENCE 2019. [DOI: 10.3390/qubs3040024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
It has been suggested that core ionization in DNA atoms could induce complex, irreparable damage. Synchrotron soft X-rays have been used to probe the damage induced by such events in thin films of DNA components. In a complementary approach, we investigate the fragmentation dynamics following a carbon or oxygen K-shell ionization in 2-deoxy-D-ribose (DR), a major component in the DNA chain. Core ionization of the sugars hydration layer is also studied. To that aim, we use state-of-the-art ab initio Density Functional Theory-based Molecular Dynamics (MD) simulations. The ultrafast dissociation dynamics of the core ionized molecule, prior Auger decay, is modeled for about 10 fs. We show that the core-ionization of oxygen atoms within DR or its hydration layer may induce proton transfers towards nearby molecules, before Auger decay. In a second step, we model an Auger effect occurring either at the beginning or at the end of the core–hole dynamics. Two electrons are removed from the deepest valence molecular orbitals localized on the initially core-ionized oxygen atom (O*), and this electronic state is propagated by means of Ehrenfest MD. We show an ultrafast dissociation of the DR2+ molecule C-O* bonds, which, in most cases, seems independent of the time at which Auger decay occurs.
Collapse
|
17
|
Mavragani IV, Nikitaki Z, Kalospyros SA, Georgakilas AG. Ionizing Radiation and Complex DNA Damage: From Prediction to Detection Challenges and Biological Significance. Cancers (Basel) 2019; 11:E1789. [PMID: 31739493 PMCID: PMC6895987 DOI: 10.3390/cancers11111789] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 11/07/2019] [Accepted: 11/11/2019] [Indexed: 12/12/2022] Open
Abstract
Biological responses to ionizing radiation (IR) have been studied for many years, generally showing the dependence of these responses on the quality of radiation, i.e., the radiation particle type and energy, types of DNA damage, dose and dose rate, type of cells, etc. There is accumulating evidence on the pivotal role of complex (clustered) DNA damage towards the determination of the final biological or even clinical outcome after exposure to IR. In this review, we provide literature evidence about the significant role of damage clustering and advancements that have been made through the years in its detection and prediction using Monte Carlo (MC) simulations. We conclude that in the future, emphasis should be given to a better understanding of the mechanistic links between the induction of complex DNA damage, its processing, and systemic effects at the organism level, like genomic instability and immune responses.
Collapse
Affiliation(s)
| | | | | | - Alexandros G. Georgakilas
- DNA Damage Laboratory, Department of Physics, School of Applied Mathematical and Physical Sciences, National Technical University of Athens (NTUA), 15780 Athens, Greece
| |
Collapse
|
18
|
Carante MP, Aricò G, Ferrari A, Kozlowska W, Mairani A, Ballarini F. First benchmarking of the BIANCA model for cell survival prediction in a clinical hadron therapy scenario. Phys Med Biol 2019; 64:215008. [PMID: 31569085 DOI: 10.1088/1361-6560/ab490f] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In the framework of RBE modelling for hadron therapy, the BIANCA biophysical model was extended to O-ions and was used to construct a radiobiological database describing the survival of V79 cells as a function of ion type (1 ⩽ Z ⩽ 8) and energy. This database allowed performing RBE predictions in very good agreement with experimental data. A method was then developed to construct analogous databases for different cell lines, starting from the V79 database as a reference. Following interface to the FLUKA Monte Carlo radiation transport code, BIANCA was then applied for the first time to predict cell survival in a typical patient treatment scenario, consisting of two opposing fields of range-equivalent protons or C-ions. The model predictions were found to be in good agreement with CHO cell survival data obtained at the Heidelberg ion-beam therapy (HIT) centre, as well as predictions performed by the local effect model (version LEM IV). This work shows that BIANCA can be used to predict cell survival and RBE not only for V79 and AG01522 cells, as shown previously, but also, in principle, for any cell line of interest. Furthermore, following interface to a transport code like FLUKA, BIANCA can provide predictions of 3D biological dose distributions for hadron therapy treatments, thus laying the foundations for future applications in clinics.
