1
|
Zhang Y, Coghi P, Ren Z, Hosmane NS, Zhu Y. Comparison of Radionuclide Drug Conjugates With Boron Neutron Capture Therapy: An Overview of Targeted Charged Particle Radiation Therapy. Med Res Rev 2024. [PMID: 39690514 DOI: 10.1002/med.22093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 09/11/2024] [Accepted: 11/25/2024] [Indexed: 12/19/2024]
Abstract
Targeted charged alpha- and beta-particle therapies are currently being used in clinical radiation treatments as newly developed methods for either killing or controlling tumor cell growth. The alpha particles can be generated either through a nuclear decay reaction or in situ by a nuclear fission reaction such as the boron neutron capture reaction. Different strategies have been employed to improve the selectivity and delivery of radiation dose to tumor cells based on the source of the clinically used alpha particles. As a result, the side effects of the treatment can be minimized. The increasing attention and research efforts on targeted alpha-particle therapy have been fueled by exciting results of both academic research and clinical trials. It is highly anticipated that alpha-particle therapy will improve the efficacy of treating malignant tumors. In this overview, we compare radionuclide drug conjugates (RDC) with boron neutron capture therapy (BNCT) to present recent developments in targeted alpha-particle therapy.
Collapse
Affiliation(s)
| | - Paolo Coghi
- Laboratory for Drug Discovery from Natural Resources & Industrialization, School of Pharmacy, Macau University of Science and Technology, Macau, China
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Zimo Ren
- Laboratory for Drug Discovery from Natural Resources & Industrialization, School of Pharmacy, Macau University of Science and Technology, Macau, China
| | - Narayan S Hosmane
- Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, Illinois, USA
| | | |
Collapse
|
2
|
Fujimoto T, Yamasaki O, Kanehira N, Matsushita H, Sakurai Y, Kenmotsu N, Mizuta R, Kondo N, Takata T, Kitamatsu M, Igawa K, Fujimura A, Otani Y, Shirakawa M, Shigeyasu K, Teraishi F, Togashi Y, Suzuki M, Fujiwara T, Michiue H. Overcoming immunotherapy resistance and inducing abscopal effects with boron neutron immunotherapy (B-NIT). Cancer Sci 2024; 115:3231-3247. [PMID: 39119813 PMCID: PMC11447877 DOI: 10.1111/cas.16298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/11/2024] [Accepted: 07/15/2024] [Indexed: 08/10/2024] Open
Abstract
Immune checkpoint inhibitors (ICIs) are effective against many advanced malignancies. However, many patients are nonresponders to immunotherapy, and overcoming this resistance to treatment is important. Boron neutron capture therapy (BNCT) is a local chemoradiation therapy with the combination of boron drugs that accumulate selectively in cancer and the neutron irradiation of the cancer site. Here, we report the first boron neutron immunotherapy (B-NIT), combining BNCT and ICI immunotherapy, which was performed on a radioresistant and immunotherapy-resistant advanced-stage B16F10 melanoma mouse model. The BNCT group showed localized tumor suppression, but the anti-PD-1 antibody immunotherapy group did not show tumor suppression. Only the B-NIT group showed strong tumor growth inhibition at both BNCT-treated and shielded distant sites. Intratumoral CD8+ T-cell infiltration and serum high mobility group box 1 (HMGB1) levels were higher in the B-NIT group. Analysis of CD8+ T cells in tumor-infiltrating lymphocytes (TILs) showed that CD62L- CD44+ effector memory T cells and CD69+ early-activated T cells were predominantly increased in the B-NIT group. Administration of CD8-depleting mAb to the B-NIT group completely suppressed the augmented therapeutic effects. This indicated that B-NIT has a potent immune-induced abscopal effect, directly destroying tumors with BNCT, inducing antigen-spreading effects, and protecting normal tissue. B-NIT, immunotherapy combined with BNCT, is the first treatment to overcome immunotherapy resistance in malignant melanoma. In the future, as its therapeutic efficacy is demonstrated not only in melanoma but also in other immunotherapy-resistant malignancies, B-NIT can become a new treatment candidate for advanced-stage cancers.
