1
|
Tahami MS, Vargas-Chavez C, Poikela N, Coronado-Zamora M, González J, Kankare M. Transposable elements in Drosophila montana from harsh cold environments. Mob DNA 2024; 15:18. [PMID: 39354634 PMCID: PMC11445987 DOI: 10.1186/s13100-024-00328-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 09/17/2024] [Indexed: 10/03/2024] Open
Abstract
BACKGROUND Substantial discoveries during the past century have revealed that transposable elements (TEs) can play a crucial role in genome evolution by affecting gene expression and inducing genetic rearrangements, among other molecular and structural effects. Yet, our knowledge on the role of TEs in adaptation to extreme climates is still at its infancy. The availability of long-read sequencing has opened up the possibility to identify and study potential functional effects of TEs with higher precision. In this work, we used Drosophila montana as a model for cold-adapted organisms to study the association between TEs and adaptation to harsh climates. RESULTS Using the PacBio long-read sequencing technique, we de novo identified and manually curated TE sequences in five Drosophila montana genomes from eco-geographically distinct populations. We identified 489 new TE consensus sequences which represented 92% of the total TE consensus in D. montana. Overall, 11-13% of the D. montana genome is occupied by TEs, which as expected are non-randomly distributed across the genome. We identified five potentially active TE families, most of them from the retrotransposon class of TEs. Additionally, we found TEs present in the five analyzed genomes that were located nearby previously identified cold tolerant genes. Some of these TEs contain promoter elements and transcription binding sites. Finally, we detected TEs nearby fixed and polymorphic inversion breakpoints. CONCLUSIONS Our research revealed a significant number of newly identified TE consensus sequences in the genome of D. montana, suggesting that non-model species should be studied to get a comprehensive view of the TE repertoire in Drosophila species and beyond. Genome annotations with the new D. montana library allowed us to identify TEs located nearby cold tolerant genes, and present at high population frequencies, that contain regulatory regions and are thus good candidates to play a role in D. montana cold stress response. Finally, our annotations also allow us to identify for the first time TEs present in the breakpoints of three D. montana inversions.
Collapse
Affiliation(s)
- Mohadeseh S Tahami
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland
| | | | - Noora Poikela
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland
- Centre for Biological Diversity, University of St Andrews, St Andrews, UK
| | - Marta Coronado-Zamora
- Institute of Evolutionary Biology, CSIC, UPF, Barcelona, Spain
- Institut Botànic de Barcelona (IBB), CSIC-CMCNB, Barcelona, 08038, Catalonia, Spain
| | - Josefa González
- Institute of Evolutionary Biology, CSIC, UPF, Barcelona, Spain.
- Institut Botànic de Barcelona (IBB), CSIC-CMCNB, Barcelona, 08038, Catalonia, Spain.
| | - Maaria Kankare
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland.
| |
Collapse
|
2
|
Hoikkala A, Poikela N. Adaptation and ecological speciation in seasonally varying environments at high latitudes: Drosophila virilis group. Fly (Austin) 2022; 16:85-104. [PMID: 35060806 PMCID: PMC8786326 DOI: 10.1080/19336934.2021.2016327] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Living in high latitudes and altitudes sets specific requirements on species’ ability to forecast seasonal changes and to respond to them in an appropriate way. Adaptation into diverse environmental conditions can also lead to ecological speciation through habitat isolation or by inducing changes in traits that influence assortative mating. In this review, we explain how the unique time-measuring systems of Drosophila virilis group species have enabled the species to occupy high latitudes and how the traits involved in species reproduction and survival exhibit strong linkage with latitudinally varying photoperiodic and climatic conditions. We also describe variation in reproductive barriers between the populations of two species with overlapping distributions and show how local adaptation and the reinforcement of prezygotic barriers have created partial reproductive isolation between conspecific populations. Finally, we consider the role of species-specific chromosomal inversions and the X chromosome in the development of reproductive barriers between diverging lineages.
