1
|
Dumas F, Perelman PL, Biltueva L, Roelke-Parker ME. Retrotransposon mapping in spider monkey genomes of the family Atelidae (Platyrrhini, Primates) shows a high level of LINE-1 amplification. JOURNAL OF BIOLOGICAL RESEARCH - BOLLETTINO DELLA SOCIETÀ ITALIANA DI BIOLOGIA SPERIMENTALE 2022. [DOI: 10.4081/jbr.2022.10725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
To investigate the distribution of LINE-1 repeat sequences, a LINE-1 probe was Fluorescence In Situ Hybridized (FISH) on the chromosomes of Ateles geoffroyi and Ateles fusciceps (Atelidae); a LINE-1 probe was also mapped on Cebuella pygmaea (Cebidae) and used as an outgroup for phylogenetic comparison. Ateles spider monkeys have a highly rearranged genome and are an ideal model for testing whether LINE-1 is involved in genome evolution. The LINE-1 probe has been mapped in the two Atelidae species for the first time, revealing a high accumulation of LINE-1 sequences along chromosomal arms, including telomeres, and a scarcity of LINE-1 signals at centromere positions. LINE-1 mapping in C. pygmaea (Cebidae) revealed signals at centromere positions and along chromosome arms, which was consistent with previous published data from other Cebidae species. In a broader sense, the results were analyzed in light of published data on whole-chromosomal human probes mapped in these genomes. This analysis allows us to speculate about the presence of LINE-1 sequences at the junction of human chromosomal syntenies, as well as a possible link between these sequences and chromosomal rearrangements.
Collapse
|
2
|
Palazzo A, Piccolo I, Minervini CF, Purgato S, Capozzi O, D'Addabbo P, Cumbo C, Albano F, Rocchi M, Catacchio CR. Genome characterization and CRISPR-Cas9 editing of a human neocentromere. Chromosoma 2022; 131:239-251. [PMID: 35978051 DOI: 10.1007/s00412-022-00779-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 07/20/2022] [Accepted: 08/12/2022] [Indexed: 11/27/2022]
Abstract
The maintenance of genome integrity is ensured by proper chromosome inheritance during mitotic and meiotic cell divisions. The chromosomal counterpart responsible for chromosome segregation to daughter cells is the centromere, at which the spindle apparatus attaches through the kinetochore. Although all mammalian centromeres are primarily composed of megabase-long repetitive sequences, satellite-free human neocentromeres have been described. Neocentromeres and evolutionary new centromeres have revolutionized traditional knowledge about centromeres. Over the past 20 years, insights have been gained into their organization, but in spite of these advancements, the mechanisms underlying their formation and evolution are still unclear. Today, through modern and increasingly accessible genome editing and long-read sequencing techniques, research in this area is undergoing a sudden acceleration. In this article, we describe the primary sequence of a previously described human chromosome 3 neocentromere and observe its possible evolution and repair results after a chromosome breakage induced through CRISPR-Cas9 technologies. Our data represent an exciting advancement in the field of centromere/neocentromere evolution and chromosome stability.
Collapse
Affiliation(s)
- Antonio Palazzo
- Department of Biology, University of Bari Aldo Moro, Bari, Italy.
| | - Ilaria Piccolo
- Department of Biology, University of Bari Aldo Moro, Bari, Italy
| | - Crescenzio Francesco Minervini
- Department of Emergency and Organ Transplantation (D.E.T.O.), Hematology and Stem Cell Transplantation Unit, University of Bari Aldo Moro, Bari, Italy
| | - Stefania Purgato
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Oronzo Capozzi
- Department of Biology, University of Bari Aldo Moro, Bari, Italy
| | - Pietro D'Addabbo
- Department of Biology, University of Bari Aldo Moro, Bari, Italy
| | - Cosimo Cumbo
- Department of Emergency and Organ Transplantation (D.E.T.O.), Hematology and Stem Cell Transplantation Unit, University of Bari Aldo Moro, Bari, Italy
| | - Francesco Albano
- Department of Emergency and Organ Transplantation (D.E.T.O.), Hematology and Stem Cell Transplantation Unit, University of Bari Aldo Moro, Bari, Italy
| | - Mariano Rocchi
- Department of Biology, University of Bari Aldo Moro, Bari, Italy
| | | |
Collapse
|
3
|
Noronha RCR, Almeida BRR, Chagas MCS, Tavares FS, Cardoso AL, Bastos CEMC, Silva NKN, Klautau AGCM, Luna FO, Attademo FLN, Lima DS, Sabioni LA, Sampaio MIC, Oliveira JM, do Nascimento LAS, Martins C, Vicari MR, Nagamachi CY, Pieczarka JC. Karyotypes of Manatees: New Insights into Hybrid Formation ( Trichechus inunguis × Trichechus m. manatus) in the Amazon Estuary. Genes (Basel) 2022; 13:1263. [PMID: 35886048 PMCID: PMC9323068 DOI: 10.3390/genes13071263] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/11/2022] [Accepted: 07/14/2022] [Indexed: 02/01/2023] Open
Abstract
Great efforts have been made to preserve manatees. Recently, a hybrid zone was described between Trichechus inunguis (TIN) and the Trichechus manatus manatus (TMM) in the Amazon estuary. Cytogenetic data on these sirenians are limited, despite being fundamental to understanding the hybridization/introgression dynamics and genomic organization in Trichechus. We analyzed the karyotype of TMM, TIN, and two hybrid specimens ("Poque" and "Vitor") by classical and molecular cytogenetics. G-band analysis revealed that TMM (2n = 48) and TIN (2n = 56) diverge by at least six Robertsonian translocations and a pericentric inversion. Hybrids had 2n = 50, however, with Autosomal Fundamental Number (FNA) = 88 in "Poque" and FNA = 74 in "Vitor", and chromosomal distinct pairs in heterozygous; additionally, "Vitor" exhibited heteromorphisms and chromosomes whose pairs could not be determined. The U2 snDNA and Histone H3 multi genes are distributed in small clusters along TIN and TMM chromosomes and have transposable Keno and Helitron elements (TEs) in their sequences. The different karyotypes observed among manatee hybrids may indicate that they represent different generations formed by crossing between fertile hybrids and TIN. On the other hand, it is also possible that all hybrids recorded represent F1 and the observed karyotype differences must result from mechanisms of elimination.
Collapse
Affiliation(s)
- Renata C. R. Noronha
- Laboratório de Citogenética, Centro de Estudos Avançados da Biodiversidade, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém 66075-110, PA, Brazil; (B.R.R.A.); (M.C.S.C.); (F.S.T.); (C.E.M.C.B.); (C.Y.N.); (J.C.P.)
| | - Bruno R. R. Almeida
- Laboratório de Citogenética, Centro de Estudos Avançados da Biodiversidade, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém 66075-110, PA, Brazil; (B.R.R.A.); (M.C.S.C.); (F.S.T.); (C.E.M.C.B.); (C.Y.N.); (J.C.P.)
- Campus Itaituba, Instituto Federal de Educação, Ciência e Tecnologia do Pará, Itaituba 68183-300, PA, Brazil
| | - Monique C. S. Chagas
- Laboratório de Citogenética, Centro de Estudos Avançados da Biodiversidade, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém 66075-110, PA, Brazil; (B.R.R.A.); (M.C.S.C.); (F.S.T.); (C.E.M.C.B.); (C.Y.N.); (J.C.P.)
| | - Flávia S. Tavares
- Laboratório de Citogenética, Centro de Estudos Avançados da Biodiversidade, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém 66075-110, PA, Brazil; (B.R.R.A.); (M.C.S.C.); (F.S.T.); (C.E.M.C.B.); (C.Y.N.); (J.C.P.)
| | - Adauto L. Cardoso
- Laboratório Genômica Integrativa, Departamento de Biologia Estrutural e Funcional, Instituto de Biociências de Botucatu, Universidade Estadual Paulista, Botucatu 18618-970, SP, Brazil; (A.L.C.); (C.M.)
| | - Carlos E. M. C. Bastos
- Laboratório de Citogenética, Centro de Estudos Avançados da Biodiversidade, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém 66075-110, PA, Brazil; (B.R.R.A.); (M.C.S.C.); (F.S.T.); (C.E.M.C.B.); (C.Y.N.); (J.C.P.)
| | - Natalia K. N. Silva
- Campus Tucuruí, Universidade do Estado do Pará, Tucuruí 68455-210, PA, Brazil;
| | - Alex G. C. M. Klautau
- Centro Nacional de Pesquisa e Conservação da Biodiversidade Marinha do Norte, Instituto Chico Mendes de Conservação da Biodiversidade, Belém 66635-110, PA, Brazil;
| | - Fábia O. Luna
- Centro Nacional de Pesquisa e Conservação de Mamíferos Aquáticos, Instituto Chico Mendes de Conservação de Biodiversidade, Santos 11050-031, SP, Brazil; (F.O.L.); (F.L.N.A.)
| | - Fernanda L. N. Attademo
- Centro Nacional de Pesquisa e Conservação de Mamíferos Aquáticos, Instituto Chico Mendes de Conservação de Biodiversidade, Santos 11050-031, SP, Brazil; (F.O.L.); (F.L.N.A.)
- Departamento de Zoologia, Programa de Pós-Graduação em Biologia Animal/PPBA, Laboratório de Ecologia Comportamento e Conservação/LECC, Universidade Federal de Pernambuco/UFPE, Recife 50670-901, PE, Brazil
| | - Danielle S. Lima
- Grupo de Pesquisa em Mamíferos Aquáticos Amazônicos, Instituto de Desenvolvimento Sustentável Mamirauá, Estrada do Bexiga, Tefé 69553-225, AM, Brazil; (D.S.L.); (L.A.S.)