Collapse
Affiliation(s)
- Takuya Fujimoto
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
- Neutron Therapy Research Center, Okayama University, Okayama, Japan
| | - Osamu Yamasaki
- Department of Dermatology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
- Department of Dermatology, Shimane University Faculty of Medicine, Izumo, Japan
| | - Noriyuki Kanehira
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
- Neutron Therapy Research Center, Okayama University, Okayama, Japan
| | - Hirokazu Matsushita
- Division of Translational Oncoimmunology, Aichi Cancer Center Research Institute, Nagoya, Japan
| | - Yoshinori Sakurai
- Institute for Integrated Radiation and Nuclear Science, Kyoto University, Sennan-gun, Japan
| | - Naoya Kenmotsu
- Department of Tumor Microenvironment, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Ryo Mizuta
- Division of Translational Oncoimmunology, Aichi Cancer Center Research Institute, Nagoya, Japan
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Natsuko Kondo
- Institute for Integrated Radiation and Nuclear Science, Kyoto University, Sennan-gun, Japan
| | - Takushi Takata
- Institute for Integrated Radiation and Nuclear Science, Kyoto University, Sennan-gun, Japan
| | - Mizuki Kitamatsu
- Faculty of Science and Engineering, Kindai University, Higashiosaka, Japan
| | - Kazuyo Igawa
- Neutron Therapy Research Center, Okayama University, Okayama, Japan
| | - Atsushi Fujimura
- Neutron Therapy Research Center, Okayama University, Okayama, Japan
- Department of Physiology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Yoshihiro Otani
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Makoto Shirakawa
- Neutron Therapy Research Center, Okayama University, Okayama, Japan
| | - Kunitoshi Shigeyasu
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Fuminori Teraishi
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Yosuke Togashi
- Department of Tumor Microenvironment, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Minoru Suzuki
- Institute for Integrated Radiation and Nuclear Science, Kyoto University, Sennan-gun, Japan
| | - Toshiyoshi Fujiwara
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Hiroyuki Michiue
- Neutron Therapy Research Center, Okayama University, Okayama, Japan
| |
Collapse
|
3
|
Monti Hughes A, Hu N. Optimizing Boron Neutron Capture Therapy (BNCT) to Treat Cancer: An Updated Review on the Latest Developments on Boron Compounds and Strategies. Cancers (Basel) 2023; 15:4091. [PMID: 37627119 PMCID: PMC10452654 DOI: 10.3390/cancers15164091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 07/27/2023] [Accepted: 07/31/2023] [Indexed: 08/27/2023] Open
Abstract
Boron neutron capture therapy (BNCT) is a tumor-selective particle radiotherapy. It combines preferential boron accumulation in tumors and neutron irradiation. The recent initiation of BNCT clinical trials employing hospital-based accelerators rather than nuclear reactors as the neutron source will conceivably pave the way for new and more numerous clinical trials, leading up to much-needed randomized trials. In this context, it would be interesting to consider the implementation of new boron compounds and strategies that will significantly optimize BNCT. With this aim in mind, we analyzed, in this review, those articles published between 2020 and 2023 reporting new boron compounds and strategies that were proved therapeutically useful in in vitro and/or in vivo radiobiological studies, a critical step for translation to a clinical setting. We also explored new pathologies that could potentially be treated with BNCT and newly developed theranostic boron agents. All these radiobiological advances intend to solve those limitations and questions that arise during patient treatment in the clinical field, with BNCT and other therapies. In this sense, active communication between clinicians, radiobiologists, and all disciplines will improve BNCT for cancer patients, in a cost- and time-effective way.
Collapse
Affiliation(s)
- Andrea Monti Hughes
- Radiation Pathology Division, Department Radiobiology, National Atomic Energy Commission, San Martín, Buenos Aires B1650KNA, Argentina
- National Scientific and Technical Research Council, Ciudad Autónoma de Buenos Aires C1425FQB, Argentina
| | - Naonori Hu
- Kansai BNCT Medical Center, Osaka Medical and Pharmaceutical University, Osaka 569-8686, Japan;
- Institute for Integrated Radiation and Nuclear Science, Kyoto University, Osaka 590-0494, Japan
| |
Collapse
|
4
|
Frydryk Benitez DN, Palmieri MA, Langle YV, Monti Hughes A, Pozzi ECC, Thorp SI, Garabalino MA, Curotto P, Ramos PS, Paparella ML, Polti L, Eiján A, Schwint AE, Trivillin VA. Therapeutic Efficacy, Radiotoxicity and Abscopal Effect of BNCT at the RA-3 Nuclear Reactor Employing Oligo-Fucoidan and Glutamine as Adjuvants in an Ectopic Colon Cancer Model in Rats. Life (Basel) 2023; 13:1538. [PMID: 37511913 PMCID: PMC10381875 DOI: 10.3390/life13071538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/16/2023] [Accepted: 07/06/2023] [Indexed: 07/30/2023] Open
Abstract
Boron neutron capture therapy (BNCT) is based on the preferential uptake of 10B compounds by tumors, followed by neutron irradiation. The aim of this study was to assess, in an ectopic colon cancer model, the therapeutic efficacy, radiotoxicity, abscopal effect and systemic immune response associated with (BPA/Borophenylalanine+GB-10/Decahydrodecaborate)-BNCT (Comb-BNCT) alone or in combination with Oligo-Fucoidan (O-Fuco) or Glutamine (GLN), compared to the "standard" BPA-BNCT protocol usually employed in clinical trials. All treatments were carried out at the RA-3 nuclear reactor. Boron biodistribution studies showed therapeutic values above 20 ppm 10B in tumors. At 7 weeks post-treatment, the ratio of tumor volume post-/pre-BNCT was significantly smaller for all BNCT groups vs. SHAM (p < 0.05). The parameter "incidence of tumors that underwent a reduction to ≤50% of initial tumor volume" exhibited values of 62% for Comb-BNCT alone, 82% for Comb-BNCT+GLN, 73% for Comb-BNCT+O-Fuco and only 30% for BPA-BNCT. For BPA-BNCT, the incidence of severe dermatitis was 100%, whereas it was significantly below 70% (p ≤ 0.05) for Comb-BNCT, Comb-BNCT+O-Fuco and Comb-BNCT+GLN. Considering tumors outside the treatment area, 77% of Comb-BNCT animals had a tumor volume lower than 50 mm3 vs. 30% for SHAM (p ≤ 0.005), suggesting an abscopal effect of Comb-BNCT. Inhibition of metastatic spread to lymph nodes was observed in all Comb-BNCT groups. Considering systemic aspects, CD8+ was elevated for Comb-BNCT+GLN vs. SHAM (p ≤ 0.01), and NK was elevated for Comb-BNCT vs. SHAM (p ≤ 0.05). Comb-BNCT improved therapeutic efficacy and reduced radiotoxicity compared to BPA-BNCT and induced an immune response and an abscopal effect.
