Exosome-packaged miR-1246 contributes to bystander DNA damage by targeting LIG4.
Br J Cancer 2018;
119:492-502. [PMID:
30038324 PMCID:
PMC6134031 DOI:
10.1038/s41416-018-0192-9]
[Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 06/22/2018] [Accepted: 06/27/2018] [Indexed: 02/07/2023] Open
Abstract
Background
An increasing number of studies have recently reported that
microRNAs packaged in exosomes contribute to multiple biological processes such as
cancer progression; however, little is known about their role in the development
of radiation-induced bystander effects.
Methods
The exosomes were isolated from the culture medium of BEP2D cells
with or without γ-ray irradiation by ultracentrifugation. To monitor DNA damage
and repair efficiency, the DNA double-strand break biomarker 53BP1 foci, comet,
micronuclei, expression of DNA repair genes and NHEJ repair activity were
detected. The miR-1246 targeting sequence of the DNA ligase 4 (LIG4) mRNA 3′UTR was assessed by luciferase reporter
vectors.
Results
miR-1246 was increased in exosomes secreted from 2 Gy-irradiated
BEP2D cells and inhibited the proliferation of nonirradiated cells. The miR-1246
mimic, exosomes from irradiated cells, and radiation-conditioned cell culture
medium increased the yields of 53BP1 foci, comet tail and micronuclei in
nonirradiated cells, and decreased NHEJ efficiency. miR-1246 downregulated LIG4
expression by directly targeting its 3′UTR.
Conclusions
Our findings demonstrate that miR-1246 packaged in exosomes could
act as a transfer messenger and contribute to DNA damage by directly repressing
the LIG4 gene. Exosomal miR-1246 may be a
critical predictor of and player in radiation-induced bystander DNA damage.
Collapse