Collapse
Affiliation(s)
- M P Carante
- INFN (National Institute of Nuclear Physics), Sezione di Pavia, via Bassi 6, I-27100 Pavia, Italy. Physics Department, University of Pavia, via Bassi 6, I-27100 Pavia, Italy
| | | | | | | | | | | |
Collapse
|
19
|
Wang W, Li C, Qiu R, Chen Y, Wu Z, Zhang H, Li J. Modelling of Cellular Survival Following Radiation-Induced DNA Double-Strand Breaks. Sci Rep 2018; 8:16202. [PMID: 30385845 PMCID: PMC6212584 DOI: 10.1038/s41598-018-34159-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 07/24/2018] [Indexed: 12/30/2022] Open
Abstract
A mechanistic model of cellular survival following radiation-induced DNA double-strand breaks (DSBs) was proposed in this study. DSBs were assumed as the initial lesions in the DNA of the cell nucleus induced by ionizing radiation. The non-homologous end-joining (NHEJ) pathway was considered as the domain pathway of DSB repair in mammalian cells. The model was proposed to predict the relationship between radiation-induced DSBs in nucleus and probability of cell survival, which was quantitatively described by two input parameters and six fitting parameters. One input parameter was the average number of primary particles which caused DSB, the other input parameter was the average number of DSBs yielded by each primary particle that caused DSB. The fitting parameters were used to describe the biological characteristics of the irradiated cells. By determining the fitting parameters of the model with experimental data, the model is able to estimate surviving fractions for the same type of cells exposed to particles with different physical parameters. The model further revealed the mechanism of cell death induced by the DSB effect. Relative biological effectiveness (RBE) of charged particles at different survival could be calculated with the model, which would provide reference for clinical treatment.
Collapse
Affiliation(s)
- Wenjing Wang
- Department of Engineering Physics, Tsinghua University, Beijing, China
- Key Laboratory of Particle & Radiation Imaging (Tsinghua University), Ministry of Education, Beijing, China
| | - Chunyan Li
- Department of Engineering Physics, Tsinghua University, Beijing, China
- Nuctech Company Limited, Beijing, China
| | - Rui Qiu
- Department of Engineering Physics, Tsinghua University, Beijing, China.
- Key Laboratory of Particle & Radiation Imaging (Tsinghua University), Ministry of Education, Beijing, China.
| | - Yizheng Chen
- Department of Engineering Physics, Tsinghua University, Beijing, China
- Key Laboratory of Particle & Radiation Imaging (Tsinghua University), Ministry of Education, Beijing, China
| | - Zhen Wu
- Department of Engineering Physics, Tsinghua University, Beijing, China
- Nuctech Company Limited, Beijing, China
| | - Hui Zhang
- Department of Engineering Physics, Tsinghua University, Beijing, China
- Key Laboratory of Particle & Radiation Imaging (Tsinghua University), Ministry of Education, Beijing, China
| | - Junli Li
- Department of Engineering Physics, Tsinghua University, Beijing, China
- Key Laboratory of Particle & Radiation Imaging (Tsinghua University), Ministry of Education, Beijing, China
| |
Collapse
|
20
|
Testa A, Ballarini F, Giesen U, Gil OM, Carante MP, Tello J, Langner F, Rabus H, Palma V, Pinto M, Patrono C. Analysis of Radiation-Induced Chromosomal Aberrations on a Cell-by-Cell Basis after Alpha-Particle Microbeam Irradiation: Experimental Data and Simulations. Radiat Res 2018; 189:597-604. [PMID: 29624483 DOI: 10.1667/rr15005.1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