Collapse
Affiliation(s)
- Debora N Frydryk Benitez
- Comisión Nacional de Energía Atómica (CNEA), Av. General Paz 1499, San Martin, Buenos Aires C1650KNA, Argentina
| | - Mónica A Palmieri
- Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (UBA), Av. Int. Güiraldes 2160, 4 Piso, Pab. II, Ciudad Autónoma de Buenos Aires C1428EGA, Argentina
| | - Yanina V Langle
- Facultad de Medicina, Instituto de Oncología Ángel H. Roffo (IOAHR), Universidad de Buenos Aires, Av. S. Martín 5481, Área de Investigación, Ciudad Autónoma de Buenos Aires C1417DTB, Argentina
| | - Andrea Monti Hughes
- Comisión Nacional de Energía Atómica (CNEA), Av. General Paz 1499, San Martin, Buenos Aires C1650KNA, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires C1425FQB, Argentina
| | - Emiliano C C Pozzi
- Comisión Nacional de Energía Atómica (CNEA), Av. General Paz 1499, San Martin, Buenos Aires C1650KNA, Argentina
| | - Silvia I Thorp
- Comisión Nacional de Energía Atómica (CNEA), Av. General Paz 1499, San Martin, Buenos Aires C1650KNA, Argentina
| | - Marcela A Garabalino
- Comisión Nacional de Energía Atómica (CNEA), Av. General Paz 1499, San Martin, Buenos Aires C1650KNA, Argentina
| | - Paula Curotto
- Comisión Nacional de Energía Atómica (CNEA), Av. General Paz 1499, San Martin, Buenos Aires C1650KNA, Argentina
| | - Paula S Ramos
- Comisión Nacional de Energía Atómica (CNEA), Av. General Paz 1499, San Martin, Buenos Aires C1650KNA, Argentina
| | - María L Paparella
- Facultad Odontología, Universidad de Buenos Aires (UBA), M.T. de Alvear 2142, Ciudad Autónoma de Buenos Aires C1122AAH, Argentina
| | - Lucas Polti
- Facultad Odontología, Universidad de Buenos Aires (UBA), M.T. de Alvear 2142, Ciudad Autónoma de Buenos Aires C1122AAH, Argentina
| | - Ana Eiján
- Facultad de Medicina, Instituto de Oncología Ángel H. Roffo (IOAHR), Universidad de Buenos Aires, Av. S. Martín 5481, Área de Investigación, Ciudad Autónoma de Buenos Aires C1417DTB, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires C1425FQB, Argentina
| | - Amanda E Schwint
- Comisión Nacional de Energía Atómica (CNEA), Av. General Paz 1499, San Martin, Buenos Aires C1650KNA, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires C1425FQB, Argentina
| | - Verónica A Trivillin
- Comisión Nacional de Energía Atómica (CNEA), Av. General Paz 1499, San Martin, Buenos Aires C1650KNA, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires C1425FQB, Argentina
| |
Collapse
|
5
|
Seneviratne DS, Saifi O, Mackeyev Y, Malouff T, Krishnan S. Next-Generation Boron Drugs and Rational Translational Studies Driving the Revival of BNCT. Cells 2023; 12:1398. [PMID: 37408232 DOI: 10.3390/cells12101398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/26/2023] [Accepted: 05/04/2023] [Indexed: 07/07/2023] Open
Abstract
BNCT is a high-linear-energy transfer therapy that facilitates tumor-directed radiation delivery while largely sparing adjacent normal tissues through the biological targeting of boron compounds to tumor cells. Tumor-specific accumulation of boron with limited accretion in normal cells is the crux of successful BNCT delivery. Given this, developing novel boronated compounds with high selectivity, ease of delivery, and large boron payloads remains an area of active investigation. Furthermore, there is growing interest in exploring the immunogenic potential of BNCT. In this review, we discuss the basic radiobiological and physical aspects of BNCT, traditional and next-generation boron compounds, as well as translational studies exploring the clinical applicability of BNCT. Additionally, we delve into the immunomodulatory potential of BNCT in the era of novel boron agents and examine innovative avenues for exploiting the immunogenicity of BNCT to improve outcomes in difficult-to-treat malignancies.
Collapse
Affiliation(s)
| | - Omran Saifi
- Department of Radiation Oncology, Mayo Clinic Florida, Jacksonville, FL 32224, USA
| | - Yuri Mackeyev
- Department of Neurosurgery, UTHealth, Houston, TX 77030, USA
| | - Timothy Malouff
- Department of Radiation Oncology, University of Oklahoma, Oklahoma City, OK 73019, USA
| | - Sunil Krishnan
- Department of Neurosurgery, UTHealth, Houston, TX 77030, USA
| |
Collapse
|
6
|
Shi Y, Guo Z, Fu Q, Shen X, Zhang Z, Sun W, Wang J, Sun J, Zhang Z, Liu T, Gu Z, Liu Z. Localized nuclear reaction breaks boron drug capsules loaded with immune adjuvants for cancer immunotherapy. Nat Commun 2023; 14:1884. [PMID: 37019890 PMCID: PMC10076324 DOI: 10.1038/s41467-023-37253-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 03/08/2023] [Indexed: 04/07/2023] Open
Abstract
Boron neutron capture therapy (BNCT) was clinically approved in 2020 and exhibits remarkable tumour rejection in preclinical and clinical studies. It is binary radiotherapy that may selectively deposit two deadly high-energy particles (4He and 7Li) within a cancer cell. As a radiotherapy induced by localized nuclear reaction, few studies have reported its abscopal anti-tumour effect, which has limited its further clinical applications. Here, we engineer a neutron-activated boron capsule that synergizes BNCT and controlled immune adjuvants release to provoke a potent anti-tumour immune response. This study demonstrates that boron neutron capture nuclear reaction forms considerable defects in boron capsule that augments the drug release. The following single-cell sequencing unveils the fact and mechanism that BNCT heats anti-tumour immunity. In female mice tumour models, BNCT and the controlled drug release triggered by localized nuclear reaction causes nearly complete regression of both primary and distant tumour grafts.
