1
|
Lie S, Banks P, Lawless C, Lydall D, Petersen J. The contribution of non-essential Schizosaccharomyces pombe genes to fitness in response to altered nutrient supply and target of rapamycin activity. Open Biol 2019; 8:rsob.180015. [PMID: 29720420 PMCID: PMC5990653 DOI: 10.1098/rsob.180015] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 04/06/2018] [Indexed: 12/12/2022] Open
Abstract
Nutrient fluctuations in the cellular environment promote changes in cell metabolism and growth to adapt cell proliferation accordingly. The target of rapamycin (TOR) signalling network plays a key role in the coordination of growth and cell proliferation with the nutrient environment and, importantly, nutrient limitation reduces TOR complex 1 (TORC1) signalling. We have performed global quantitative fitness profiling of the collection of Schizosaccharomyces pombe strains from which non-essential genes have been deleted. We identified genes that regulate fitness when cells are grown in a nutrient-rich environment compared with minimal environments, with varying nitrogen sources including ammonium, glutamate and proline. In addition, we have performed the first global screen for genes that regulate fitness when both TORC1 and TORC2 signalling is reduced by Torin1. Analysis of genes whose deletions altered fitness when nutrients were limited, or when TOR signalling was compromised, identified a large number of genes that regulate transmembrane transport, transcription and chromatin organization/regulation and vesicle-mediated transport. The ability to tolerate reduced TOR signalling placed demands upon a large number of biological processes including autophagy, mRNA metabolic processing and nucleocytoplasmic transport. Importantly, novel biological processes and all processes known to be regulated by TOR were identified in our screens. In addition, deletion of 62 genes conserved in humans gave rise to strong sensitivity or resistance to Torin1, and 29 of these 62 genes have novel links to TOR signalling. The identification of chromatin and transcriptional regulation, nutritional uptake and transport pathways in this powerful genetic model now paves the way for a molecular understanding of how cells adapt to the chronic and acute fluctuations in nutrient supply that all eukaryotes experience at some stage, and which is a key feature of cancer cells within solid tumours.
Collapse
Affiliation(s)
- Shervi Lie
- Flinders Centre for Innovation in Cancer, College of Medicine & Public Health, Flinders University, Bedford Park, Adelaide, South Australia 5042, Australia
| | - Peter Banks
- High Throughput Screening Facility, Newcastle Biomedicine, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Conor Lawless
- Institute for Cell & Molecular Biosciences, Newcastle University Medical School, Newcastle upon Tyne NE2 4HH, UK
| | - David Lydall
- Institute for Cell & Molecular Biosciences, Newcastle University Medical School, Newcastle upon Tyne NE2 4HH, UK
| | - Janni Petersen
- Flinders Centre for Innovation in Cancer, College of Medicine & Public Health, Flinders University, Bedford Park, Adelaide, South Australia 5042, Australia .,South Australia Health and Medical Research Institute, North Terrace, PO Box 11060, Adelaide, South Australia 5000, Australia
| |
Collapse
|
2
|
Diament A, Tuller T. Tracking the evolution of 3D gene organization demonstrates its connection to phenotypic divergence. Nucleic Acids Res 2017; 45:4330-4343. [PMID: 28369658 PMCID: PMC5416853 DOI: 10.1093/nar/gkx205] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 03/20/2017] [Indexed: 12/20/2022] Open
Abstract
It has recently been shown that the organization of genes in eukaryotic genomes, and specifically in 3D, is strongly related to gene expression and function and partially conserved between organisms. However, previous studies of 3D genomic organization analyzed each organism independently from others. Here, we propose an approach for unified inter-organismal analysis of gene organization based on a network representation of Hi-C data. We define and detect four classes of spatially co-evolving orthologous modules (SCOMs), i.e. gene families that co-evolve in their 3D organization, based on patterns of divergence and conservation of distances. We demonstrate our methodology on Hi-C data from Saccharomyces cerevisiae and Schizosaccharomyces pombe, and identify, among others, modules relating to RNA splicing machinery and chromatin silencing by small RNA which are central to S. pombe's lifestyle. Our results emphasize the importance of 3D genomic organization in eukaryotes and suggest that the evolutionary mechanisms that shape gene organization affect the organism fitness and phenotypes. The proposed algorithms can be utilized in future studies of genome evolution and comparative analysis of spatial genomic organization in different tissues, conditions and single cells.