Collapse
Affiliation(s)
- Anneli Hoikkala
- Department of Biological and Environmental Sciences, University of Jyväskylä, Jyväskylä, Finland
| | - Noora Poikela
- Department of Biological and Environmental Sciences, University of Jyväskylä, Jyväskylä, Finland
| |
Collapse
|
3
|
Wiberg RAW, Tyukmaeva V, Hoikkala A, Ritchie MG, Kankare M. Cold adaptation drives population genomic divergence in the ecological specialist, Drosophila montana. Mol Ecol 2021; 30:3783-3796. [PMID: 34047417 DOI: 10.1111/mec.16003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 05/10/2021] [Accepted: 05/20/2021] [Indexed: 12/18/2022]
Abstract
Detecting signatures of ecological adaptation in comparative genomics is challenging, but analysing population samples with characterised geographic distributions, such as clinal variation, can help identify genes showing covariation with important ecological variation. Here, we analysed patterns of geographic variation in the cold-adapted species Drosophila montana across phenotypes, genotypes and environmental conditions and tested for signatures of cold adaptation in population genomic divergence. We first derived the climatic variables associated with the geographic distribution of 24 populations across two continents to trace the scale of environmental variation experienced by the species, and measured variation in the cold tolerance of the flies of six populations from different geographic contexts. We then performed pooled whole genome sequencing of these six populations, and used Bayesian methods to identify SNPs where genetic differentiation is associated with both climatic variables and the population phenotypic measurements, while controlling for effects of demography and population structure. The top candidate SNPs were enriched on the X and fourth chromosomes, and they also lay near genes implicated in other studies of cold tolerance and population divergence in this species and its close relatives. We conclude that ecological adaptation has contributed to the divergence of D. montana populations throughout the genome and in particular on the X and fourth chromosomes, which also showed highest interpopulation FST . This study demonstrates that ecological selection can drive genomic divergence at different scales, from candidate genes to chromosome-wide effects.
Collapse
Affiliation(s)
- R A W Wiberg
- Centre for Biological Diversity, School of Biology, University of St Andrews, St Andrews, UK
| | - V Tyukmaeva
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland
| | - A Hoikkala
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland
| | - M G Ritchie
- Centre for Biological Diversity, School of Biology, University of St Andrews, St Andrews, UK
| | - M Kankare
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland
| |
Collapse
|
4
|
Kapun M, Flatt T. The adaptive significance of chromosomal inversion polymorphisms inDrosophila melanogaster. Mol Ecol 2018; 28:1263-1282. [DOI: 10.1111/mec.14871] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 09/01/2018] [Accepted: 09/10/2018] [Indexed: 12/17/2022]
Affiliation(s)
- Martin Kapun
- Department of BiologyUniversity of Fribourg Fribourg Switzerland
| | - Thomas Flatt
- Department of BiologyUniversity of Fribourg Fribourg Switzerland
| |
Collapse
|
5
|
Veltsos P, Gregson E, Morrissey B, Slate J, Hoikkala A, Butlin RK, Ritchie MG. The genetic architecture of sexually selected traits in two natural populations of Drosophila montana. Heredity (Edinb) 2015. [PMID: 26198076 DOI: 10.1038/hdy.2015.63] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
We investigated the genetic architecture of courtship song and cuticular hydrocarbon traits in two phygenetically distinct populations of Drosophila montana. To study natural variation in these two important traits, we analysed within-population crosses among individuals sampled from the wild. Hence, the genetic variation analysed should represent that available for natural and sexual selection to act upon. In contrast to previous between-population crosses in this species, no major quantitative trait loci (QTLs) were detected, perhaps because the between-population QTLs were due to fixed differences between the populations. Partitioning the trait variation to chromosomes suggested a broadly polygenic genetic architecture of within-population variation, although some chromosomes explained more variation in one population compared with the other. Studies of natural variation provide an important contrast to crosses between species or divergent lines, but our analysis highlights recent concerns that segregating variation within populations for important quantitative ecological traits may largely consist of small effect alleles, difficult to detect with studies of moderate power.