There is a continued need for further clarification of various aspects of radiation-induced chromosomal aberration, including its correlation with radiation track structure. As part of the EMRP joint research project, Biologically Weighted Quantities in Radiotherapy (BioQuaRT), we performed experimental and theoretical analyses on chromosomal aberrations in Chinese hamster ovary cells (CHO-K1) exposed to α particles with final energies of 5.5 and 17.8 MeV (absorbed doses: ∼2.3 Gy and ∼1.9 Gy, respectively), which were generated by the microbeam at the Physikalisch-Technische Bundesanstalt (PTB) in Braunschweig, Germany. In line with the differences in linear energy transfer (approximately 85 keV/μm for 5.5 MeV and 36 keV/μm for 17.8 MeV α particles), the 5.5 MeV α particles were more effective than the 17.8 MeV α particles, both in terms of the percentage of aberrant cells (57% vs. 33%) and aberration frequency. The yield of total aberrations increased by a factor of ∼2, although the increase in dicentrics plus centric rings was less pronounced than in acentric fragments. The experimental data were compared with Monte Carlo simulations based on the BIophysical ANalysis of Cell death and chromosomal Aberrations model (BIANCA). This comparison allowed interpretation of the results in terms of critical DNA damage [cluster lesions (CLs)]. More specifically, the higher aberration yields observed for the 5.5 MeV α particles were explained by taking into account that, although the nucleus was traversed by fewer particles (nominally, 11 vs. 25), each particle was much more effective (by a factor of ∼3) at inducing CLs. This led to an increased yield of CLs per cell (by a factor of ∼1.4), consistent with the increased yield of total aberrations observed in the experiments.
Collapse
Affiliation(s)
- Antonella Testa
- a Territorial and Production Systems Sustainability Department, Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Rome, Italy
| | - Francesca Ballarini
- b University of Pavia (Physics Department), via Bassi 6, I-27100 Pavia, Italy.,c INFN (Italian National Institute of Nuclear Physics), Section of Pavia, I-27100 Pavia, Italy
| | - Ulrich Giesen
- d Physikalisch-Technische Bundesanstalt (PTB), Bundesallee 100, 38116 Braunschweig, Germany
| | - Octávia Monteiro Gil
- e Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Bobadela-LRS, Lisbon, Portugal
| | - Mario P Carante
- b University of Pavia (Physics Department), via Bassi 6, I-27100 Pavia, Italy.,c INFN (Italian National Institute of Nuclear Physics), Section of Pavia, I-27100 Pavia, Italy
| | - John Tello
- b University of Pavia (Physics Department), via Bassi 6, I-27100 Pavia, Italy.,c INFN (Italian National Institute of Nuclear Physics), Section of Pavia, I-27100 Pavia, Italy.,f Universidade Estadual de Campinas, Campinas, SP, Brazil
| | - Frank Langner
- d Physikalisch-Technische Bundesanstalt (PTB), Bundesallee 100, 38116 Braunschweig, Germany
| | - Hans Rabus
- d Physikalisch-Technische Bundesanstalt (PTB), Bundesallee 100, 38116 Braunschweig, Germany
| | - Valentina Palma
- a Territorial and Production Systems Sustainability Department, Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Rome, Italy
| | - Massimo Pinto
- g National Institute of Ionizing Radiation Metrology, Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Rome, Italy
| | - Clarice Patrono
- a Territorial and Production Systems Sustainability Department, Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Rome, Italy
| |
Collapse
|
21
|
Carante MP, Aimè C, Cajiao JJT, Ballarini F. BIANCA, a biophysical model of cell survival and chromosome damage by protons, C-ions and He-ions at energies and doses used in hadrontherapy. Phys Med Biol 2018; 63:075007. [PMID: 29508768 DOI: 10.1088/1361-6560/aab45f] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
An upgraded version of the BIANCA II biophysical model, which describes more realistically interphase chromosome organization and the link between chromosome aberrations and cell death, was applied to V79 and AG01522 cells exposed to protons, C-ions and He-ions over a wide LET interval (0.6-502 keV µm-1), as well as proton-irradiated U87 cells. The model assumes that (i) ionizing radiation induces DNA 'cluster lesions' (CLs), where by definition each CL produces two independent chromosome fragments; (ii) fragment (distance-dependent) mis-rejoining, or un-rejoining, produces chromosome aberrations; (iii) some aberrations lead to