Collapse
Affiliation(s)
- Alon Diament
- Biomedical Engineering Dept., Tel Aviv University, Tel Aviv 6997801, Israel
| | - Tamir Tuller
- Biomedical Engineering Dept., Tel Aviv University, Tel Aviv 6997801, Israel.,The Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
3
|
Matsuda A, Asakawa H, Haraguchi T, Hiraoka Y. Spatial organization of the Schizosaccharomyces pombe genome within the nucleus. Yeast 2016; 34:55-66. [PMID: 27766670 DOI: 10.1002/yea.3217] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 10/06/2016] [Accepted: 10/13/2016] [Indexed: 12/14/2022] Open
Abstract
The fission yeast Schizosaccharomyces pombe is a useful experimental system for studying the organization of chromosomes within the cell nucleus. S. pombe has a small genome that is organized into three chromosomes. The small size of the genome and the small number of chromosomes are advantageous for cytological and genome-wide studies of chromosomes; however, the small size of the nucleus impedes microscopic observations owing to limits in spatial resolution during imaging. Recent advances in microscopy, such as super-resolution microscopy, have greatly expanded the use of S. pombe as a model organism in a wide range of studies. In addition, biochemical studies, such as chromatin immunoprecipitation and chromosome conformation capture, have provided complementary approaches. Here, we review the spatial organization of the S. pombe genome as determined by a combination of cytological and biochemical studies. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Atsushi Matsuda
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, 565-0871, Japan.,Advanced ICT Research Institute Kobe, National Institute of Information and Communications Technology, 588-2 Iwaoka, Iwaoka-cho, Nishi-ku, Kobe, 651-2492, Japan
| | - Haruhiko Asakawa
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, 565-0871, Japan
| | - Tokuko Haraguchi
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, 565-0871, Japan.,Advanced ICT Research Institute Kobe, National Institute of Information and Communications Technology, 588-2 Iwaoka, Iwaoka-cho, Nishi-ku, Kobe, 651-2492, Japan
| | - Yasushi Hiraoka
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, 565-0871, Japan.,Advanced ICT Research Institute Kobe, National Institute of Information and Communications Technology, 588-2 Iwaoka, Iwaoka-cho, Nishi-ku, Kobe, 651-2492, Japan
| |
Collapse
|
4
|
Harr JC, Gonzalez-Sandoval A, Gasser SM. Histones and histone modifications in perinuclear chromatin anchoring: from yeast to man. EMBO Rep 2016; 17:139-55. [PMID: 26792937 PMCID: PMC4783997 DOI: 10.15252/embr.201541809] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 12/21/2015] [Indexed: 01/01/2023] Open
Abstract
It is striking that within a eukaryotic nucleus, the genome can assume specific spatiotemporal distributions that correlate with the cell's functional states. Cell identity itself is determined by distinct sets of genes that are expressed at a given time. On the level of the individual gene, there is a strong correlation between transcriptional activity and associated histone modifications. Histone modifications act by influencing the recruitment of non-histone proteins and by determining the level of chromatin compaction, transcription factor binding, and transcription elongation. Accumulating evidence also shows that the subnuclear position of a gene or domain correlates with its expression status. Thus, the question arises whether this spatial organization results from or determines a gene's chromatin status. Although the association of a promoter with the inner nuclear membrane (INM) is neither necessary nor sufficient for repression, the perinuclear sequestration of heterochromatin is nonetheless conserved from yeast to man. How does subnuclear localization influence gene expression? Recent work argues that the common denominator between genome organization and gene expression is the modification of histones and in some cases of histone variants. This provides an important link between local chromatin structure and long-range genome organization in interphase cells. In this review, we will evaluate how histones contribute to the latter, and discuss how this might help to regulate genes crucial for cell differentiation.