Collapse
Affiliation(s)
- Yaxin Shi
- Beijing National Laboratory for Molecular Sciences, Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Zhibin Guo
- Beijing National Laboratory for Molecular Sciences, Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Qiang Fu
- The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Xinyuan Shen
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Zhongming Zhang
- Engineering Department, Lancaster University, Lancaster, Lancashire, LA1 4YW, UK
| | - Wenjia Sun
- College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Peking University, Beijing, 100871, China
| | - Jinqiang Wang
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Junliang Sun
- College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Peking University, Beijing, 100871, China
| | - Zizhu Zhang
- Beijing Nuclear Industry Hospital, Beijing, 100045, China
| | - Tong Liu
- Beijing Capture Tech Co. Ltd, Beijing, 102413, China
| | - Zhen Gu
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.
- Jinhua Institute of Zhejiang University, Jinhua, 321299, China.
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China.
- Liangzhu Laboratory, Zhejiang University Medical Center, 311121, Hangzhou, China.
| | - Zhibo Liu
- Beijing National Laboratory for Molecular Sciences, Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China.
- Peking-Tsinghua Center for Life Sciences, Peking University, 100871, Beijing, China.
- Changping Laboratory, 102206, Beijing, China.
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, 100142, Beijing, China.
| |
Collapse
|
7
|
Kondo N. DNA damage and biological responses induced by Boron Neutron Capture Therapy (BNCT). Enzymes 2022; 51:65-78. [PMID: 36336409 DOI: 10.1016/bs.enz.2022.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Boron Neutron Capture Therapy (BNCT) is a tumor cell selective high LET (linear energy transfer) particle beam therapy. The patient is administrated a boron (10B) compound via intravenous injection or infusion, and when 10B is sufficiently accumulated in the tumor, neutron beams containing epithermal neutrons as the main component are irradiated. Epithermal neutrons lose energy in the body and become thermal neutrons. The captured 10B undergoes a (n, α) reaction with thermal neutrons, and the resulting α particles and 7Li nuclei have short ranges of 9-10μm and 4-5μm, respectively, and do not reach the surrounding cells in normal tissues. Therefore, these high LET-heavy charged particles can selectively kill cancer cells. The cell-killing effect of these heavy charged particles is thought to be triggered by DNA damage. It is known that DNA damage caused by heavy charged particles is more serious and difficult to repair than DNA damage caused by Low LET radiation such as X-rays and γ-rays. This review focuses on DNA damage, e.g., DNA strand breaks and DNA damage repair caused by BNCT and describes the resulting biological response.
Collapse
Affiliation(s)
- Natsuko Kondo
- Particle Radiation Oncology Research Center, Institute for Integrated Radiation and Nuclear Science, Kyoto University, Osaka, Japan.
| |
Collapse
|
8
|
Monti Hughes A, Schwint AE. Animal Tumor Models for Boron Neutron Capture Therapy Studies (Excluding Central Nervous System Solid Tumors). Cancer Biother Radiopharm 2022. [PMID: 36130136 DOI: 10.1089/cbr.2022.0054] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Translational research in adequate experimental models is necessary to optimize boron neutron capture therapy (BNCT) for different pathologies. Multiple radiobiological in vivo studies have been performed in a wide variety of animal models, studying multiple boron compounds, routes of compound administration, and a range of administration strategies. Animal models are useful for the study of the stability and potential toxicity of new boron compounds or delivery systems, BNCT theranostic strategies, the evaluation of biomarkers to monitor BNCT therapeutic and adverse effects, and to study the BNCT immune response by the host against tumor cells. This article will mention examples of these studies, highlighting the importance of experimental animal models for the advancement of BNCT. Animal models are essential to design novel, safe, and effective clinical BNCT protocols for existing or new targets for BNCT.