cell death. The CL yield, which mainly depends on radiation quality but is also modulated by the target cell, is an adjustable parameter. The fragment un-rejoining probability, f, is the second, and last, parameter. The value of f, which is assumed to depend on the cell type but not on radiation quality, was taken from previous studies, and only the CL yield was adjusted in the present work. Good agreement between simulations and experimental data was obtained, suggesting that BIANCA II is suitable for calculating the biological effectiveness of hadrontherapy beams. For both V79 and AG01522 cells, the mean number of CLs per micrometer was found to increase with LET in a linear-quadratic fashion before the over-killing region, where a less rapid increase, with a tendency to saturation, was observed. Although the over-killing region deserves further investigation, the possibility of fitting the CL yields is an important feature for hadrontherapy, because it allows performing predictions also at LET values where experimental data are not available. Finally, an approach was proposed to predict the ion-response of the cell line(s) of interest from the ion-response of a reference cell line and the photon response of both. A pilot study on proton-irradiated AG01522 and U87 cells, taking V79 cells as a reference, showed encouraging results.
Collapse
Affiliation(s)
- Mario Pietro Carante
- Physics Department, University of Pavia, via Bassi 6, I-27100 Pavia, Italy. INFN-Sezione di Pavia, via Bassi 6, I-27100 Pavia, Italy
| | | | | | | |
Collapse
|
22
|
Tello Cajiao JJ, Carante MP, Bernal Rodriguez MA, Ballarini F. Proximity effects in chromosome aberration induction: Dependence on radiation quality, cell type and dose. DNA Repair (Amst) 2018; 64:45-52. [PMID: 29494834 DOI: 10.1016/j.dnarep.2018.02.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 02/01/2018] [Accepted: 02/15/2018] [Indexed: 12/26/2022]
Abstract
It is widely accepted that, in chromosome-aberration induction, the (mis-)rejoining probability of two chromosome fragments depends on their initial distance, r. However, several aspects of these "proximity effects" need to be clarified, also considering that they can vary with radiation quality, cell type and dose. A previous work performed by the BIANCA (BIophysical ANalysis of Cell death and chromosome Aberrations) biophysical model has suggested that, in human lymphocytes and fibroblasts exposed to low-LET radiation, an exponential function of the form exp(-r/r0), which is consistent with free-end (confined) diffusion, describes proximity effects better than a Gaussian function. Herein, the investigation was extended to intermediate- and high-LET. Since the r0 values (0.8 μm for lymphocytes and 0.7 μm for fibroblasts) were taken from the low-LET study, the results were obtained by adjusting only one model parameter, i.e. the yield of "Cluster Lesions" (CLs), where a CL was defined as a critical DNA damage producing two independent chromosome fragments. In lymphocytes, the exponential model allowed reproducing both dose-response curves for different aberrations (dicentrics, centric rings and excess acentrics), and values of F-ratio (dicentrics to centric rings) and G-ratio (interstitial deletions to centric rings). In fibroblasts, a good correspondence was found with the dose-response curves, whereas the G-ratio (and, to a lesser extent, the F-ratio) was underestimated. With increasing LET, F decreased and G increased in both cell types, supporting their role as "fingerprints" of high-LET exposure. A dose-dependence was also found at high LET, where F increased with dose and G decreased, possibly due to inter-track effects. We therefore conclude that, independent of radiation quality, in lymphocytes an exponential function can describe proximity effects at both inter- and intra-chromosomal level; on the contrary, in fibroblasts further studies (experimental and theoretical) are needed to explain the strong bias for intra-arm relative to inter-arm exchanges.
