1
|
Oliver PAK, Thomson RM. Investigating energy deposition within cell populations using Monte Carlo simulations. ACTA ACUST UNITED AC 2018; 63:155018. [DOI: 10.1088/1361-6560/aacf7b] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
2
|
Lazarakis P, Incerti S, Ivanchenko V, Kyriakou I, Emfietzoglou D, Corde S, Rosenfeld AB, Lerch M, Tehei M, Guatelli S. Investigation of track structure and condensed history physics models for applications in radiation dosimetry on a micro and nano scale in Geant4. Biomed Phys Eng Express 2018. [DOI: 10.1088/2057-1976/aaa6aa] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
3
|
Cunha M, Monini C, Testa E, Beuve M. NanOx, a new model to predict cell survival in the context of particle therapy. Phys Med Biol 2016; 62:1248-1268. [PMID: 27995904 DOI: 10.1088/1361-6560/aa54c9] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Particle therapy is increasingly attractive for the treatment of tumors and the number of facilities offering it is rising worldwide. Due to the well-known enhanced effectiveness of ions, it is of utmost importance to plan treatments with great care to ensure tumor killing and healthy tissues sparing. Hence, the accurate quantification of the relative biological effectiveness (RBE) of ions, used in the calculation of the biological dose, is critical. Nevertheless, the RBE is a complex function of many parameters and its determination requires modeling. The approaches currently used have allowed particle therapy to thrive, but still show some shortcomings. We present herein a short description of a new theoretical framework, NanOx, to calculate cell survival in the context of particle therapy. It gathers principles from existing approaches, while addressing some of their weaknesses. NanOx is a multiscale model that takes the stochastic nature of radiation at nanometric and micrometric scales fully into account, integrating also the chemical aspects of radiation-matter interaction. The latter are included in the model by means of a chemical specific energy, determined from the production of reactive chemical species induced by irradiation. Such a production represents the accumulation of oxidative stress and sublethal damage in the cell, potentially generating non-local lethal events in NanOx. The complementary local lethal events occur in a very localized region and can, alone, lead to cell death. Both these classes of events contribute to cell death. The comparison between experimental data and model predictions for the V79 cell line show a good agreement. In particular, the dependence of the typical shoulders of cell survival curves on linear energy transfer are well described, but also the effectiveness of different ions, including the overkill effect. These results required the adjustment of a number of parameters compatible with the application of the model in a clinical scenario thereby showing the potential of NanOx. Said parameters are discussed in detail in this paper.
Collapse
Affiliation(s)
- M Cunha
- Université de Lyon, F-69622, Lyon, France. Université de Lyon 1, Villeurbanne, France. CNRS/IN2P3, Institut de Physique Nucléaire de Lyon, France
| | | | | | | |
Collapse
|
4
|
Cunha M, Testa E, Komova OV, Nasonova EA, Mel'nikova LA, Shmakova NL, Beuve M. Modeling cell response to low doses of photon irradiation: Part 2--application to radiation-induced chromosomal aberrations in human carcinoma cells. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2016; 55:31-40. [PMID: 26708100 DOI: 10.1007/s00411-015-0622-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 10/11/2015] [Indexed: 06/05/2023]
Abstract
The biological phenomena observed at low doses of ionizing radiation (adaptive response, bystander effects, genomic instability, etc.) are still not well understood. While at high irradiation doses, cellular death may be directly linked to DNA damage, at low doses, other cellular structures may be involved in what are known as non-(DNA)-targeted effects. Mitochondria, in particular, may play a crucial role through their participation in a signaling network involving oxygen/nitrogen radical species. According to the size of the implicated organelles, the fluctuations in the energy deposited into these target structures may impact considerably the response of cells to low doses of ionizing irradiation. Based on a recent simulation of these fluctuations, a theoretical framework was established to have further insight into cell responses to low doses of photon irradiation, namely the triggering of radioresistance mechanisms by energy deposition into specific targets. Three versions of a model are considered depending on the target size and on the number of targets that need to be activated by energy deposition to trigger radioresistance mechanisms. These model versions are applied to the fraction of radiation-induced chromosomal aberrations measured at low doses in human carcinoma cells (CAL51). For this cell line, it was found in the present study that the mechanisms of radioresistance could not be triggered by the activation of a single small target (nanometric size, 100 nm), but could instead be triggered by the activation of a large target (micrometric, 10 μm) or by the activation of a great number of small targets. The mitochondria network, viewed either as a large target or as a set of small units, might be concerned by these low-dose effects.
Collapse
Affiliation(s)
- Micaela Cunha
- Université de Lyon, 69622, Lyon, France
- Université de Lyon 1, Villeurbanne, France
- CNRS/IN2P3, Institut de Physique Nucléaire de Lyon, Villeurbanne, France
| | - Etienne Testa
- Université de Lyon, 69622, Lyon, France
- Université de Lyon 1, Villeurbanne, France
- CNRS/IN2P3, Institut de Physique Nucléaire de Lyon, Villeurbanne, France
| | - Olga V Komova
- Laboratory of Radiation Biology, Joint Institute for Nuclear Research, Dubna, Moscow Region, Russia
| | - Elena A Nasonova
- Laboratory of Radiation Biology, Joint Institute for Nuclear Research, Dubna, Moscow Region, Russia
| | - Larisa A Mel'nikova
- Laboratory of Radiation Biology, Joint Institute for Nuclear Research, Dubna, Moscow Region, Russia
| | - Nina L Shmakova
- Laboratory of Radiation Biology, Joint Institute for Nuclear Research, Dubna, Moscow Region, Russia
| | - Michaël Beuve
- Université de Lyon, 69622, Lyon, France.
- Université de Lyon 1, Villeurbanne, France.
- CNRS/IN2P3, Institut de Physique Nucléaire de Lyon, Villeurbanne, France.
| |
Collapse
|