- Rede de Pesquisa e Conservação de Sirênios no Estuário Amazônico, Macapá 68903-197, AP, Brazil
| | - Luiz A. Sabioni
- Grupo de Pesquisa em Mamíferos Aquáticos Amazônicos, Instituto de Desenvolvimento Sustentável Mamirauá, Estrada do Bexiga, Tefé 69553-225, AM, Brazil; (D.S.L.); (L.A.S.)
- Rede de Pesquisa e Conservação de Sirênios no Estuário Amazônico, Macapá 68903-197, AP, Brazil
- Campus Porto Grande, Instituto Federal de Educação Ciência e Tecnologia do Amapá, Rodovia BR 210, Km 103, s/n, Zona Rural, Porto Grande 68997-000, AP, Brazil
| | - Maria I. C. Sampaio
- Instituto de Estudos Costeiros, Campus Bragança, Universidade Federal do Pará, Bragança 68600-000, PA, Brazil;
| | - Jairo Moura Oliveira
- Zoological Park of Santarém, ZOOUNAMA, Universidade da Amazônia, Santarém 68030-150, PA, Brazil;
| | | | - Cesar Martins
- Laboratório Genômica Integrativa, Departamento de Biologia Estrutural e Funcional, Instituto de Biociências de Botucatu, Universidade Estadual Paulista, Botucatu 18618-970, SP, Brazil; (A.L.C.); (C.M.)
| | - Marcelo R. Vicari
- Departamento de Biologia Estrutural, Molecular e Genética, Universidade Estadual de Ponta Grossa, Ponta Grossa 84030-900, PR, Brazil;
| | - Cleusa Y. Nagamachi
- Laboratório de Citogenética, Centro de Estudos Avançados da Biodiversidade, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém 66075-110, PA, Brazil; (B.R.R.A.); (M.C.S.C.); (F.S.T.); (C.E.M.C.B.); (C.Y.N.); (J.C.P.)
| | - Julio C. Pieczarka
- Laboratório de Citogenética, Centro de Estudos Avançados da Biodiversidade, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém 66075-110, PA, Brazil; (B.R.R.A.); (M.C.S.C.); (F.S.T.); (C.E.M.C.B.); (C.Y.N.); (J.C.P.)
| |
Collapse
|
4
|
Ceraulo S, Perelman PL, Dumas F. Massive LINE‐1 retrotransposon enrichment in tamarins of the Cebidae family (Platyrrhini, Primates) and its significance for genome evolution. J ZOOL SYST EVOL RES 2021. [DOI: 10.1111/jzs.12536] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Simona Ceraulo
- Department of “Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF)” University of Palermo Palermo Italy
| | | | - Francesca Dumas
- Department of “Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF)” University of Palermo Palermo Italy
| |
Collapse
|
5
|
Sena RS, Heringer P, Valeri MP, Pereira VS, Kuhn GCS, Svartman M. Identification and characterization of satellite DNAs in two-toed sloths of the genus Choloepus (Megalonychidae, Xenarthra). Sci Rep 2020; 10:19202. [PMID: 33154538 PMCID: PMC7644632 DOI: 10.1038/s41598-020-76199-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 10/19/2020] [Indexed: 11/09/2022] Open
Abstract
Choloepus, the only extant genus of the Megalonychidae family, is composed of two living species of two-toed sloths: Choloepus didactylus and C. hoffmanni. In this work, we identified and characterized the main satellite DNAs (satDNAs) in the sequenced genomes of these two species. SATCHO1, the most abundant satDNA in both species, is composed of 117 bp tandem repeat sequences. The second most abundant satDNA, SATCHO2, is composed of ~ 2292 bp tandem repeats. Fluorescence in situ hybridization in C. hoffmanni revealed that both satDNAs are located in the centromeric regions of all chromosomes, except the X. In fact, these satDNAs present some centromeric characteristics in their sequences, such as dyad symmetries predicted to form secondary structures. PCR experiments indicated the presence of SATCHO1 sequences in two other Xenarthra species: the tree-toed sloth Bradypus variegatus and the anteater Myrmecophaga tridactyla. Nevertheless, SATCHO1 is present as large tandem arrays only in Choloepus species, thus likely representing a satDNA exclusively in this genus. Our results reveal interesting features of the satDNA landscape in Choloepus species with the potential to aid future phylogenetic studies in Xenarthra and mammalian genomes in general.
Collapse
Affiliation(s)
- Radarane Santos Sena
- Laboratório de Citogenômica Evolutiva, Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Pedro Heringer
- Laboratório de Citogenômica Evolutiva, Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Mirela Pelizaro Valeri
- Laboratório de Citogenômica Evolutiva, Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | | | - Gustavo C S Kuhn
- Laboratório de Citogenômica Evolutiva, Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Marta Svartman
- Laboratório de Citogenômica Evolutiva, Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil.
| |
Collapse
|
6
|
Paço A, Freitas R, Vieira-da-Silva A. Conversion of DNA Sequences: From a Transposable Element to a Tandem Repeat or to a Gene. Genes (Basel) 2019; 10:E1014. [PMID: 31817529 PMCID: PMC6947457 DOI: 10.3390/genes10121014] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 11/18/2019] [Accepted: 11/29/2019] [Indexed: 01/24/2023] Open
Abstract
Eukaryotic genomes are rich in repetitive DNA sequences grouped in two classes regarding their genomic organization: tandem repeats and dispersed repeats. In tandem repeats, copies of a short DNA sequence are positioned one after another within the genome, while in dispersed repeats, these copies are randomly distributed. In this review we provide evidence that both tandem and dispersed repeats can have a similar organization, which leads us to suggest an update to their classification based on the sequence features, concretely regarding the presence or absence of retrotransposons/transposon specific domains. In addition, we analyze several studies that show that a repetitive element can be remodeled into repetitive non-coding or coding sequences, suggesting (1) an evolutionary relationship among DNA sequences, and (2) that the evolution of the genomes involved frequent repetitive sequence reshuffling, a process that we have designated as a "DNA remodeling mechanism". The alternative classification of the repetitive DNA sequences here proposed will provide a novel theoretical framework that recognizes the importance of DNA remodeling for the evolution and plasticity of eukaryotic genomes.
Collapse
Affiliation(s)
- Ana Paço
- MED-Mediterranean Institute for Agriculture, Environment and Development, University of Évora, 7002–554 Évora, Portugal;
| | - Renata Freitas
- IBMC-Institute for Molecular and Cell Biology, University of Porto, R. Campo Alegre 823, 4150–180 Porto, Portugal;
- I3S-Institute for Innovation and Health Research, University of Porto, Rua Alfredo Allen, 208, 4200–135 Porto, Portugal
- ICBAS-Institute of Biomedical Sciences Abel Salazar, University of Porto, 4050-313 Porto, Portugal
| | - Ana Vieira-da-Silva
- MED-Mediterranean Institute for Agriculture, Environment and Development, University of Évora, 7002–554 Évora, Portugal;
| |
Collapse
|
7
|
Rocha-da-Silva L, Armelin-Correa L, Cantão IH, Flister VJF, Nunes M, Stumpp T. Expression of genome defence protein members in proliferating and quiescent rat male germ cells and the Nuage dynamics. PLoS One 2019; 14:e0217941. [PMID: 31181099 PMCID: PMC6557511 DOI: 10.1371/journal.pone.0217941] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 05/21/2019] [Indexed: 11/21/2022] Open
Abstract
During epigenetic reprogramming germ cells activate alternative mechanisms to maintain the repression retrotransposons. This mechanism involves the recruitment of genome defence proteins such as MAEL, PIWIL4 and TDRD9, which associate with piRNAs and promote Line-1 silencing. MAEL, PIWIL4 and TDRD9 form the piP-bodies, which organization and dynamics vary according to the stage of germ cell epigenetic reprogramming. Although these data have been well documented in mice, it is not known how this mechanism operates in the rat. Thus, the aim of this study was to describe the distribution and interaction of MAEL, PIWIL4, TDRD9 and DAZL during rat germ cell development and check whether specific localization of these proteins is related to the distribution of Line-1 aggregates. Rat embryo gonads at 15 days post-conception (dpc), 16dpc and 19dpc were submitted to MAEL, PIWIL4, TDRD9 and DAZL immunolabelling. The gonads of 19dpc embryos were submitted to the double-labelling of MAEL/DAZL, TDRD9/MAEL and PIWIL4/MAEL. The 19dpc gonads were submitted to co-immunoprecipitation assays and fluorescent in situ hybridization for Line-1 detection. MAEL and TDRD9 showed very similar localization at all ages, whereas DAZL and PIWIL4 showed specific distribution, with PIWIL4 showing shuttling from the nucleus to the cytoplasm by the end epigenetic reprogramming. In quiescent 19dpc gonocytes all proteins colocalized in a nuage adjacent to the nucleus. DAZL interacts with PIWIL4 and MAEL, suggesting that DAZL acts with these proteins to repress Line-1. TDRD9, however, does not interact with DAZL or MAEL despite their colocalization. Line-1 aggregates were detected predominantly in the nuclear periphery, although did not show homogeneous distribution as observed for the nuage. In conclusion, the nuage in quiescent rat gonocytes show a very distinguished organization that might be related to the organization of Line-1 clusters and describe the association of DAZL with proteins responsible for Line-1 repression.