Collapse
Affiliation(s)
- John James Tello Cajiao
- University of Pavia, Physics Department, via Bassi 6, I-27100, Pavia, Italy; INFN (Italian Institute of Nuclear Physics)-Section of Pavia, via Bassi 6, I-27100, Pavia, Italy; Universidade Estadual de Campinas, Cidade Universitária Zeferino Vaz, Campinas, SP, Brazil.
| | - Mario Pietro Carante
- University of Pavia, Physics Department, via Bassi 6, I-27100, Pavia, Italy; INFN (Italian Institute of Nuclear Physics)-Section of Pavia, via Bassi 6, I-27100, Pavia, Italy.
| | | | - Francesca Ballarini
- University of Pavia, Physics Department, via Bassi 6, I-27100, Pavia, Italy; INFN (Italian Institute of Nuclear Physics)-Section of Pavia, via Bassi 6, I-27100, Pavia, Italy.
| |
Collapse
|
23
|
Wu ZJ, Tang FR, Ma ZW, Peng XC, Xiang Y, Zhang Y, Kang J, Ji J, Liu XQ, Wang XW, Xin HW, Ren BX. Oncolytic Viruses for Tumor Precision Imaging and Radiotherapy. Hum Gene Ther 2018; 29:204-222. [PMID: 29179583 DOI: 10.1089/hum.2017.189] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
In 2003 in China, Peng et al. invented the recombinant adenovirus expressing p53 (Gendicine) for clinical tumor virotherapy. This was the first clinically approved gene therapy and tumor virotherapy drug in the world. An oncolytic herpes simplex virus expressing granulocyte-macrophage colony-stimulating factor (Talimogene laherparepvec) was approved for melanoma treatment in the United States in 2015. Since then, oncolytic viruses have been attracting more and more attention in the field of oncology, and may become novel significant modalities of tumor precision imaging and radiotherapy after further improvement. Oncolytic viruses carrying reporter genes can replicate and express genes of interest selectively in tumor cells, thus improving in vivo noninvasive precision molecular imaging and radiotherapy. Here, the latest developments and molecular mechanisms of tumor imaging and radiotherapy using oncolytic viruses are reviewed, and perspectives are given for further research. Various types of tumors are discussed, and special attention is paid to gastrointestinal tumors.
Collapse
Affiliation(s)
- Zi J Wu
- 1 Laboratory of Oncology, Center for Molecular Medicine, Yangtze University , Jingzhou, China .,2 Department of Medical Imaging, School of Medicine, Yangtze University , Jingzhou, China .,3 The Second School of Clinical Medicine, Yangtze University , Jingzhou, China
| | - Feng R Tang
- 4 Radiation Physiology Laboratory, Singapore Nuclear Research and Safety Initiative, National University of Singapore , Create Tower, Singapore
| | - Zhao-Wu Ma
- 1 Laboratory of Oncology, Center for Molecular Medicine, Yangtze University , Jingzhou, China
| | - Xiao-Chun Peng
- 1 Laboratory of Oncology, Center for Molecular Medicine, Yangtze University , Jingzhou, China
| | - Ying Xiang
- 1 Laboratory of Oncology, Center for Molecular Medicine, Yangtze University , Jingzhou, China
| | - Yanling Zhang
- 5 Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine , Guangzhou, China .,6 School of Biotechnology, Southern Medical University , Guangzhou, China
| | - Jingbo Kang
- 7 The Navy General Hospital Tumor Diagnosis and Treatment Center , Beijing, China
| | - Jiafu Ji
- 8 Department of Gastrointestinal Surgery, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital and Institute , Beijing, China
| | - Xiao Q Liu
- 1 Laboratory of Oncology, Center for Molecular Medicine, Yangtze University , Jingzhou, China .,2 Department of Medical Imaging, School of Medicine, Yangtze University , Jingzhou, China .,3 The Second School of Clinical Medicine, Yangtze University , Jingzhou, China
| | - Xian-Wang Wang
- 1 Laboratory of Oncology, Center for Molecular Medicine, Yangtze University , Jingzhou, China
| | - Hong-Wu Xin