Collapse
Affiliation(s)
- Andrea Monti Hughes
- Departamento de Radiobiología, Centro Atómico Constituyentes, Comisión Nacional de Energía Atómica (CNEA), Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Amanda E Schwint
- Departamento de Radiobiología, Centro Atómico Constituyentes, Comisión Nacional de Energía Atómica (CNEA), Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| |
Collapse
|
9
|
Seneviratne D, Advani P, Trifiletti DM, Chumsri S, Beltran CJ, Bush AF, Vallow LA. Exploring the Biological and Physical Basis of Boron Neutron Capture Therapy (BNCT) as a Promising Treatment Frontier in Breast Cancer. Cancers (Basel) 2022; 14:cancers14123009. [PMID: 35740674 PMCID: PMC9221373 DOI: 10.3390/cancers14123009] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/30/2022] [Accepted: 06/07/2022] [Indexed: 12/04/2022] Open
Abstract
Simple Summary BNCT is a biologically targeted, densely ionizing form of radiation therapy that allows for increased tumor cell kill, while reducing toxicity to surrounding normal tissues. Although BNCT has been investigated in the treatment of head and neck cancers and recurrent brain tumors, its applicability to breast cancer has not been previoulsy investigated. In this review we discuss the physical and biological properties of various boronated compounds, and advantages and challenges associated with the potential use of BNCT in the treatment of breast cancer. Abstract BNCT is a high LET radiation therapy modality that allows for biologically targeted radiation delivery to tumors while reducing normal tissue impacts. Although the clinical use of BNCT has largely been limited to phase I/II trials and has primarily focused on difficult-to-treat malignancies such as recurrent head and neck cancer and recurrent gliomas, recently there has been a renewed interest in expanding the use of BNCT to other disease sites, including breast cancer. Given its high LET characteristics, its biologically targeted and tumor specific nature, as well as its potential for use in complex treatment settings including reirradiation and widespread metastatic disease, BNCT offers several unique advantages over traditional external beam radiation therapy. The two main boron compounds investigated to date in BNCT clinical trials are BSH and BPA. Of these, BPA in particular shows promise in breast cancer given that is taken up by the LAT-1 amino acid transporter that is highly overexpressed in breast cancer cells. As the efficacy of BNCT is directly dependent on the extent of boron accumulation in tumors, extensive preclinical efforts to develop novel boron delivery agents have been undertaken in recent years. Preclinical studies have shown promise in antibody linked boron compounds targeting ER/HER2 receptors, boron encapsulating liposomes, and nanoparticle-based boron delivery systems. This review aims to summarize the physical and biological basis of BNCT, the preclinical and limited clinical data available to date, and discuss its potential to be utilized for the successful treatment of various breast cancer disease states.
Collapse
Affiliation(s)
- Danushka Seneviratne
- Department of Radiation Oncology, Mayo Clinic Florida, Jacksonville, FL 32224, USA; (D.S.); (D.M.T.); (C.J.B.); (A.F.B.); (L.A.V.)
| | - Pooja Advani
- Department of Hematology Oncology, Mayo Clinic Florida, Jacksonville, FL 32224, USA;
- Correspondence:
| | - Daniel M. Trifiletti
- Department of Radiation Oncology, Mayo Clinic Florida, Jacksonville, FL 32224, USA; (D.S.); (D.M.T.); (C.J.B.); (A.F.B.); (L.A.V.)
| | - Saranya Chumsri
- Department of Hematology Oncology, Mayo Clinic Florida, Jacksonville, FL 32224, USA;
| | - Chris J. Beltran
- Department of Radiation Oncology, Mayo Clinic Florida, Jacksonville, FL 32224, USA; (D.S.); (D.M.T.); (C.J.B.); (A.F.B.); (L.A.V.)
| | - Aaron F. Bush
- Department of Radiation Oncology, Mayo Clinic Florida, Jacksonville, FL 32224, USA; (D.S.); (D.M.T.); (C.J.B.); (A.F.B.); (L.A.V.)
| | - Laura A. Vallow
- Department of Radiation Oncology, Mayo Clinic Florida, Jacksonville, FL 32224, USA; (D.S.); (D.M.T.); (C.J.B.); (A.F.B.); (L.A.V.)
| |
Collapse
|
10
|
Importance of radiobiological studies for the advancement of boron neutron capture therapy (BNCT). Expert Rev Mol Med 2022; 24:e14. [PMID: 35357286 DOI: 10.1017/erm.2022.7] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Boron neutron capture therapy (BNCT) is a tumour selective particle radiotherapy, based on the administration of boron carriers incorporated preferentially by tumour cells, followed by irradiation with a thermal or epithermal neutron beam. BNCT clinical results to date show therapeutic efficacy, associated with an improvement in patient quality of life and prolonged survival. Translational research in adequate experimental models is necessary to optimise BNCT for different pathologies. This review recapitulates some examples of BNCT radiobiological studies for different pathologies and clinical scenarios, strategies to optimise boron targeting, enhance BNCT therapeutic effect and minimise radiotoxicity. It also describes the radiobiological mechanisms induced by BNCT, and the importance of the detection of biomarkers to monitor and predict the therapeutic efficacy and toxicity of BNCT alone or combined with other strategies. Besides, there is a brief comment on the introduction of accelerator-based neutron sources in BNCT. These sources would expand the clinical BNCT services to more patients, and would help to make BNCT a standard treatment modality for various types of cancer. Radiobiological BNCT studies have been of utmost importance to make progress in BNCT, being essential to design novel, safe and effective clinical BNCT protocols.