Collapse
Affiliation(s)
- Letícia Rocha-da-Silva
- Laboratory of Developmental Biology, Department of Morphology and Genetics, Escola Paulista de Medicina, Universidade Federal de São Paulo (EPM/UNIFESP), São Paulo, Brazil
| | - Lucia Armelin-Correa
- Department of Biological Sciences, Universidade Federal de São Paulo (UNIFESP), Diadema, Brazil
| | - Isabelle Hernandez Cantão
- Laboratory of Developmental Biology, Department of Morphology and Genetics, Escola Paulista de Medicina, Universidade Federal de São Paulo (EPM/UNIFESP), São Paulo, Brazil
| | - Verena Julia Flaiz Flister
- Laboratory of Developmental Biology, Department of Morphology and Genetics, Escola Paulista de Medicina, Universidade Federal de São Paulo (EPM/UNIFESP), São Paulo, Brazil
| | - Marina Nunes
- Laboratory of Developmental Biology, Department of Morphology and Genetics, Escola Paulista de Medicina, Universidade Federal de São Paulo (EPM/UNIFESP), São Paulo, Brazil
| | - Taiza Stumpp
- Laboratory of Developmental Biology, Department of Morphology and Genetics, Escola Paulista de Medicina, Universidade Federal de São Paulo (EPM/UNIFESP), São Paulo, Brazil
- * E-mail: ,
| |
Collapse
|
8
|
Yang L, Scott L, Wichman HA. Tracing the history of LINE and SINE extinction in sigmodontine rodents. Mob DNA 2019; 10:22. [PMID: 31139266 PMCID: PMC6530004 DOI: 10.1186/s13100-019-0164-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 04/30/2019] [Indexed: 12/18/2022] Open
Abstract
Background L1 retrotransposons have co-evolved with their mammalian hosts for the entire history of mammals and currently compose ~ 20% of a mammalian genome. B1 retrotransposons are dependent on L1 for retrotransposition and span the evolutionary history of rodents since their radiation. L1s were found to have lost their activity in a group of South American rodents, the Sigmodontinae, and B1 inactivation preceded the extinction of L1 in the same group. Consequently, a basal group of sigmodontines have active L1s but inactive B1s and a derived clade have both inactive L1s and B1s. It has been suggested that B1s became extinct during a long period of L1 quiescence and that L1s subsequently reemerged in the basal group. Results Here we investigate the evolutionary histories of L1 and B1 in the sigmodontine rodents and show that L1 activity continued until after the L1-extinct clade and the basal group diverged. After the split, L1 had a small burst of activity in the former group, followed by extinction. In the basal group, activity was initially low but was followed by a dramatic increase in L1 activity. We found the last wave of B1 retrotransposition was large and probably preceded the split between the two rodent clades. Conclusions Given that L1s had been steadily retrotransposing during the time corresponding to B1 extinction and that the burst of B1 activity preceding B1 extinction was large, we conclude that B1 extinction was not a result of L1 quiescence. Rather, the burst of B1 activity may have contributed to L1 extinction both by competition with L1 and by putting strong selective pressure on the host to control retrotransposition. Electronic supplementary material The online version of this article (10.1186/s13100-019-0164-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Lei Yang
- 1Department of Biological Sciences, University of Idaho, Moscow, ID USA.,2Institute for Bioinformatics and Evolutionary Studies, University of Idaho, Moscow, ID USA
| | - LuAnn Scott
- 1Department of Biological Sciences, University of Idaho, Moscow, ID USA.,2Institute for Bioinformatics and Evolutionary Studies, University of Idaho, Moscow, ID USA
| | - Holly A Wichman
- 1Department of Biological Sciences, University of Idaho, Moscow, ID USA.,2Institute for Bioinformatics and Evolutionary Studies, University of Idaho, Moscow, ID USA
| |
Collapse
|
9
|
de Sotero-Caio CG, Cabral-de-Mello DC, Calixto MDS, Valente GT, Martins C, Loreto V, de Souza MJ, Santos N. Centromeric enrichment of LINE-1 retrotransposons and its significance for the chromosome evolution of Phyllostomid bats. Chromosome Res 2017; 25:313-325. [PMID: 28916913 DOI: 10.1007/s10577-017-9565-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Revised: 08/24/2017] [Accepted: 08/28/2017] [Indexed: 10/18/2022]
Abstract
Despite their ubiquitous incidence, little is known about the chromosomal distribution of long interspersed elements (LINEs) in mammalian genomes. Phyllostomid bats, characterized by lineages with distinct trends of chromosomal evolution coupled with remarkable ecological and taxonomic diversity, represent good models to understand how these repetitive sequences contribute to the evolution of genome architecture and its link to lineage diversification. To test the hypothesis that LINE-1 sequences were important modifiers of bat genome architecture, we characterized the distribution of LINE-1-derived sequences on genomes of 13 phyllostomid species within a phylogenetic framework. We found massive accumulation of LINE-1 elements in the centromeres of most species: a rare phenomenon on mammalian genomes. We hypothesize that expansion of these elements has occurred early in the radiation of phyllostomids and recurred episodically. LINE-1 expansions on centromeric heterochromatin probably spurred chromosomal change before the radiation of phyllostomids into the extant 11 subfamilies and contributed to the high degree of karyotypic variation observed among different lineages. Understanding centromere architecture in a variety of taxa promises to explain how lineage-specific changes on centromere structure can contribute to karyotypic diversity while not disrupting functional constraints for proper cell division.
Collapse
Affiliation(s)
- Cibele Gomes de Sotero-Caio
- Departamento de Genética, Laboratório de Genética e Citogenética Animal e Humana, UFPE-Universidade Federal de Pernambuco, Av. da Engenharia s/n; Cidade Universitária, Recife, PE, CEP:50740-600, Brazil. .,Department of Biological Sciences, Texas Tech University, Lubbock, TX, USA.
| | - Diogo Cavalcanti Cabral-de-Mello
- Departamento de Biologia, Grupo de Estudos em Citogenômica e Evolução Animal, UNESP-Universidade Estadual Paulista, Instituto de Biociências, Rio Claro, SP, Brazil
| | - Merilane da Silva Calixto
- Departamento de Genética, Laboratório de Genética e Citogenética Animal e Humana, UFPE-Universidade Federal de Pernambuco, Av. da Engenharia s/n; Cidade Universitária, Recife, PE, CEP:50740-600, Brazil.,Centro de Saúde e Tecnologia, Unidade Acadêmica de Ciências Biológicas, UFCG-Universidade Federal de Campina Grande, Patos, PB, Brazil
| | - Guilherme Targino Valente
- Departamento de Bioprocessos e Biotecnologia da Faculdade de Ciências Agronômicas, UNESP-Universidade Estadual Paulista, Botucatu, SP, Brazil
| | - Cesar Martins
- Departamento de Morfologia, Laboratório Genômica Integrativa, UNESP-Universidade Estadual Paulista, Botucatu, SP, Brazil
| | - Vilma Loreto
- Departamento de Genética, Laboratório de Genética e Citogenética Animal e Humana, UFPE-Universidade Federal de Pernambuco, Av. da Engenharia s/n; Cidade Universitária, Recife, PE, CEP:50740-600, Brazil
| | - Maria José de Souza
- Departamento de Genética, Laboratório de Genética e Citogenética Animal e Humana, UFPE-Universidade Federal de Pernambuco, Av. da Engenharia s/n; Cidade Universitária, Recife, PE, CEP:50740-600, Brazil
| | - Neide Santos
- Departamento de Genética, Laboratório de Genética e Citogenética Animal e Humana, UFPE-Universidade Federal de Pernambuco, Av. da Engenharia s/n; Cidade Universitária, Recife, PE, CEP:50740-600, Brazil
| |
Collapse
|
10
|
de Souza ÉMS, Gross MC, Silva CEFE, Sotero-Caio CG, Feldberg E. Heterochromatin variation and LINE-1 distribution in Artibeus (Chiroptera, Phyllostomidae) from Central Amazon, Brazil. COMPARATIVE CYTOGENETICS 2017; 11:613-626. [PMID: 29114357 PMCID: PMC5672158 DOI: 10.3897/compcytogen.v11i4.14562] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 08/09/2017] [Indexed: 06/07/2023]
Abstract
Species in the subgenus Artibeus Leach, 1821 are widely distributed in Brazil. Conserved karyotypes characterize the group with identical diploid number and chromosome morphology. Recent studies suggested that the heterochromatin distribution and accumulation patterns can vary among species. In order to assess whether variation can also occur within species, we have analyzed the chromosomal distribution of constitutive heterochromatin in A. planirostris (Spix, 1823) and A. lituratus (Olfers, 1818) from Central Amazon (North Brazil) and contrasted our findings with those reported for other localities in Brazil. In addition, Ag-NOR staining and FISH with 18S rDNA, telomeric, and LINE-1 probes were performed to assess the potential role that these different repetitive markers had in shaping the current architecture of heterochromatic regions. Both species presented interindividual variation of constitutive heterochromatin. In addition, in A. planirostris the centromeres of most chromosomes are enriched with LINE-1, colocated with pericentromeric heterochromatin blocks. Overall, our data indicate that amplification and differential distribution of the investigated repetitive DNAs might have played a significant role in shaping the chromosome architecture of the subgenus Artibeus.