- 1 Laboratory of Oncology, Center for Molecular Medicine, Yangtze University , Jingzhou, China
| | - Bo X Ren
- 2 Department of Medical Imaging, School of Medicine, Yangtze University , Jingzhou, China .,3 The Second School of Clinical Medicine, Yangtze University , Jingzhou, China
| |
Collapse
|
24
|
El-Sheikh MM, El-Hazek RM, El-Khatib AS, El-Ghazaly MA. Anti-apoptotic effect of 3-aminobenzamide, an inhibitor of poly (ADP-ribose) polymerase, against multiple organ damage induced by gamma irradiation in rats. Int J Radiat Biol 2017; 94:45-53. [DOI: 10.1080/09553002.2018.1408977] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Marwa M. El-Sheikh
- Department of Drug Radiation Research, National Centre for Radiation Research and Technology (NCRRT), Atomic Energy Authority, Nasr City, Cairo, Egypt
| | - Rania M. El-Hazek
- Department of Drug Radiation Research, National Centre for Radiation Research and Technology (NCRRT), Atomic Energy Authority, Nasr City, Cairo, Egypt
| | - Aiman S. El-Khatib
- Department of Pharmacology, Faculty of Pharmacy, Cairo University, Kasr El-Aieny, Giza, Egypt
| | - Mona A. El-Ghazaly
- Department of Drug Radiation Research, National Centre for Radiation Research and Technology (NCRRT), Atomic Energy Authority, Nasr City, Cairo, Egypt
| |
Collapse
|
25
|
Tello Cajiao JJ, Carante MP, Bernal Rodriguez MA, Ballarini F. Proximity effects in chromosome aberration induction by low-LET ionizing radiation. DNA Repair (Amst) 2017; 58:38-46. [PMID: 28863396 DOI: 10.1016/j.dnarep.2017.08.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 07/21/2017] [Accepted: 08/14/2017] [Indexed: 12/11/2022]
Abstract
Although chromosome aberrations are known to derive from distance-dependent mis-rejoining of chromosome fragments, evaluating whether a certain model describes such "proximity effects" better than another one is complicated by the fact that different approaches have often been tested under different conditions. Herein, a biophysical model ("BIANCA", i.e. BIophysical ANalysis of Cell death and chromosome Aberrations) was upgraded, implementing explicit chromosome-arm domains and two new models for the dependence of the rejoining probability on the fragment initial distance, r. Such probability was described either by an exponential function like exp(-r/r0), or by a Gaussian function like exp(-r2/2σ2), where r0 and σ were adjustable parameters. The second, and last, parameters was the yield of "Cluster Lesions" (CL), where "Cluster Lesion" defines a critical DNA damage producing two independent chromosome fragments. The model was applied to low-LET-irradiated lymphocytes (doses: 1-4Gy) and fibroblasts (1-6.1Gy). Good agreement with experimental yields of dicentrics and centric rings, and thus their ratio ("F-ratio"), was found by both the exponential model (with r0=0.8μm for lymphocytes and 0.7μm for fibroblasts) and the Gaussian model (with σ=1.1μm for lymphocytes and 1.3μm for fibroblasts). While the former also allowed reproducing dose-responses for excess acentric fragments, the latter substantially underestimated the experimental curves. Both models provided G-ratios (ratio of acentric to centric rings) higher than those expected from randomness, although the values calculated by the Gaussian model were lower than those calculated by the exponential one. For lymphocytes the calculated G-ratios were in good agreement with the experimental ones, whereas for fibroblasts both models substantially underestimated the experimental results, which deserves further investigation. This work suggested that, although both models performed better than a step model (which previously allowed reproducing the F-ratio but underestimated the G-ratio), an exponential function describes proximity effects better than a Gaussian one.