Collapse
Affiliation(s)
- P Veltsos
- Centre for Biological Diversity, University of St Andrews, St Andrews, UK
| | - E Gregson
- Animal & Plant Sciences, University of Sheffield, Alfred Denny Building, Sheffield, UK
| | - B Morrissey
- Animal & Plant Sciences, University of Sheffield, Alfred Denny Building, Sheffield, UK
| | - J Slate
- Animal & Plant Sciences, University of Sheffield, Alfred Denny Building, Sheffield, UK
| | - A Hoikkala
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland
| | - R K Butlin
- Animal & Plant Sciences, University of Sheffield, Alfred Denny Building, Sheffield, UK.,Sven Lovén Centre-Tjärnö, University of Gothenburg, Strömstad, Sweden
| | - M G Ritchie
- Centre for Biological Diversity, University of St Andrews, St Andrews, UK
| |
Collapse
|
6
|
Tyukmaeva VI, Veltsos P, Slate J, Gregson E, Kauranen H, Kankare M, Ritchie MG, Butlin RK, Hoikkala A. Localization of quantitative trait loci for diapause and other photoperiodically regulated life history traits important in adaptation to seasonally varying environments. Mol Ecol 2015; 24:2809-19. [PMID: 25877951 DOI: 10.1111/mec.13202] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Revised: 04/02/2015] [Accepted: 04/08/2015] [Indexed: 12/31/2022]
Abstract
Seasonally changing environments at high latitudes present great challenges for the reproduction and survival of insects, and photoperiodic cues play an important role in helping them to synchronize their life cycle with prevalent and forthcoming conditions. We have mapped quantitative trait loci (QTL) responsible for the photoperiodic regulation of four life history traits, female reproductive diapause, cold tolerance, egg-to-eclosion development time and juvenile body weight in Drosophila montana strains from different latitudes in Canada and Finland. The F2 progeny of the cross was reared under a single photoperiod (LD cycle 16:8), which the flies from the Canadian population interpret as early summer and the flies from the Finnish population as late summer. The analysis revealed a unique QTL for diapause induction on the X chromosome and several QTL for this and the other measured traits on the 4th chromosome. Flies' cold tolerance, egg-to-eclosion development time and juvenile body weight had several QTL also on the 2nd, 3rd and 5th chromosome, some of the peaks overlapping with each other. These results suggest that while the downstream output of females' photoperiodic diapause response is partly under a different genetic control from that of the other traits in the given day length, all traits also share some QTL, possibly involving genes with pleiotropic effects and/or multiple tightly linked genes. Nonoverlapping QTL detected for some of the traits also suggest that the traits are potentially capable of independent evolution, even though this may be restricted by epistatic interactions and/or correlations and trade-offs between the traits.
Collapse
Affiliation(s)
- Venera I Tyukmaeva
- Department of Biological and Environmental Science, University of Jyväskylä, Survontie 9, PO Box 35, Jyväskylä, 40014, Finland.,School of Biology, Dyers Brae, University of St Andrews, Greenside Place, St Andrews, Fife, KY16 9TH, UK
| | - Paris Veltsos
- School of Biology, Dyers Brae, University of St Andrews, Greenside Place, St Andrews, Fife, KY16 9TH, UK
| | - Jon Slate
- Animal and Plant Sciences, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK
| | - Emma Gregson
- Animal and Plant Sciences, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK.,School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD, UK
| | - Hannele Kauranen
- Department of Biological and Environmental Science, University of Jyväskylä, Survontie 9, PO Box 35, Jyväskylä, 40014, Finland
| | - Maaria Kankare
- Department of Biological and Environmental Science, University of Jyväskylä, Survontie 9, PO Box 35, Jyväskylä, 40014, Finland
| | - Michael G Ritchie
- School of Biology, Dyers Brae, University of St Andrews, Greenside Place, St Andrews, Fife, KY16 9TH, UK
| | - Roger K Butlin
- Animal and Plant Sciences, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK.,Sven Lovén Centre for Marine Sciences-Tjärnö, University of Gothenburg, Strömstad, SE 452 96, Sweden
| | - Anneli Hoikkala
- Department of Biological and Environmental Science, University of Jyväskylä, Survontie 9, PO Box 35, Jyväskylä, 40014, Finland
| |
Collapse
|
7
|
Two distinct genomic regions, harbouring the period and fruitless genes, affect male courtship song in Drosophila montana. Heredity (Edinb) 2012; 108:602-8. [PMID: 22234247 DOI: 10.1038/hdy.2011.129] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Acoustic signals often have a significant role in pair formation and in species recognition. Determining the genetic basis of signal divergence will help to understand signal evolution by sexual selection and its role in the speciation process. An earlier study investigated quantitative trait locus for male courtship song carrier frequency (FRE) in Drosophila montana using microsatellite markers. We refined this study by adding to the linkage map markers for 10 candidate genes known to affect song production in Drosophila melanogaster. We also extended the analyses to additional song characters (pulse train length (PTL), pulse number (PN), interpulse interval, pulse length (PL) and cycle number (CN)). Our results indicate that loci in two different regions of the genome control distinct features of the courtship song. Pulse train traits (PTL and PN) mapped to the X chromosome, showing significant linkage with the period gene. In contrast, characters related to song pulse properties (PL, CN and carrier FRE) mapped to the region of chromosome 2 near the candidate gene fruitless, identifying these genes as suitable loci for further investigations. In previous studies, the pulse train traits have been found to vary substantially between Drosophila species, and so are potential species recognition signals, while the pulse traits may be more important in intra-specific mate choice.