Collapse
Affiliation(s)
- Érica Martinha Silva de Souza
- Programa de Pós-graduação em Genética, Conservação e Biologia Evolutiva, Instituto Nacional de Pesquisas da Amazônia, Av. André Araújo, 2936, Aleixo, 69.060-001 Manaus, AM, Brazil
- Laboratório de Genética Animal, Instituto Nacional de Pesquisas da Amazônia, Av. André Araújo, 2936, Aleixo, 69.060-001 Manaus, AM, Brazil
| | - Maria Claudia Gross
- Universidade Federal da Integração Latino Americana, Laboratório de Genética, Av. Tarquínio Joslin dos Santos, 1000, Jardim Universitário, 85857-190, Foz do Iguaçu, PR, Brazil
| | - Carlos Eduardo Faresin e Silva
- Programa de Pós-graduação em Genética, Conservação e Biologia Evolutiva, Instituto Nacional de Pesquisas da Amazônia, Av. André Araújo, 2936, Aleixo, 69.060-001 Manaus, AM, Brazil
- Laboratório de Genética Animal, Instituto Nacional de Pesquisas da Amazônia, Av. André Araújo, 2936, Aleixo, 69.060-001 Manaus, AM, Brazil
| | - Cibele Gomes Sotero-Caio
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, USA 79409
- Laboratório de Genética e Citogenética Animal e Humana, Departamento de Genética, Universidade Federal de Pernambuco, Av. da Engenharia s/n; Cidade Universitária; CEP:50740-600; Recife-PE, Brazil
| | - Eliana Feldberg
- Laboratório de Genética Animal, Instituto Nacional de Pesquisas da Amazônia, Av. André Araújo, 2936, Aleixo, 69.060-001 Manaus, AM, Brazil
| |
Collapse
|
11
|
Comparative Genomic In Situ Hybridization and the Possible Role of Retroelements in the Karyotypic Evolution of Three Akodontini Species. Int J Genomics 2017; 2017:5935380. [PMID: 28900618 PMCID: PMC5576401 DOI: 10.1155/2017/5935380] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Revised: 03/14/2017] [Accepted: 05/03/2017] [Indexed: 01/21/2023] Open
Abstract
South American Akodontini rodents are characterized by a large number of chromosome rearrangements. Among them, the genus Akodon has been extensively analyzed with classical and molecular cytogenetics, which allowed the identification of a large number of intra- and interspecific chromosomal variation due to Robertsonian rearrangements, pericentric inversions, and heterochromatin additions/deletions. In order to shed some light on the cause of these rearrangements, we comparatively analyzed the karyotypes of three Akodontini species, Akodon cursor (2n = 14, FN = 19), A. montensis (2n = 24, FN = 42), and Necromys lasiurus (2n = 34, FN = 34), after GTG- and CBG-banding. The karyotypes differed by Robertsonian rearrangements, pericentric inversions, centromere repositioning, and heterochromatin variation. Genome comparisons were performed through interspecific fluorescent in situ hybridization (FISH) with total genomic DNAs of each species as probes (GISH). Our results revealed considerable conservation of the euchromatic portions among the three karyotypes suggesting that they mostly differ in their heterochromatic regions. FISH was also performed to assess the distribution of telomeric sequences, long and short interspersed repetitive elements (LINE-1 and B1 SINE) and of the endogenous retrovirus mysTR in the genomes of the three species. The results led us to infer that transposable elements have played an important role in the enormous chromosome variation found in Akodontini.
Collapse
|
12
|
Differential chromosomal organization between Saguinus midas and Saguinus bicolor with accumulation of differences the repetitive sequence DNA. Genetica 2017. [PMID: 28634866 DOI: 10.1007/s10709-017-9971-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Saguinus is the largest and most complex genus of the subfamily Callitrichinae, with 23 species distributed from the south of Central America to the north of South America with Saguinus midas having the largest geographical distribution while Saguinus bicolor has a very restricted one, affected by the population expansion in the state of Amazonas. Considering the phylogenetic proximity of the two species along with evidence on the existence of hybrids between them, as well as cytogenetic studies on Saguinus describing a conserved karyotypic macrostructure, we carried out a physical mapping of DNA repeated sequences in the mitotic chromosome of both species, since these sequences are less susceptible to evolutionary pressure and possibly perform an important function in speciation. Both species presented 2n = 46 chromosomes; in S. midas, chromosome Y is the smallest. Multiple ribosomal sites occur in both species, but chromosome pairs three and four may be regarded as markers that differ the species when subjected to G banding and distribution of retroelement LINE 1, suggesting that it may be cytogenetic marker in which it can contribute to identification of first generation hybrids in contact zone. Saguinus bicolor also presented differences in the LINE 1 distribution pattern for sexual chromosome X in individuals from different urban fragments, probably due to geographical isolation. In this context, cytogenetic analyses reveal a differential genomic organization pattern between species S. midas and S. bicolor, in addition to indicating that individuals from different urban fragments have been accumulating differences because of the isolation between them.
Collapse
|
13
|
Vieira-da-Silva A, Adega F, Guedes-Pinto H, Chaves R. LINE-1 distribution in six rodent genomes follow a species-specific pattern. J Genet 2016; 95:21-33. [PMID: 27019429 DOI: 10.1007/s12041-015-0595-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
L1 distribution in mammal's genomes is yet a huge riddle. However, these repetitive sequences were already found in all chromosomic regions, and in general, they seem to be nonrandomly distributed in the genome. It also seems that after insertion and when they are not deleterious, they are always involved in dynamic processes occurring on that particular chromosomic region. Furthermore, it seems that large-scale genome rearrangements and L1 activity and accumulation are somehow interconnected. In the present study, we analysed L1 genomic distribution in Tatera gambiana (Muridae, Gerbillinae), Acomys sp. (Muridae, Deomyinae), Cricetomys sp. (Nesomyidae, Cricetomyinae), Microtus arvalis (Cricetidae, Arvicolinae), Phodopus roborovskii and P. sungorus (Cricetidae, Cricetinae). All the species studied here seems to exhibit a species-specific pattern.Possible mechanisms, and processes involved in L1 distribution and preferential accumulation in certain regions are di scussed.
Collapse
Affiliation(s)
- A Vieira-da-Silva
- Department of Genetics and Biotechnology (DGB), Laboratory of Cytogenomics and Animal Genomics (CAG), University of Trάs-os-Montes and Alto Douro (UTAD), 5001, 801 Vila Real,
| | | | | | | |
Collapse
|
14
|
Paternal X inactivation does not correlate with X chromosome evolutionary strata in marsupials. BMC Evol Biol 2014; 14:267. [PMID: 25539578 PMCID: PMC4302592 DOI: 10.1186/s12862-014-0267-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Accepted: 12/11/2014] [Indexed: 11/10/2022] Open
Abstract
Background X chromosome inactivation is the transcriptional silencing of one X chromosome in the somatic cells of female mammals. In eutherian mammals (e.g. humans) one of the two X chromosomes is randomly chosen for silencing, with about 15% (usually in younger evolutionary strata of the X chromosome) of genes escaping this silencing. In contrast, in the distantly related marsupial mammals the paternally derived X is silenced, although not as completely as the eutherian X. A chromosome wide examination of X inactivation, using RNA-seq, was recently undertaken in grey short-tailed opossum (Monodelphis domestica) brain and extraembryonic tissues. However, no such study has been conduced in Australian marsupials, which diverged from their American cousins ~80 million years ago, leaving a large gap in our understanding of marsupial X inactivation. Results We used RNA-seq data from blood or liver of a family (mother, father and daughter) of tammar wallabies (Macropus eugenii), which in conjunction with available genome sequence from the mother and father, permitted genotyping of 42 expressed heterozygous SNPs on the daughter’s X. These 42 SNPs represented 34 X loci, of which 68% (23 of the 34) were confirmed as inactivated on the paternally derived X in the daughter’s liver; the remaining 11 X loci escaped inactivation. Seven of the wallaby loci sampled were part of the old X evolutionary stratum, of which three escaped inactivation. Three loci were classified as part of the newer X stratum, of which two escaped inactivation. A meta-analysis of previously published opossum X inactivation data revealed that 5 of 52 genes in the old X stratum escaped inactivation. Conclusions We demonstrate that chromosome wide inactivation of the paternal X is common to an Australian marsupial representative, but that there is more escape from inactivation than reported for opossum (32% v 14%). We also provide evidence that, unlike the human X chromosome, the location of loci within the oldest evolutionary stratum on the marsupial X does not correlate with their probability of escape from inactivation. Electronic supplementary material The online version of this article (doi:10.1186/s12862-014-0267-z) contains supplementary material, which is available to authorized users.
Collapse
|
15
|
LINE-1 retrotransposons: from 'parasite' sequences to functional elements. J Appl Genet 2014; 56:133-45. [PMID: 25106509 DOI: 10.1007/s13353-014-0241-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Revised: 07/24/2014] [Accepted: 07/25/2014] [Indexed: 10/24/2022]
Abstract
Long interspersed nuclear elements-1 (LINE-1) are the most abundant and active retrotransposons in the mammalian genomes. Traditionally, the occurrence of LINE-1 sequences in the genome of mammals has been explained by the selfish DNA hypothesis. Nevertheless, recently, it has also been argued that these sequences could play important roles in these genomes, as in the regulation of gene expression, genome modelling and X-chromosome inactivation. The non-random chromosomal distribution is a striking feature of these retroelements that somehow reflects its functionality. In the present study, we have isolated and analysed a fraction of the open reading frame 2 (ORF2) LINE-1 sequence from three rodent species, Cricetus cricetus, Peromyscus eremicus and Praomys tullbergi. Physical mapping of the isolated sequences revealed an interspersed longitudinal AT pattern of distribution along all the chromosomes of the complement in the three genomes. A detailed analysis shows that these sequences are preferentially located in the euchromatic regions, although some signals could be detected in the heterochromatin. In addition, a coincidence between the location of imprinted gene regions (as Xist and Tsix gene regions) and the LINE-1 retroelements was also observed. According to these results, we propose an involvement of LINE-1 sequences in different genomic events as gene imprinting, X-chromosome inactivation and evolution of repetitive sequences located at the heterochromatic regions (e.g. satellite DNA sequences) of the rodents' genomes analysed.