Collapse
|
11
|
Xu J, Wang J, Wei Q. Boron neutron capture therapy in clinical application:Progress and prospect. CHINESE SCIENCE BULLETIN-CHINESE 2021. [DOI: 10.1360/tb-2021-0907] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
12
|
Trivillin VA, Langle YV, Palmieri MA, Pozzi ECC, Thorp SI, Benitez Frydryk DN, Garabalino MA, Monti Hughes A, Curotto PM, Colombo LL, Santa Cruz IS, Ramos PS, Itoiz ME, Argüelles C, Eiján AM, Schwint AE. Evaluation of local, regional and abscopal effects of Boron Neutron Capture Therapy (BNCT) combined with immunotherapy in an ectopic colon cancer model. Br J Radiol 2021; 94:20210593. [PMID: 34520668 DOI: 10.1259/bjr.20210593] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
OBJECTIVE The aim of the present study was to evaluate the local and regional therapeutic efficacy and abscopal effect of BNCT mediated by boronophenyl-alanine, combined with Bacillus Calmette-Guerin (BCG) as an immunotherapy agent in this model. METHODS The local effect of treatment was evaluated in terms of tumor response in the irradiated tumor-bearing right hind flank. Metastatic spread to tumor-draining lymph nodes was analyzed as an indicator of regional effect. The abscopal effect of treatment was assessed as tumor growth inhibition in the contralateral (non-irradiated) left hind flank inoculated with tumor cells 2 weeks post-irradiation. The experimental groups BNCT, BNCT + BCG, BCG, Beam only (BO), BO +BCG, SHAM (tumor-bearing, no treatment, same manipulation) were studied. RESULTS BNCT and BNCT + BCG induced a highly significant local anti-tumor response, whereas BCG alone induced a weak local effect. BCG and BNCT + BCG induced a significant abscopal effect in the contralateral non-irradiated leg. The BNCT + BCG group showed significantly less metastatic spread to tumor-draining lymph nodes vs SHAM and vs BO. CONCLUSION This study suggests that BNCT + BCG-immunotherapy would induce local, regional and abscopal effects in tumor-bearing animals. BNCT would be the main effector of the local anti-tumor effect whereas BCG would be the main effector of the abscopal effect. ADVANCES IN KNOWLEDGE Although the local effect of BNCT has been widely evidenced, this is the first study to show the local, regional and abscopal effects of BNCT combined with immunotherapy, contributing to comprehensive cancer treatment with combined therapies.
Collapse
Affiliation(s)
- Verónica A Trivillin
- Comisión Nacional de Energía Atómica (CNEA), Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Yanina V Langle
- Universidad de Buenos Aires, Instituto de Oncología Ángel H. Roffo, Área Investigación, Buenos Aires, Argentina
| | - Mónica A Palmieri
- Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
| | | | - Silvia I Thorp
- Comisión Nacional de Energía Atómica (CNEA), Buenos Aires, Argentina
| | | | | | - Andrea Monti Hughes
- Comisión Nacional de Energía Atómica (CNEA), Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Paula M Curotto
- Comisión Nacional de Energía Atómica (CNEA), Buenos Aires, Argentina
| | - Lucas L Colombo
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.,Universidad de Buenos Aires, Instituto de Oncología Ángel H. Roffo, Área Investigación, Buenos Aires, Argentina
| | - Iara S Santa Cruz
- Comisión Nacional de Energía Atómica (CNEA), Buenos Aires, Argentina
| | - Paula S Ramos
- Comisión Nacional de Energía Atómica (CNEA), Buenos Aires, Argentina
| | - María E Itoiz
- Comisión Nacional de Energía Atómica (CNEA), Buenos Aires, Argentina.,Facultad de Odontología, Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
| | - Claudia Argüelles
- Instituto Nacional de Producción de Biológicos, ANLIS Dr. Carlos G. Malbrán, Buenos Aires, Argentina
| | - Ana M Eiján
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.,Universidad de Buenos Aires, Instituto de Oncología Ángel H. Roffo, Área Investigación, Buenos Aires, Argentina
| | - Amanda E Schwint
- Comisión Nacional de Energía Atómica (CNEA), Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| |
Collapse
|
13
|
Development of self-powered neutron detectors used in nuclear medicine for the measurement of neutron flows during treatment of boron neutron therapy. RADIATION DETECTION TECHNOLOGY AND METHODS 2021. [DOI: 10.1007/s41605-021-00271-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
14
|
Malouff TD, Seneviratne DS, Ebner DK, Stross WC, Waddle MR, Trifiletti DM, Krishnan S. Boron Neutron Capture Therapy: A Review of Clinical Applications. Front Oncol 2021; 11:601820. [PMID: 33718149 PMCID: PMC7952987 DOI: 10.3389/fonc.2021.601820] [Citation(s) in RCA: 111] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 01/27/2021] [Indexed: 01/22/2023] Open
Abstract
Boron neutron capture therapy (BNCT) is an emerging treatment modality aimed at improving the therapeutic ratio for traditionally difficult to treat tumors. BNCT utilizes boronated agents to preferentially deliver boron-10 to tumors, which, after undergoing irradiation with neutrons, yields litihium-7 and an alpha particle. The alpha particle has a short range, therefore preferentially affecting tumor tissues while sparing more distal normal tissues. To date, BNCT has been studied clinically in a variety of disease sites, including glioblastoma multiforme, meningioma, head and neck cancers, lung cancers, breast cancers, hepatocellular carcinoma, sarcomas, cutaneous malignancies, extramammary Paget's disease, recurrent cancers, pediatric cancers, and metastatic disease. We aim to provide an up-to-date and comprehensive review of the studies of each of these disease sites, as well as a review on the challenges facing adoption of BNCT.