Collapse
|
8
|
Schäfer MA, Routtu J, Vieira J, Hoikkala A, Ritchie MG, Schlötterer C. Multiple quantitative trait loci influence intra-specific variation in genital morphology between phylogenetically distinct lines of Drosophila montana. J Evol Biol 2011; 24:1879-86. [PMID: 21635604 DOI: 10.1111/j.1420-9101.2011.02316.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The evolution of animal genitalia has gained renewed interest because of their potential roles during sexual selection and early stages of species formation. Although central to understanding the evolutionary process, knowledge of the genetic basis of natural variation in genital morphology is limited to a very few species. Using an outbred cross between phylogenetically distinct lines of Drosophila montana, we characterized quantitative trait loci (QTLs) affecting the size and shape of the distiphallus, a prominent part of the male intromittent organ. Our microsatellite-based linkage analysis shows that intra-specific variation in the distiphallus involves several QTLs of largely additive effect and that a highly significant QTL co-localizes with the same inversion where we have earlier localized a large QTL for a sexually selected courtship song trait. The latter indicates that inversions can play an important role in shaping the evolution of rapidly evolving traits with a potential influence on speciation.
Collapse
Affiliation(s)
- M A Schäfer
- Institute of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland.
| | | | | | | | | | | |
Collapse
|
9
|
SCHÄFER MA, MAZZI D, KLAPPERT K, KAURANEN H, VIEIRA J, HOIKKALA A, RITCHIE MG, SCHLÖTTERER C. A microsatellite linkage map forDrosophila montanashows large variation in recombination rates, and a courtship song trait maps to an area of low recombination. J Evol Biol 2010; 23:518-27. [DOI: 10.1111/j.1420-9101.2009.01916.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
10
|
Hoffmann AA, Rieseberg LH. Revisiting the Impact of Inversions in Evolution: From Population Genetic Markers to Drivers of Adaptive Shifts and Speciation? ANNUAL REVIEW OF ECOLOGY EVOLUTION AND SYSTEMATICS 2008; 39:21-42. [PMID: 20419035 DOI: 10.1146/annurev.ecolsys.39.110707.173532] [Citation(s) in RCA: 430] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
There is a growing appreciation that chromosome inversions affect rates of adaptation, speciation, and the evolution of sex chromosomes. Comparative genomic studies have identified many new paracentric inversion polymorphisms. Population models suggest that inversions can spread by reducing recombination between alleles that independently increase fitness, without epistasis or coadaptation. Areas of linkage disequilibrium extend across large inversions but may be interspersed by areas with little disequilibrium. Genes located within inversions are associated with a variety of traits including those involved in climatic adaptation. Inversion polymorphisms may contribute to speciation by generating underdominance owing to inviable gametes, but an alternative view gaining support is that inversions facilitate speciation by reducing recombination, protecting genomic regions from introgression. Likewise, inversions may facilitate the evolution of sex chromosomes by reducing recombination between sex determining alleles and alleles with sex-specific effects. However, few genes within inversions responsible for fitness effects or speciation have been identified.
Collapse
Affiliation(s)
- Ary A Hoffmann
- Centre for Environmental Stress and Adaptation Research, Department of Genetics, University of Melbourne, Parkville, Victoria 3010 Australia;
| | | |
Collapse
|