Collapse
|
16
|
Yang L, Brunsfeld J, Scott L, Wichman H. Reviving the dead: history and reactivation of an extinct l1. PLoS Genet 2014; 10:e1004395. [PMID: 24968166 PMCID: PMC4072516 DOI: 10.1371/journal.pgen.1004395] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Accepted: 04/07/2014] [Indexed: 11/18/2022] Open
Abstract
Although L1 sequences are present in the genomes of all placental mammals and marsupials examined to date, their activity was lost in the megabat family, Pteropodidae, ∼24 million years ago. To examine the characteristics of L1s prior to their extinction, we analyzed the evolutionary history of L1s in the genome of a megabat, Pteropus vampyrus, and found a pattern of periodic L1 expansion and quiescence. In contrast to the well-characterized L1s in human and mouse, megabat genomes have accommodated two or more simultaneously active L1 families throughout their evolutionary history, and major peaks of L1 deposition into the genome always involved multiple families. We compared the consensus sequences of the two major megabat L1 families at the time of their extinction to consensus L1s of a variety of mammalian species. Megabat L1s are comparable to the other mammalian L1s in terms of adenosine content and conserved amino acids in the open reading frames (ORFs). However, the intergenic region (IGR) of the reconstructed element from the more active family is dramatically longer than the IGR of well-characterized human and mouse L1s. We synthesized the reconstructed element from this L1 family and tested the ability of its components to support retrotransposition in a tissue culture assay. Both ORFs are capable of supporting retrotransposition, while the IGR is inhibitory to retrotransposition, especially when combined with either of the reconstructed ORFs. We dissected the inhibitory effect of the IGR by testing truncated and shuffled versions and found that length is a key factor, but not the only one affecting inhibition of retrotransposition. Although the IGR is inhibitory to retrotransposition, this inhibition does not account for the extinction of L1s in megabats. Overall, the evolution of the L1 sequence or the quiescence of L1 is unlikely the reason of L1 extinction.
Collapse
Affiliation(s)
- Lei Yang
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, United States of America
- Institute for Bioinformatics and Evolutionary Studies, University of Idaho, Moscow, Idaho, United States of America
| | - John Brunsfeld
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, United States of America
| | - LuAnn Scott
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, United States of America
| | - Holly Wichman
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, United States of America
- Institute for Bioinformatics and Evolutionary Studies, University of Idaho, Moscow, Idaho, United States of America
- * E-mail:
| |
Collapse
|
17
|
Kasai F, O'Brien PCM, Ferguson-Smith MA. Afrotheria genome; overestimation of genome size and distinct chromosome GC content revealed by flow karyotyping. Genomics 2013; 102:468-71. [PMID: 24055950 DOI: 10.1016/j.ygeno.2013.09.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Revised: 09/09/2013] [Accepted: 09/13/2013] [Indexed: 10/26/2022]
Abstract
Afrotheria genome size is reported to be over 50% larger than that of human, but we show that this is a gross overestimate. Although genome sequencing in Afrotheria is not complete, extensive homology with human has been revealed by chromosome painting. We provide new data on chromosome size and GC content in four Afrotherian species using flow karyotyping. Genome sizes are 4.13 Gb in aardvark, 4.01 Gb in African elephant, 3.69 Gb in golden mole and 3.31 Gb in manatee, whereas published results show a mean of 5.18 Gb for Afrotheria. Genome GC content shows a negative correlation with size, indicating that this is due to differences in the amount of AT-rich sequences. Low genome GC content and small variance in chromosome GC content are characteristic of aardvark and elephant and may be associated with the high degree of conserved synteny, suggesting that these are features of the Afrotherian ancestral genome.
Collapse
Affiliation(s)
- Fumio Kasai
- Department of Veterinary Medicine, University of Cambridge, UK.
| | | | | |
Collapse
|
18
|
Molecular cytogenetic characterization of the Amazon River dolphin Inia geoffrensis. Genetica 2012; 140:307-15. [PMID: 23010983 DOI: 10.1007/s10709-012-9680-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Accepted: 09/08/2012] [Indexed: 10/27/2022]
Abstract
Classical and molecular cytogenetic (18S rDNA, telomeric sequence, and LINE-1 retrotransposon probes) studies were carried out to contribute to an understanding of the organization of repeated DNA elements in the Amazon River dolphin (boto, Inia geoffrensis). Twenty-seven specimens were examined, each presenting 2n = 44 chromosomes, the karyotype formula 12m + 14sm + 6st + 10t + XX/XY, and fundamental number (FN) = 74. C-positive heterochromatin was observed in terminal and interstitial positions, with the occurrence of polymorphism. Interstitial telomeric sequences were not observed. The nucleolar organizer region (NOR) was located at a single site on a smallest autosomal pair. LINE-1 was preferentially distributed in the euchromatin regions, with the greatest accumulation on the X chromosome. Although the karyotype structure in cetaceans is considered to be conserved, the boto karyotype demonstrated significant variations in its formula, heterochromatin distribution, and the location of the NOR compared to other cetacean species. These results contribute to knowledge of the chromosome organization in boto and to a better understanding of karyoevolution in cetaceans.
Collapse
|
19
|
Svartman M. Chromosome evolution in Xenarthra: new insights from an ancient group. Cytogenet Genome Res 2012; 137:130-43. [PMID: 22678153 DOI: 10.1159/000339115] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The Magnaorder Xenarthra is one of the four main supraordinal eutherian clades, together with Afrotheria, Euarchontoglires and Laurasiatheria. Xenarthra is an eminently Central and South American group of special interest in phylogenetic studies due to its possible position at the base of the eutherian tree. The use of modern cytogenetic techniques in some species of Xenarthra has provided important insights into the karyotypic evolution of mammals. Nevertheless, chromosome analyses in the group are still restricted, with only a few individuals of each species studied and karyotype descriptions mostly without banding patterns. In addition, it is likely that still unknown species exist and that the chromosome variability in the group is underestimated. We present a review of the currently available data on Xenarthra chromosomes and genomes and on the impact that their study has had in the understanding of mammalian genome evolution. It is clear that further cytogenetic analyses in Xenarthra, including banding patterns and molecular approaches, are likely to help in the identification of new species, reveal still undetected chromosome variations, provide information to support conservation strategies planning, and greatly contribute to a better understanding of mammalian genome evolution.
Collapse
Affiliation(s)
- M Svartman
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.
| |
Collapse
|
20
|
Chromosomal evolution in Rattini (Muridae, Rodentia). Chromosome Res 2011; 19:709-27. [PMID: 21850459 DOI: 10.1007/s10577-011-9227-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2011] [Revised: 07/28/2011] [Accepted: 07/29/2011] [Indexed: 10/17/2022]
Abstract
The Rattini (Muridae, Murinae) includes the biologically important model species Rattus norvegicus (RNO) and represents a group of rodents that are of clinical, agricultural and epidemiological importance. We present a comparative molecular cytogenetic investigation of ten Rattini species representative of the genera Maxomys, Leopoldamys, Niviventer, Berylmys, Bandicota and Rattus using chromosome banding, cross-species painting (Zoo-fluorescent in situ hybridization or FISH) and BAC-FISH mapping. Our results show that these taxa are characterised by slow to moderate rates of chromosome evolution that contrasts with the extensive chromosome restructuring identified in most other murid rodents, particularly the mouse lineage. This extends to genomic features such as NOR location (for example, NORs on RNO 3 are present on the corresponding chromosomes in all species except Bandicota savilei and Niviventer fulvescens, and the NORs on RNO 10 are conserved in all Rattini with the exception of Rattus). The satellite I DNA family detected and characterised herein appears to be taxon (Rattus) specific, and of recent origin (consistent with a feedback model of satellite evolution). BAC-mapping using clones that span regions responsible for the morphological variability exhibited by RNO 1, 12 and 13 (acrocentric/submetacentric) and their orthologues in Rattus species, demonstrated that the differences are most likely due to pericentric inversions as exemplified by data on Rattus tanezumi. Chromosomal characters detected using R. norvegicus and Maxomys surifer whole chromosome painting probes were mapped to a consensus sequence-based phylogenetic tree thus allowing an objective assessment of ancestral states for the reconstruction of the putative Rattini ancestral karyotype. This is thought to have comprised 46 chromosomes that, with the exception of a single pair of metacentric autosomes, were acrocentric in morphology.
Collapse
|
21
|
Chaumeil J, Waters PD, Koina E, Gilbert C, Robinson TJ, Marshall Graves JA. Evolution from XIST-independent to XIST-controlled X-chromosome inactivation: epigenetic modifications in distantly related mammals. PLoS One 2011; 6:e19040. [PMID: 21541345 PMCID: PMC3081832 DOI: 10.1371/journal.pone.0019040] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2011] [Accepted: 03/25/2011] [Indexed: 11/18/2022] Open
Abstract
X chromosome inactivation (XCI) is the transcriptional silencing of one X in female mammals, balancing expression of X genes between females (XX) and males (XY). In placental mammals non-coding XIST RNA triggers silencing of one X (Xi) and recruits a characteristic suite of epigenetic modifications, including the histone mark H3K27me3. In marsupials, where XIST is missing, H3K27me3 association seems to have different degrees of stability, depending on cell-types and species. However, the complete suite of histone marks associated with the Xi and their stability throughout cell cycle remain a mystery, as does the evolution of an ancient mammal XCI system. Our extensive immunofluorescence analysis (using antibodies against specific histone modifications) in nuclei of mammals distantly related to human and mouse, revealed a general absence from the mammalian Xi territory of transcription machinery and histone modifications associated with active chromatin. Specific repressive modifications associated with XCI in human and mouse were also observed in elephant (a distantly related placental mammal), as was accumulation of XIST RNA. However, in two marsupial species the Xi either lacked these modifications (H4K20me1), or they were restricted to specific windows of the cell cycle (H3K27me3, H3K9me2). Surprisingly, the marsupial Xi was stably enriched for modifications associated with constitutive heterochromatin in all eukaryotes (H4K20me3, H3K9me3). We propose that marsupial XCI is comparable to a system that evolved in the common therian (marsupial and placental) ancestor. Silent chromatin of the early inactive X was exapted from neighbouring constitutive heterochromatin and, in early placental evolution, was augmented by the rise of XIST and the stable recruitment of specific histone modifications now classically associated with XCI.