Collapse
Affiliation(s)
- John James Tello Cajiao
- University of Pavia, Physics Department, via Bassi 6, I-27100 Pavia, Italy; INFN-Sezione di Pavia, via Bassi 6, I-27100 Pavia, Italy; Universidade Estadual de Campinas. Cidade Universitária Zeferino Vaz, Campinas, SP, Brazil.
| | - Mario Pietro Carante
- University of Pavia, Physics Department, via Bassi 6, I-27100 Pavia, Italy; INFN-Sezione di Pavia, via Bassi 6, I-27100 Pavia, Italy.
| | | | - Francesca Ballarini
- University of Pavia, Physics Department, via Bassi 6, I-27100 Pavia, Italy; INFN-Sezione di Pavia, via Bassi 6, I-27100 Pavia, Italy.
| |
Collapse
|
26
|
Carbon Ion Radiotherapy: A Review of Clinical Experiences and Preclinical Research, with an Emphasis on DNA Damage/Repair. Cancers (Basel) 2017; 9:cancers9060066. [PMID: 28598362 PMCID: PMC5483885 DOI: 10.3390/cancers9060066] [Citation(s) in RCA: 106] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2017] [Revised: 05/21/2017] [Accepted: 06/06/2017] [Indexed: 12/31/2022] Open
Abstract
Compared to conventional photon-based external beam radiation (PhXRT), carbon ion radiotherapy (CIRT) has superior dose distribution, higher linear energy transfer (LET), and a higher relative biological effectiveness (RBE). This enhanced RBE is driven by a unique DNA damage signature characterized by clustered lesions that overwhelm the DNA repair capacity of malignant cells. These physical and radiobiological characteristics imbue heavy ions with potent tumoricidal capacity, while having the potential for simultaneously maximally sparing normal tissues. Thus, CIRT could potentially be used to treat some of the most difficult to treat tumors, including those that are hypoxic, radio-resistant, or deep-seated. Clinical data, mostly from Japan and Germany, are promising, with favorable oncologic outcomes and acceptable toxicity. In this manuscript, we review the physical and biological rationales for CIRT, with an emphasis on DNA damage and repair, as well as providing a comprehensive overview of the translational and clinical data using CIRT.
Collapse
|
27
|
Gao H, Dong Z, Wei W, Shao L, Jin L, Lv Y, Zhao G, Jin S. Integrative analysis for the role of long non-coding RNAs in radiation-induced mouse thymocytes responses. Acta Biochim Biophys Sin (Shanghai) 2017; 49:51-61. [PMID: 27864278 DOI: 10.1093/abbs/gmw114] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 10/14/2016] [Indexed: 12/20/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) are a critical class of regulatory molecules involved in a variety of biological functions; however, their role in immune cells response to radiation is unknown. Therefore, in this study we used integrative analysis to determine the expression profile of lncRNAs in mouse thymocytes and the potential functions of lncRNAs in response to radiation. Microarray data profiling indicated that 53 lncRNAs (36 up-regulated and 17 down-regulated) and 74 coding genes (39 up-regulated and 35 down-regulated) were highly differentially expressed in the high dose radiation (HDR) group compared with the control group. In the low dose radiation (LDR) group, only one lncRNA was down-regulated. Moreover, as compared with the control group, 109 lncRNA pathways in the HDR group and 14 lncRNA pathways in the LDR group were differentially expressed. Our data revealed the expression pattern of lncRNAs in mouse thymocytes and predicted their potential functions in response to LDR and HDR. In the HDR group, GO analysis showed that the role of lncRNAs in damage responses of thymocytes to HDR mainly involved chromatin organization and cell death. These findings might improve our understanding of the role of lncRNAs in LDR- and HDR-induced immune cells and provide a new experimental basis for further investigation.