Collapse
Affiliation(s)
- Timothy D Malouff
- Department of Radiation Oncology, Mayo Clinic, Jacksonville, FL, United States
| | | | - Daniel K Ebner
- Warren Alpert Medical School, Brown University, Providence, RI, United States
| | - William C Stross
- Department of Radiation Oncology, Mayo Clinic, Jacksonville, FL, United States
| | - Mark R Waddle
- Department of Radiation Oncology, Mayo Clinic, Jacksonville, FL, United States
| | - Daniel M Trifiletti
- Department of Radiation Oncology, Mayo Clinic, Jacksonville, FL, United States
| | - Sunil Krishnan
- Department of Radiation Oncology, Mayo Clinic, Jacksonville, FL, United States
| |
Collapse
|
15
|
Dymova MA, Taskaev SY, Richter VA, Kuligina EV. Boron neutron capture therapy: Current status and future perspectives. Cancer Commun (Lond) 2020; 40:406-421. [PMID: 32805063 PMCID: PMC7494062 DOI: 10.1002/cac2.12089] [Citation(s) in RCA: 123] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 06/09/2020] [Accepted: 08/09/2020] [Indexed: 12/11/2022] Open
Abstract
The development of new accelerators has given a new impetus to the development of new drugs and treatment technologies using boron neutron capture therapy (BNCT). We analyzed the current status and future directions of BNCT for cancer treatment, as well as the main issues related to its introduction. This review highlights the principles of BNCT and the key milestones in its development: new boron delivery drugs and different types of charged particle accelerators are described; several important aspects of BNCT implementation are discussed. BCNT could be used alone or in combination with chemotherapy and radiotherapy, and it is evaluated in light of the outlined issues. For the speedy implementation of BCNT in medical practice, it is necessary to develop more selective boron delivery agents and to generate an epithermal neutron beam with definite characteristics. Pharmacological companies and research laboratories should have access to accelerators for large-scale screening of new, more specific boron delivery agents.
Collapse
Affiliation(s)
- Mayya Alexandrovna Dymova
- Laboratory of BiotechnologyInstitute of Chemical Biology and Fundamental MedicineSiberian Branch of the Russian Academy of SciencesLavrentjeva Av. 8Novosibirsk630090Russia
| | - Sergey Yurjevich Taskaev
- Budker Institute of Nuclear PhysicsSiberian Branch of the Russian Academy of SciencesLavrentjeva Av. 11Novosibirsk630090Russia
- Laboratory of Boron Neutron Capture TherapyNovosibirsk State UniversityPirogova str. 1Novosibirsk630090Russia
| | - Vladimir Alexandrovich Richter
- Laboratory of BiotechnologyInstitute of Chemical Biology and Fundamental MedicineSiberian Branch of the Russian Academy of SciencesLavrentjeva Av. 8Novosibirsk630090Russia
| | - Elena Vladimirovna Kuligina
- Laboratory of BiotechnologyInstitute of Chemical Biology and Fundamental MedicineSiberian Branch of the Russian Academy of SciencesLavrentjeva Av. 8Novosibirsk630090Russia
| |
Collapse
|
16
|
Khan AA, Maitz C, Quanyu C, Hawthorne F. BNCT induced immunomodulatory effects contribute to mammary tumor inhibition. PLoS One 2019; 14:e0222022. [PMID: 31479484 PMCID: PMC6719824 DOI: 10.1371/journal.pone.0222022] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 08/20/2019] [Indexed: 11/18/2022] Open
Abstract
In the United States, breast cancer is one of the most common and the second leading cause of cancer-related death in women. Treatment modalities for mammary tumor are surgical removal of the tumor tissue followed by either chemotherapy or radiotherapy or both. Radiation therapy is a whole body irradiation regimen that suppresses the immune system leaving hosts susceptible to infection or secondary tumors. Boron neutron capture therapy (BNCT) in that regard is more selective, the cells that are mostly affected are those that are loaded with 109 or more 10B atoms. Previously, we have described that liposomal encapsulation of boron-rich compounds such as TAC and MAC deliver a high payload to the tumor tissue when injected intravenously. Here we report that liposome-mediated boron delivery to the tumor is inversely proportional to the size of the murine mammary (EMT-6) tumors. The plausible reason for the inverse ratio of boron and EMT-6 tumor size is the necrosis in these tumors, which is more prominent in the large tumors. The large tumors also have receding blood vessels contributing further to poor boron delivery to these tumors. We next report that the presence of boron in blood is essential for the effects of BNCT on EMT-6 tumor inhibition as direct injection of boron-rich liposomes did not provide any added advantage in inhibition of EMT-6 tumor in BALB/c mice following irradiation despite having a significantly higher amount of boron in the tumor tissue. BNCT reaction in PBMCs resulted in the modification of these cells to anti-tumor phenotype. In this study, we report the immunomodulatory effects of BNCT when boron-rich compounds are delivered systemically.
Collapse
Affiliation(s)
- Aslam Ali Khan
- International Institute of Nano and Molecular Medicine, University of Missouri, Columbia, United States of America
- Bond Life Science Center, University of Missouri, Columbia, United States of America
- Department of Veterinary Pathobiology, University of Missouri, Columbia, United States of America
| | - Charlie Maitz
- International Institute of Nano and Molecular Medicine, University of Missouri, Columbia, United States of America
| | - Cai Quanyu
- International Institute of Nano and Molecular Medicine, University of Missouri, Columbia, United States of America
| | - Fred Hawthorne
- International Institute of Nano and Molecular Medicine, University of Missouri, Columbia, United States of America
| |
Collapse
|
17
|
Carboranylanilinoquinazoline EGFR-inhibitors: toward ‘lead-to-candidate’ stage in the drug-development pipeline. Future Med Chem 2019; 11:2273-2285. [DOI: 10.4155/fmc-2019-0060] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Background: Carboranylanilinoquinazoline-hybrids, developed for boron neutron capture therapy, have demonstrated cytotoxicity against murine-glioma cells with EGFR-inhibition ability. In addition, their adequate aqueous/metabolic stabilities and ability to cross blood–brain barrier make them good leads as to become antiglioma drugs. Aim: Analyze drug-like properties of representative carboranylanilinoquinazolines. Materials & methods: To expand carboranylanilinoquinazolines therapeutic spectrum, we studied their ability to act against glioma-mammal cells, U-87 MG and other tyrosine kinase-overexpress cells, HT-29. Additionally, we predicted theoretically and studied experimentally drug-like properties, in other words, organization for economic cooperation and development-recommended toxicity-studies and, due to some aqueous-solubility problems, and vehicularization for oral and intravenous administrations. Conclusion: We have identified a promising drug-candidate with broad activity spectrum, appropriate drug-like properties, adequate toxicological behavior and able ability to be loaded in suitable vehicles.