Collapse
Affiliation(s)
- Julie Chaumeil
- Comparative Genomics Group, Evolution Ecology and Genetics, Research School of Biology, The Australian National University, Canberra, Australian Capital Territory, Australia
- * E-mail: (PW); (JC)
| | - Paul D. Waters
- Comparative Genomics Group, Evolution Ecology and Genetics, Research School of Biology, The Australian National University, Canberra, Australian Capital Territory, Australia
- * E-mail: (PW); (JC)
| | - Edda Koina
- Comparative Genomics Group, Evolution Ecology and Genetics, Research School of Biology, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Clément Gilbert
- Evolutionary Genomics Group, Department of Zoology, University of Stellenbosch, Matieland, South Africa
| | - Terence J. Robinson
- Evolutionary Genomics Group, Department of Zoology, University of Stellenbosch, Matieland, South Africa
| | - Jennifer A. Marshall Graves
- Comparative Genomics Group, Evolution Ecology and Genetics, Research School of Biology, The Australian National University, Canberra, Australian Capital Territory, Australia
| |
Collapse
|
22
|
Robertsonian fusions, pericentromeric repeat organization and evolution: a case study within a highly polymorphic rodent species, Gerbillus nigeriae. Chromosome Res 2010; 18:473-86. [DOI: 10.1007/s10577-010-9128-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2010] [Accepted: 03/11/2010] [Indexed: 10/19/2022]
|
23
|
Barakat TS, Gribnau J. X chromosome inactivation and embryonic stem cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 695:132-54. [PMID: 21222204 DOI: 10.1007/978-1-4419-7037-4_10] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
X chromosome inactivation (XCI) is a process required to equalize the dosage of X-encoded genes between female and male cells. XCI is initiated very early during female embryonic development or upon differentiation of female embryonic stem (ES) cells and results in inactivation of one X chromosome in every female somatic cell. The regulation of XCI involves factors that also play a crucial role in ES cell maintenance and differentiation and the XCI process therefore provides a beautiful paradigm to study ES cell biology. In this chapter we describe the important cis and trans acting regulators of XCI and introduce the models that have been postulated to explain initiation of XCI in female cells only. We also discuss the proteins involved in the establishment of the inactive X chromosome and describe the different chromatin modifications associated with the inactivation process. Finally, we describe the potential of mouse and human ES and induced pluripotent stem (iPS) cells as model systems to study the XCI process.
Collapse
Affiliation(s)
- Tahsin Stefan Barakat
- Department of Reproduction and Development, University Medical Center, Room Ee 09-71, Erasmus MC, 3015 GE, Rotterdam, Netherlands
| | | |
Collapse
|
24
|
Cantrell MA, Carstens BC, Wichman HA. X chromosome inactivation and Xist evolution in a rodent lacking LINE-1 activity. PLoS One 2009; 4:e6252. [PMID: 19603076 PMCID: PMC2705805 DOI: 10.1371/journal.pone.0006252] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2008] [Accepted: 05/28/2009] [Indexed: 02/05/2023] Open
Abstract
Dosage compensation in eutherian mammals occurs by inactivation of one X chromosome in females. Silencing of that X chromosome is initiated by Xist, a large non-coding RNA, whose coating of the chromosome extends in cis from the X inactivation center. LINE-1 (L1) retrotransposons have been implicated as possible players for propagation of the Xist signal, but it has remained unclear whether they are essential components. We previously identified a group of South American rodents in which L1 retrotransposition ceased over 8 million years ago and have now determined that at least one species of these rodents, Oryzomys palustris, still retains X inactivation. We have also isolated and analyzed the majority of the Xist RNA from O. palustris and a sister species retaining L1 activity, Sigmodon hispidus, to determine if evolution in these sequences has left signatures that might suggest a critical role for L1 elements in Xist function. Comparison of rates of Xist evolution in the two species fails to support L1 involvement, although other explanations are possible. Similarly, comparison of known repeats and potential RNA secondary structures reveals no major differences with the exception of a new repeat in O. palustris that has potential to form new secondary structures.
Collapse
Affiliation(s)
- Michael A. Cantrell
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, United States of America
| | - Bryan C. Carstens
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, United States of America
| | - Holly A. Wichman
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, United States of America
- * E-mail:
| |
Collapse
|
25
|
Rebuzzini P, Castiglia R, Nergadze SG, Mitsainas G, Munclinger P, Zuccotti M, Capanna E, Redi CA, Garagna S. Quantitative variation of LINE-1 sequences in five species and three subspecies of the subgenus Mus and in five Robertsonian races of Mus musculus domesticus. Chromosome Res 2009; 17:65-76. [PMID: 19184476 DOI: 10.1007/s10577-008-9004-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2008] [Revised: 10/24/2008] [Accepted: 10/24/2008] [Indexed: 10/21/2022]
Abstract
The quantitative variation of a conserved region of the LINE-1 ORF2 sequence was determined in eight species and subspecies of the subgenus Mus (M. m. domesticus, M. m. musculus, M. m. castaneus, M. spicilegus, M. spretus, M. cervicolor, M. cookii, M. caroli) and five Robertsonian races of M. m. domesticus. No differences in LINE-1 ORF2 content were found between all acrocentric or Robertsonian chromosome races, whereas the quantitative variation of the LINE-1 ORF2 sequences detected among the eight taxa partly matches with the clades into which the subgenus is divided. An accumulation of LINE-1 ORF2 elements likely occurred during the evolution of the subgenus. Within the Asiatic clade, M. cervicolor, cookii, and caroli show a low quantity of LINE-1 sequences, also detected within the Palearctic clade in M. m. castaneus and M. spretus, representing perhaps the ancestral condition within the subgenus. On the other hand, M. m. domesticus, M. m. musculus and M. spicilegus showed a high content of LINE-1 ORF2 sequences. Comparison between the chromosomal hybridization pattern of M. m. domesticus, which possesses the highest content, and M. spicilegus did not show any difference in the LINE-1 ORF2 distribution, suggesting that the quantitative variation of this sequence family did not involve chromosome restructuring or a preferential chromosome accumulation, during the evolution of M. m. domesticus.
Collapse
Affiliation(s)
- Paola Rebuzzini
- Dipartimento di Biologia Animale, Università degli Studi di Pavia, Piazza Botta, 9-10, 27100, Pavia, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Retroelements (LINEs and SINEs) in vole genomes: differential distribution in the constitutive heterochromatin. Chromosome Res 2008; 16:949-59. [PMID: 18836842 DOI: 10.1007/s10577-008-1253-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2008] [Revised: 07/15/2008] [Accepted: 07/15/2008] [Indexed: 10/21/2022]
Abstract
The chromosomal distribution of mobile genetic elements is scarcely known in Arvicolinae species, but could be of relevance to understand the origin and complex evolution of the sex chromosome heterochromatin. In this work we cloned two retrotransposon sequences, L1 and SINE-B1, from the genome of Chionomys nivalis and investigated their chromosomal distribution on several arvicoline species. Our results demonstrate first that both retroelements are the most abundant repeated DNA sequences in the genome of these species. L1 elements, in most species, are highly accumulated in the sex chromosomes compared to the autosomes. This favoured L1 insertion could have played an important role in the origin of the enlarged heterochromatic blocks existing in the sex chromosomes of some Microtus species. Also, we propose that L1 accumulation on the X heterochromatin could have been the consequence of different, independent and rapid amplification processes acting in each species. SINE elements, however, were completely lacking from the constitutive heterochromatin, either in autosomes or in the heterochromatic blocks of sex chromosomes. These data could indicate that some SINE elements are incompatible with the formation of heterochromatic complexes and hence are necessarily missing from the constitutive heterochromatin.
Collapse
|
27
|
Waters PD, Dobigny G, Waddell PJ, Robinson TJ. LINE-1 elements: analysis by fluorescence in-situ hybridization and nucleotide sequences. Methods Mol Biol 2008; 422:227-237. [PMID: 18629670 DOI: 10.1007/978-1-59745-581-7_14] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Long-interspersed nuclear element-1 (LINE-1) is a non-terminal repeat transposon that constitutes a major component of the mammalian genome. LINE-1 has a dynamic evolutionary history characterized by the rise, fall, and replacement of subfamilies. The distribution of LINE-1 elements can be viewed from a chromosomal perspective using fluorescence in-situ hybridization (FISH), as well as at the sequence level. We have designed LINE-1 primers from regions conserved among mouse, rat, rabbit, and human L1, which were able to amplify part of ORF2 from all eutherian (placental) mammals tested thus far. The product generated can be used as a FISH painting probe to examine the genomic distribution of L1 in different species. It can also be cloned and sequenced for phylogenetic analysis. Although FISH patterns resulting from LINE-1 chromosome painting and bioinformatic analyses have shown that this element accumulates in AT-rich regions of the genomes of mouse and human, our PCR amplified LINE-1 probe suggests that this is not a universal phenomenon, and that the patterns displayed in laurasiatherian, afrotherian and xenarthran species are less prominent. The "banding" like distribution of LINE-1 observed in human and mouse, therefore, appears to reflect aspects of genome architecture unique to Euarchontoglires (Supraprimates), the superordinal clade to which they belong. By sequencing the cloned amplicons used for FISH experiments and supplementing these with L1 sequences obtained from public databases, analysis by parsimony, distance-based, maximum likelihood, and "hierarchical Bayesian" or "marginal likelihood" methods provides a powerful adjunct to the FISH data. Using this approach, relatively intact LINE-1 from most placental orders tend to reflect accepted eutherian evolutionary relationships. This suggests that there were often only closely related copies active near branch points in the tree, that inactive copies tended to become extinct quite readily, and that for many orders recently active copies belong to a single lineage of this LINE.