Collapse
Affiliation(s)
- Hui Gao
- Ministry of Health Key Laboratory of Radiobiology, Jilin University, Changchun 130021, China
- Department of Orthopedics, The First Hospital of Jilin University, Changchun 130021, China
| | - Zhuo Dong
- Ministry of Health Key Laboratory of Radiobiology, Jilin University, Changchun 130021, China
| | - Wei Wei
- Ministry of Health Key Laboratory of Radiobiology, Jilin University, Changchun 130021, China
| | - Lihong Shao
- Ministry of Health Key Laboratory of Radiobiology, Jilin University, Changchun 130021, China
| | - Linlin Jin
- Ministry of Health Key Laboratory of Radiobiology, Jilin University, Changchun 130021, China
| | - Yahui Lv
- Ministry of Health Key Laboratory of Radiobiology, Jilin University, Changchun 130021, China
| | - Gang Zhao
- Ministry of Health Key Laboratory of Radiobiology, Jilin University, Changchun 130021, China
| | - Shunzi Jin
- Ministry of Health Key Laboratory of Radiobiology, Jilin University, Changchun 130021, China
| |
Collapse
|
28
|
|
29
|
Ballarini F, Carante MP. Chromosome aberrations and cell death by ionizing radiation: Evolution of a biophysical model. Radiat Phys Chem Oxf Engl 1993 2016. [DOI: 10.1016/j.radphyschem.2016.06.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
30
|
Dexmedetomidine acts as an oxidative damage prophylactic in rats exposed to ionizing radiation. J Clin Anesth 2016; 34:577-85. [DOI: 10.1016/j.jclinane.2016.06.031] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 05/16/2016] [Accepted: 06/07/2016] [Indexed: 01/19/2023]
|
31
|
Carante MP, Ballarini F. Calculating Variations in Biological Effectiveness for a 62 MeV Proton Beam. Front Oncol 2016; 6:76. [PMID: 27092294 PMCID: PMC4822087 DOI: 10.3389/fonc.2016.00076] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 03/21/2016] [Indexed: 11/17/2022] Open
Abstract
A biophysical model of radiation-induced cell death and chromosome aberrations [called BIophysical ANalysis of Cell death and chromosome Aberrations (BIANCA)] was further developed and applied to therapeutic protons. The model assumes a pivotal role of DNA cluster damage, which can lead to clonogenic cell death following three main steps: (i) a DNA “cluster lesion” (CL) produces two independent chromosome fragments; (ii) fragment mis-rejoining within a threshold distance d gives rise to chromosome aberrations; (iii) certain aberration types (dicentrics, rings, and large deletions) lead to clonogenic inactivation. The yield of CLs and the probability, f, that a chromosome fragment remains un-rejoined even if other fragment(s) are present within d, were adjustable parameters. The model, implemented as a MC code providing simulated dose–responses directly comparable with experimental data, was applied to pristine and modulated Bragg peaks of the proton beam used to treat eye melanoma at INFN-LNS in Catania, Italy. Experimental survival curves for AG01522 cells exposed to the Catania beam were reproduced, supporting the model assumptions. Furthermore, cell death and chromosome aberrations at different depths along a spread-out Bragg peak (SOBP) dose profile were predicted. Both endpoints showed an increase along the plateau, and high levels of damage were found also beyond the distal dose fall-off, due to low-energy protons. Cell death and chromosome aberrations were also predicted for V79 cells, in the same irradiation scenario as that used for AG01522 cells. In line with other studies, this work indicated that assuming a constant relative biological effectiveness (RBE) along a proton SOBP may be sub-optimal. Furthermore, it provided qualitative and quantitative evaluations of the dependence of the beam effectiveness on the considered endpoint and dose. More generally, this work represents an example of therapeutic beam characterization avoiding the use of experimental RBE values, which can be source of uncertainties.
Collapse
Affiliation(s)
- Mario Pietro Carante
- Physics Department, University of Pavia, Pavia, Italy; Istituto Nazionale di Fisica Nucleare - Sezione di Pavia, Pavia, Italy
| | - Francesca Ballarini
- Physics Department, University of Pavia, Pavia, Italy; Istituto Nazionale di Fisica Nucleare - Sezione di Pavia, Pavia, Italy
| |
Collapse
|