Collapse
Affiliation(s)
- Jennifer C Harr
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Adriana Gonzalez-Sandoval
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland Faculty of Natural Sciences, University of Basel, Basel, Switzerland
| | - Susan M Gasser
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland Faculty of Natural Sciences, University of Basel, Basel, Switzerland
| |
Collapse
|
5
|
Barrales RR, Forn M, Georgescu PR, Sarkadi Z, Braun S. Control of heterochromatin localization and silencing by the nuclear membrane protein Lem2. Genes Dev 2016; 30:133-48. [PMID: 26744419 PMCID: PMC4719305 DOI: 10.1101/gad.271288.115] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 12/07/2015] [Indexed: 01/08/2023]
Abstract
Transcriptionally silent chromatin localizes to the nuclear periphery, which provides a special microenvironment for gene repression. A variety of nuclear membrane proteins interact with repressed chromatin, yet the functional role of these interactions remains poorly understood. Here, we show that, in Schizosaccharomyces pombe, the nuclear membrane protein Lem2 associates with chromatin and mediates silencing and heterochromatin localization. Unexpectedly, we found that these functions can be separated and assigned to different structural domains within Lem2, excluding a simple tethering mechanism. Chromatin association and tethering of centromeres to the periphery are mediated by the N-terminal LEM (LAP2-Emerin-MAN1) domain of Lem2, whereas telomere anchoring and heterochromatin silencing require exclusively its conserved C-terminal MSC (MAN1-Src1 C-terminal) domain. Particularly, silencing by Lem2 is epistatic with the Snf2/HDAC (histone deacetylase) repressor complex SHREC at telomeres, while its necessity can be bypassed by deleting Epe1, a JmjC protein with anti-silencing activity. Furthermore, we found that loss of Lem2 reduces heterochromatin association of SHREC, which is accompanied by increased binding of Epe1. This reveals a critical function of Lem2 in coordinating these antagonistic factors at heterochromatin. The distinct silencing and localization functions mediated by Lem2 suggest that these conserved LEM-containing proteins go beyond simple tethering to play active roles in perinuclear silencing.
Collapse
Affiliation(s)
- Ramón Ramos Barrales
- Department of Physiological Chemistry, Biomedical Center, Ludwig-Maximilians-University of Munich, 82152 Martinsried, Germany
| | - Marta Forn
- Department of Physiological Chemistry, Biomedical Center, Ludwig-Maximilians-University of Munich, 82152 Martinsried, Germany
| | - Paula Raluca Georgescu
- Department of Physiological Chemistry, Biomedical Center, Ludwig-Maximilians-University of Munich, 82152 Martinsried, Germany
| | - Zsuzsa Sarkadi
- Department of Physiological Chemistry, Biomedical Center, Ludwig-Maximilians-University of Munich, 82152 Martinsried, Germany
| | - Sigurd Braun
- Department of Physiological Chemistry, Biomedical Center, Ludwig-Maximilians-University of Munich, 82152 Martinsried, Germany; International Max Planck Research School for Molecular and Cellular Life Sciences, 82152 Martinsried, Germany
| |
Collapse
|
6
|
Mizuguchi T, Barrowman J, Grewal SIS. Chromosome domain architecture and dynamic organization of the fission yeast genome. FEBS Lett 2015; 589:2975-86. [PMID: 26096785 PMCID: PMC4598268 DOI: 10.1016/j.febslet.2015.06.008] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Revised: 06/08/2015] [Accepted: 06/09/2015] [Indexed: 12/20/2022]
Abstract
Advanced techniques including the chromosome conformation capture (3C) methodology and its derivatives are complementing microscopy approaches to study genome organization, and are revealing new details of three-dimensional (3D) genome architecture at increasing resolution. The fission yeast Schizosaccharomyces pombe (S. pombe) comprises a small genome featuring organizational elements of more complex eukaryotic systems, including conserved heterochromatin assembly machinery. Here we review key insights into genome organization revealed in this model system through a variety of techniques. We discuss the predominant role of Rabl-like configuration for interphase chromosome organization and the dynamic changes that occur during mitosis and meiosis. High resolution Hi-C studies have also revealed the presence of locally crumpled chromatin regions called "globules" along chromosome arms, and implicated a critical role for pericentromeric heterochromatin in imposing fundamental constraints on the genome to maintain chromosome territoriality and stability. These findings have shed new light on the connections between genome organization and function. It is likely that insights gained from the S. pombe system will also broadly apply to higher eukaryotes.
Collapse
Affiliation(s)
- Takeshi Mizuguchi
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Jemima Barrowman
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Shiv I S Grewal
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
7
|
Allshire RC, Ekwall K. Epigenetic Regulation of Chromatin States in Schizosaccharomyces pombe. Cold Spring Harb Perspect Biol 2015; 7:a018770. [PMID: 26134317 DOI: 10.1101/cshperspect.a018770] [Citation(s) in RCA: 133] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This article discusses the advances made in epigenetic research using the model organism fission yeast Schizosaccharomyces pombe. S. pombe has been used for epigenetic research since the discovery of position effect variegation (PEV). This is a phenomenon in which a transgene inserted within heterochromatin is variably expressed, but can be stably inherited in subsequent cell generations. PEV occurs at centromeres, telomeres, ribosomal DNA (rDNA) loci, and mating-type regions of S. pombe chromosomes. Heterochromatin assembly in these regions requires enzymes that modify histones and the RNA interference (RNAi) machinery. One of the key histone-modifying enzymes is the lysine methyltransferase Clr4, which methylates histone H3 on lysine 9 (H3K9), a classic hallmark of heterochromatin. The kinetochore is assembled on specialized chromatin in which histone H3 is replaced by the variant CENP-A. Studies in fission yeast have contributed to our understanding of the establishment and maintenance of CENP-A chromatin and the epigenetic activation and inactivation of centromeres.