Collapse
Affiliation(s)
- Paul D Waters
- Research School of Biological Sciences, The Australian National University, Canberra, Australia
| | | | | | | |
Collapse
|
28
|
Cantrell MA, Scott L, Brown CJ, Martinez AR, Wichman HA. Loss of LINE-1 activity in the megabats. Genetics 2008; 178:393-404. [PMID: 18202382 PMCID: PMC2206088 DOI: 10.1534/genetics.107.080275] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2007] [Accepted: 11/02/2007] [Indexed: 11/18/2022] Open
Abstract
LINE-1 (L1) retrotransposons are the most abundant type of mammalian retroelement. They have profound effects on genome plasticity and have been proposed to fulfill essential host functions, yet it remains unclear where they lie on the spectrum from parasitism to mutualism. Their ubiquity makes it difficult to determine the extent of their effects on genome evolution and gene expression because of the relative dearth of animal models lacking L1 activity. We have isolated L1 sequences from 11 megabat species by a method that enriches for recently inserted L1s and have done a bioinformatic examination of L1 sequences from a 12th species whose genome was recently shotgun sequenced. An L1 extinction event appears to have occurred at least 24 million years ago (MYA) in an ancestor of the megabats. The ancestor was unusual in having maintained two highly divergent long-term L1 lineages with different levels of activity, which appear, on an evolutionary scale, to have simultaneously lost that activity. These megabat species can serve as new animal models to ask what effect loss of L1 activity has on mammalian genome evolution and gene expression.
Collapse
Affiliation(s)
- Michael A Cantrell
- Department of Biological Sciences, University of Idaho, Moscow, Idaho 83844-3051, USA
| | | | | | | | | |
Collapse
|
29
|
Meles S, Adega F, Guedes-Pinto H, Chaves R. The karyotype and sex chromosomes of Praomys tullbergi (Muridae, Rodentia): a detailed characterization. Micron 2007; 39:559-68. [PMID: 17714950 DOI: 10.1016/j.micron.2007.07.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2007] [Revised: 07/13/2007] [Accepted: 07/15/2007] [Indexed: 10/23/2022]
Abstract
Here we present the first detailed characterization of Praomys tullbergi karyotype, enlightening several chromosome features such as constitutive heterochromatin, telomeric and LINE-1 sequences. The combination of these approaches provided some interesting insights about the genome organization of this African species, which is one of the tullbergi complex elements, a group of species belonging to Murinae (Rodentia, Muridae). Evolutionary considerations on Praomys chromosomes were also achieved, namely, the autosomal complement and the X chromosome from P. tullbergi seem to be derivative chromosomes, most probably resulting from extensive reshufflings during the course of evolution. This conclusion came from the fact that the majority of the chromosomes telomeric sequences are located interstitially, seeming footprints of evolutionary chromosome rearrangements. The detailed analysis of Praomys tullbergi X chromosome suggests that chromosome rearrangements and/or centromere transpositions and addition/elimination of heterochromatin must have been the main evolutionary events that shaped this chromosome.
Collapse
Affiliation(s)
- Susana Meles
- Institute for Biotechnology and Bioengineering, Centre of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro (CGB-UTAD/IBB), Vila Real, Portugal
| | | | | | | |
Collapse
|
30
|
Waters PD, Ruiz-Herrera A, Dobigny G, Garcia Caldès M, Robinson TJ. Sex chromosomes of basal placental mammals. Chromosoma 2007; 116:511-8. [PMID: 17602234 DOI: 10.1007/s00412-007-0116-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2007] [Revised: 06/06/2007] [Accepted: 06/08/2007] [Indexed: 10/23/2022]
Abstract
Placental (eutherian) mammals are currently classified into four superordinal clades (Afrotheria, Xenarthra, Laurasiatheria and Supraprimates) of which one, the Afrotheria (a unique lineage of African origin), is generally considered to be basal. Therefore, Afrotheria provide a pivotal evolutionary link for studying fundamental differences between the sex chromosomes of human/mouse (both representatives of Supraprimates and the index species for studies of sex chromosomes) and those of the distantly related marsupials. In this study, we use female fibroblasts to investigate classical features of X chromosome inactivation including replication timing of the X chromosomes and Barr body formation. We also examine LINE-1 accumulation on the X chromosomes of representative afrotherians and look for evidence of a pseudoautosomal region (PAR). Our results demonstrate that asynchronous replication of the X chromosomes is common to Afrotheria, as with other mammals, and Barr body formation is observed across all Placentalia, suggesting that mechanisms controlling this evolved before their radiation. Finally, we provide evidence of a PAR (which marsupials lack) and demonstrate that LINE1 is accumulated on the afrotherian and xenarthran X, although this is probably not due to transposition events in a common ancestor, but rather ongoing selection to retain recently inserted LINE1 on the X.
Collapse
Affiliation(s)
- Paul D Waters
- Evolutionary Genomics Group, Department of Botany and Zoology, University of Stellenbosch, Private Bag X1, Matieland 7602, South Africa
| | | | | | | | | |
Collapse
|
31
|
Waters PD, Wallis MC, Marshall Graves JA. Mammalian sex--Origin and evolution of the Y chromosome and SRY. Semin Cell Dev Biol 2007; 18:389-400. [PMID: 17400006 DOI: 10.1016/j.semcdb.2007.02.007] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2006] [Revised: 01/16/2007] [Accepted: 02/19/2007] [Indexed: 10/23/2022]
Abstract
Sex determination in vertebrates is accomplished through a highly conserved genetic pathway. But surprisingly, the downstream events may be activated by a variety of triggers, including sex determining genes and environmental cues. Amongst species with genetic sex determination, the sex determining gene is anything but conserved, and the chromosomes that bear this master switch subscribe to special rules of evolution and function. In mammals, with a few notable exceptions, female are homogametic (XX) and males have a single X and a small, heterochromatic and gene poor Y that bears a male dominant sex determining gene SRY. The bird sex chromosome system is the converse in that females are the heterogametic sex (ZW) and males the homogametic sex (ZZ). There is no SRY in birds, and the dosage-sensitive Z-borne DMRT1 gene is a credible candidate sex determining gene. Different sex determining switches seem therefore to have evolved independently in different lineages, although the complex sex chromosomes of the platypus offer us tantalizing clues that the mammal XY system may have evolved directly from an ancient reptile ZW system. In this review we will discuss the organization and evolution of the sex chromosomes across a broad range of mammals, and speculate on how the Y chromosome, and SRY, evolved.
Collapse
Affiliation(s)
- Paul D Waters
- Comparative Genomics Group, Research School of Biological Sciences, The Australian National University, GPO Box 475, ACT 2601, Canberra, Australia.
| | | | | |
Collapse
|
32
|
Waters PD, Dobigny G, Waddell PJ, Robinson TJ. Evolutionary history of LINE-1 in the major clades of placental mammals. PLoS One 2007; 2:e158. [PMID: 17225861 PMCID: PMC1764860 DOI: 10.1371/journal.pone.0000158] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2006] [Accepted: 12/15/2006] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND LINE-1 constitutes an important component of mammalian genomes. It has a dynamic evolutionary history characterized by the rise, fall and replacement of subfamilies. Most data concerning LINE-1 biology and evolution are derived from the human and mouse genomes and are often assumed to hold for all placentals. METHODOLOGY To examine LINE-1 relationships, sequences from the 3' region of the reverse transcriptase from 21 species (representing 13 orders across Afrotheria, Xenarthra, Supraprimates and Laurasiatheria) were obtained from whole genome sequence assemblies, or by PCR with degenerate primers. These sequences were aligned and analysed. PRINCIPAL FINDINGS Our analysis reflects accepted placental relationships suggesting mostly lineage-specific LINE-1 families. The data provide clear support for several clades including Glires, Supraprimates, Laurasiatheria, Boreoeutheria, Xenarthra and Afrotheria. Within the afrotherian LINE-1 (AfroLINE) clade, our tree supports Paenungulata, Afroinsectivora and Afroinsectiphillia. Xenarthran LINE-1 (XenaLINE) falls sister to AfroLINE, providing some support for the Atlantogenata (Xenarthra+Afrotheria) hypothesis. SIGNIFICANCE LINEs and SINEs make up approximately half of all placental genomes, so understanding their dynamics is an essential aspect of comparative genomics. Importantly, a tree of LINE-1 offers a different view of the root, as long edges (branches) such as that to marsupials are shortened and/or broken up. Additionally, a robust phylogeny of diverse LINE-1 is essential in testing that site-specific LINE-1 insertions, often regarded as homoplasy-free phylogenetic markers, are indeed unique and not convergent.