Collapse
|
18
|
Trivillin VA, Serrano A, Garabalino MA, Colombo LL, Pozzi EC, Hughes AM, Curotto PM, Thorp SI, Farías RO, González SJ, Bortolussi S, Altieri S, Itoiz ME, Aromando RF, Nigg DW, Schwint AE. Translational boron neutron capture therapy (BNCT) studies for the treatment of tumors in lung. Int J Radiat Biol 2019; 95:646-654. [PMID: 30601686 DOI: 10.1080/09553002.2019.1564080] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
PURPOSE Boron neutron capture therapy (BNCT) combines selective accumulation of 10B carriers in tumor tissue with subsequent neutron irradiation. BNCT has been proposed for the treatment of multiple, non-resectable, diffuse tumors in lung. The aim of the present study was to evaluate the therapeutic efficacy and toxicity of BNCT in an experimental model of lung metastases of colon carcinoma in BDIX rats and perform complementary survival studies. MATERIALS AND METHODS We evaluated tumor control and toxicity in lung 2 weeks post-BNCT at 2 dose levels, including 5 experimental groups per dose level: T0 (euthanized pre-treatment), Boronophenylalanine-BNCT (BPA-BNCT), BPA + Sodium decahydrodecaborate-BNCT ((BPA + GB-10)-BNCT), Beam only (BO) and Sham (no treatment, same manipulation). Tumor response was assessed employing macroscopic and microscopic end-points. An additional experiment was performed to evaluate survival and oxygen saturation in blood. RESULTS AND CONCLUSIONS No dose-limiting signs of short/medium-term toxicity were observed in lung. All end-points revealed statistically significant BNCT-induced tumor control vs Sham at both dose levels. The survival experiment showed a statistically significant 45% increase in post-treatment survival time in the BNCT group (48 days) versus Sham (33 days). These data consistently revealed growth suppression of lung metastases by BNCT with no manifest lung toxicity. Highlights Boron Neutron Capture Therapy suppresses growth of experimental lung metastases No BNCT-induced short/medium-term toxicity in lung is associated with tumor control Boron Neutron Capture Therapy increased post-treatment survival time by 45.
Collapse
Affiliation(s)
- Verónica Andrea Trivillin
- a Comisión Nacional de Energía Atómica , Buenos Aires, Argentina.,b Consejo Nacional de Investigaciones Científicas y Técnicas , Buenos Aires, Argentina
| | - Ayelén Serrano
- a Comisión Nacional de Energía Atómica , Buenos Aires, Argentina
| | | | - Lucas Luis Colombo
- b Consejo Nacional de Investigaciones Científicas y Técnicas , Buenos Aires, Argentina.,c Universidad de Buenos Aires, Instituto de Oncología Ángel H. Roffo, Área Investigación , Buenos Aires , Argentina.,d Universidad Abierta Interamericana , Buenos Aires, Argentina
| | | | - Andrea Monti Hughes
- a Comisión Nacional de Energía Atómica , Buenos Aires, Argentina.,b Consejo Nacional de Investigaciones Científicas y Técnicas , Buenos Aires, Argentina
| | - Paula M Curotto
- a Comisión Nacional de Energía Atómica , Buenos Aires, Argentina
| | | | - Ruben O Farías
- a Comisión Nacional de Energía Atómica , Buenos Aires, Argentina
| | - Sara J González
- a Comisión Nacional de Energía Atómica , Buenos Aires, Argentina.,b Consejo Nacional de Investigaciones Científicas y Técnicas , Buenos Aires, Argentina
| | - Silva Bortolussi
- e Dipartimento di Fisica Nucleare e Teorica dell' Università degli studi di Pavia and Istituto Nazionale di Fisica Nucleare (INFN) , Pavia , Italia
| | - Saverio Altieri
- e Dipartimento di Fisica Nucleare e Teorica dell' Università degli studi di Pavia and Istituto Nazionale di Fisica Nucleare (INFN) , Pavia , Italia
| | - Maria E Itoiz
- a Comisión Nacional de Energía Atómica , Buenos Aires, Argentina.,f Facultad de Odontología , Universidad de Buenos Aires , Buenos Aires, Argentina
| | - Romina F Aromando
- f Facultad de Odontología , Universidad de Buenos Aires , Buenos Aires, Argentina
| | - David W Nigg
- g Idaho National Laboratory , Idaho Falls, ID, USA
| | - Amanda E Schwint
- a Comisión Nacional de Energía Atómica , Buenos Aires, Argentina.,b Consejo Nacional de Investigaciones Científicas y Técnicas , Buenos Aires, Argentina
| |
Collapse
|