Collapse
Affiliation(s)
- Paul D. Waters
- Evolutionary Genomics Group, Department of Botany and Zoology, University of Stellenbosch, Matieland, South Africa
- Comparative Genomics Group, Research School of Biological Sciences, The Australian National University, Canberra, Australia
| | - Gauthier Dobigny
- Evolutionary Genomics Group, Department of Botany and Zoology, University of Stellenbosch, Matieland, South Africa
- Institut de Recherche pour le Développement, Centre de Biologie pour la Gestion des Populations, Montferrier-sur-Lez, France
| | - Peter J. Waddell
- Laboratory of Biometry and Bioinformatics, University of Tokyo, Tokyo, Japan
- South Carolina Cancer Center, University of South Carolina, Columbia, South Carolina, United States of America
| | - Terence J. Robinson
- Evolutionary Genomics Group, Department of Botany and Zoology, University of Stellenbosch, Matieland, South Africa
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
33
|
Dobigny G, Waters PD, Robinson TJ. Absence of hypomethylation and LINE-1 amplification in a white x black rhinoceros hybrid. Genetica 2006; 127:81-6. [PMID: 16850215 DOI: 10.1007/s10709-005-2483-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2005] [Accepted: 08/25/2005] [Indexed: 10/24/2022]
Abstract
Genomic stress resulting from the interspecific hybridization of marsupials has been shown to lead to hypomethylation and transposable element over-amplification. Here we investigated both methylation status and transposable element (LINE-1) activity in an F1 hybrid between the black (Diceros bicornis) and white rhinoceros (Ceratotherium simum). Our data show that in this instance the hybrid genome was not characterised by gross hypomethylation and LINE-1 over-amplification thus extending previous investigations on eutherian mammals. These findings underscore observations that wide-scale genomic instability involving hypomethylation and mobile element release may be marsupial specific phenomena within Mammalia.
Collapse
Affiliation(s)
- Gauthier Dobigny
- Evolutionary Genomics Group, Department of Botany and Zoology, University of Stellenbosch, Private Bag X1, Matieland, 7602, South Africa
| | | | | |
Collapse
|
34
|
Deuve JL, Bennett NC, O'Brien PCM, Ferguson-Smith MA, Faulkes CG, Britton-Davidian J, Robinson TJ. Complex evolution of X and Y autosomal translocations in the giant mole-rat, Cryptomys mechowi (Bathyergidae). Chromosome Res 2006; 14:681-91. [PMID: 16964575 DOI: 10.1007/s10577-006-1080-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2006] [Revised: 06/25/2006] [Accepted: 06/25/2006] [Indexed: 10/24/2022]
Abstract
Cross-species chromosome painting was used to determine homologous chromosomal regions between two species of mole-rat, the naked mole-rat, Heterocephalus glaber (2n = 60), and the giant mole-rat, Cryptomys mechowi (2n = 40), using flow-sorted painting probes representative of all but two of the H. glaber chromosomal complement. In total 43 homologous regions were identified in the C. mechowi genome. Eight H. glaber chromosomes are retained in toto in C. mechowi, and 13 produce two or more signals in this species. The most striking difference in the karyotypes of the two taxa concerns their sex chromosomes. The H. glaber painting probes identified a complex series of translocations that involved the fractionation of four autosomes and the subsequent translocation of segments to the sex chromosomes and to autosomal partners in the C. mechowi genome. An intercalary heterochromatic block (IHB) was detected in sex chromosomes of C. mechowi at the boundary with the translocated autosomal segment. We discuss the likely sequence of evolutionary events that has led to the contemporary composition of the C. mechowi sex chromosomes, and consider these in the light of prevailing views on the genesis of sex chromosomes in mammals.
Collapse
Affiliation(s)
- J L Deuve
- Evolutionary Genetics Group, Department of Botany and Zoology, University of Stellenbosch, Private Bag X1, Matieland 7602, South Africa
| | | | | | | | | | | | | |
Collapse
|
35
|
Scott LA, Kuroiwa A, Matsuda Y, Wichman HA. X accumulation of LINE-1 retrotransposons in Tokudaia osimensis, a spiny rat with the karyotype XO. Cytogenet Genome Res 2006; 112:261-9. [PMID: 16484782 DOI: 10.1159/000089880] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2005] [Accepted: 07/25/2005] [Indexed: 01/02/2023] Open
Abstract
The observation that LINE-1 transposable elements are enriched on the X in comparison to the autosomes led to the hypothesis that LINE-1s play a role in X chromosome inactivation. If this hypothesis is correct, loss of LINE-1 activity would be expected to result in species extinction or in an alternate pathway of dosage compensation. One such alternative pathway would be to evolve a karyotype that does not require dosage compensation between the sexes. Two of the three extant species of the Ryukyu spiny rat Tokudaia have such a karyotype; both males and females are XO. We asked whether this karyotype arose due to loss of LINE-1 activity and thus the loss of a putative component in the X inactivation pathway. Although XO Tokudaia has no need for dosage compensation, LINE-1s have been recently active in Tokudaia osimensis and show higher density on the lone X than on the autosomes.
Collapse
Affiliation(s)
- L A Scott
- Department of Biological Sciences, University of Idaho, Moscow, ID 83844-3051, USA
| | | | | | | |
Collapse
|
36
|
Dobigny G, Yang F, O'Brien PCM, Volobouev V, Kovács A, Pieczarka JC, Ferguson-Smith MA, Robinson TJ. Low rate of genomic repatterning in Xenarthra inferred from chromosome painting data. Chromosome Res 2005; 13:651-63. [PMID: 16235115 DOI: 10.1007/s10577-005-1002-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2005] [Accepted: 07/18/2005] [Indexed: 10/25/2022]
Abstract
Comparative cytogenetic studies on Xenarthra, one of the most basal mammalian clades in the Placentalia, are virtually absent, being restricted largely to descriptions of conventional karyotypes and diploid numbers. We present a molecular cytogenetic comparison of chromosomes from the two-toed (Choloepus didactylus, 2n = 65) and three-toed sloth species (Bradypus tridactylus, 2n = 52), an anteater (Tamandua tetradactyla, 2n = 54) which, together with some data on the six-banded armadillo (Euphractus sexcinctus, 2n = 58), collectively represent all the major xenarthran lineages. Our results, based on interspecific chromosome painting using flow-sorted two-toed sloth chromosomes as painting probes, show the sloth species to be karyotypically closely related but markedly different from the anteater. We also test the synteny disruptions and segmental associations identified within Pilosa (anteaters and sloths) against the chromosomes of the six-banded armadillo as outgroup taxon. We could thus polarize the 35 non-ambiguously identified chromosomal changes characterizing the evolution of the anteater and sloth genomes and map these to a published sequence-based phylogeny for the group. These data suggest a low rate of genomic repatterning when placed in the context of divergence estimates based on molecular and fossil data. Finally, our results provide a glimpse of a likely ancestral karyotype for the extant Xenarthra, a pivotal group for understanding eutherian genome evolution.
Collapse
Affiliation(s)
- G Dobigny
- Evolutionary Genomics Group, Department of Botany and Zoology, University of Stellenbosch, Private Bag X1, Matieland 7602, South Africa
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Abstract
Mammalian X chromosome inactivation is one of the most striking examples of epigenetic gene regulation. Early in development one of the pair of approximately 160-Mb X chromosomes is chosen to be silenced, and this silencing is then stably inherited through subsequent somatic cell divisions. Recent advances have revealed many of the chromatin changes that underlie this stable silencing of an entire chromosome. The key initiator of these changes is a functional RNA, XIST, which is transcribed from, and associates with, the inactive X chromosome, although the mechanism of association with the inactive X and recruitment of facultative heterochromatin remain to be elucidated. This review describes the unique evolutionary history and resulting genomic structure of the X chromosome as well as the current understanding of the factors and events involved in silencing an X chromosome in mammals.
Collapse
Affiliation(s)
- Jennifer C Chow
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada.
| | | | | | | |
Collapse
|
38
|
Dobigny G, Ozouf-Costaz C, Waters PD, Bonillo C, Coutanceau JP, Volobouev V. LINE-1 amplification accompanies explosive genome repatterning in rodents. Chromosome Res 2004; 12:787-93. [PMID: 15702417 DOI: 10.1007/s10577-005-5265-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2004] [Accepted: 09/15/2004] [Indexed: 11/24/2022]
Abstract
Transposable elements (TEs) sometimes induce karyotypic changes following recombination, breakage and rearrangement. We used FISH and Southern blot analyses to investigate the amount and distribution of LINE-1 retrotransposons in rodents (genus Taterillus, Muridae, Gerbillinae) that have recently undergone an important genome repatterning. Our results were interpreted in a known phylogenetic framework and clearly showed that LINE-1 elements were greatly amplified and non-randomly distributed in the most rearranged karyotypes. A comparison between FISH and conventional banding patterns provided evidence that LINE-1 insertion sites and chromosome breakpoints were not strongly correlated, thus suggesting that LINE-1 amplification subsequently accompanied Taterillus chromosome evolution. Similar patterns are observed in some cases of genomic stresses (hybrid genomes, cancer and DNA-damaged cells) and usually associated with DNA hypomethylation. We propose that intensively repatterned genomes face transient stress phases during which some epigenetic features, such as DNA methylation, are relaxed, thus allowing TE amplification.
Collapse
Affiliation(s)
- Gauthier Dobigny
- Laboratoire Origine, Structure et Evolution de la Biodiversité, Muséum National d'Histoire Naturelle, 55, rue Buffon, F75005, Paris, France.
| | | | | | | | | | | |
Collapse
|