Collapse
Affiliation(s)
- Robin C Allshire
- Wellcome Trust Centre for Cell Biology, The University of Edinburgh, Edinburgh EH9 3JR, Scotland, United Kingdom
| | - Karl Ekwall
- Department of Biosciences and Nutrition, Karolinska Institutet, Center for Biosciences, NOVUM, S-141 83, Huddinge, Sweden
| |
Collapse
|
8
|
Grand RS, Pichugina T, Gehlen LR, Jones MB, Tsai P, Allison JR, Martienssen R, O'Sullivan JM. Chromosome conformation maps in fission yeast reveal cell cycle dependent sub nuclear structure. Nucleic Acids Res 2014; 42:12585-99. [PMID: 25342201 PMCID: PMC4227791 DOI: 10.1093/nar/gku965] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Successful progression through the cell cycle requires spatial and temporal regulation of gene transcript levels and the number, positions and condensation levels of chromosomes. Here we present a high resolution survey of genome interactions in Schizosaccharomyces pombe using synchronized cells to investigate cell cycle dependent changes in genome organization and transcription. Cell cycle dependent interactions were captured between and within S. pombe chromosomes. Known features of genome organization (e.g. the clustering of telomeres and retrotransposon long terminal repeats (LTRs)) were observed throughout the cell cycle. There were clear correlations between transcript levels and chromosomal interactions between genes, consistent with a role for interactions in transcriptional regulation at specific stages of the cell cycle. In silico reconstructions of the chromosome organization within the S. pombe nuclei were made by polymer modeling. These models suggest that groups of genes with high and low, or differentially regulated transcript levels have preferred positions within the S. pombe nucleus. We conclude that the S. pombe nucleus is spatially divided into functional sub-nuclear domains that correlate with gene activity. The observation that chromosomal interactions are maintained even when chromosomes are fully condensed in M phase implicates genome organization in epigenetic inheritance and bookmarking.
Collapse
Affiliation(s)
- Ralph S Grand
- Liggins institute, University of Auckland, Grafton Auckland 1032, NZ Institute of Natural and Mathematical Sciences, Massey University, Albany, Auckland 0745, NZ
| | - Tatyana Pichugina
- Liggins institute, University of Auckland, Grafton Auckland 1032, NZ
| | - Lutz R Gehlen
- Institute of Natural and Mathematical Sciences, Massey University, Albany, Auckland 0745, NZ
| | - M Beatrix Jones
- Institute of Natural and Mathematical Sciences, Massey University, Albany, Auckland 0745, NZ
| | - Peter Tsai
- School of Biological Sciences, University of Auckland, Auckland 1023, NZ
| | - Jane R Allison
- Institute of Natural and Mathematical Sciences, Massey University, Albany, Auckland 0745, NZ
| | - Robert Martienssen
- HHMI-GBMF, Watson School of Biological Sciences, Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, New York, NY 11724, USA
| | | |
Collapse
|
9
|
Sajiki K, Pluskal T, Shimanuki M, Yanagida M. Metabolomic analysis of fission yeast at the onset of nitrogen starvation. Metabolites 2013; 3:1118-29. [PMID: 24958269 PMCID: PMC3937841 DOI: 10.3390/metabo3041118] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Revised: 12/03/2013] [Accepted: 12/06/2013] [Indexed: 01/08/2023] Open
Abstract
Microorganisms naturally respond to changes in nutritional conditions by adjusting their morphology and physiology. The cellular response of the fission yeast S. pombe to nitrogen starvation has been extensively studied. Here, we report time course metabolomic analysis during one hour immediately after nitrogen starvation, prior to any visible changes in cell morphology except for a tiny increase of cell length per division cycle. We semi-quantitatively measured 75 distinct metabolites, 60% of which changed their level over 2-fold. The most significant changes occurred during the first 15 min, when trehalose, 2-oxoglutarate, and succinate increased, while purine biosynthesis intermediates rapidly diminished. At 30–60 min, free amino acids decreased, although several modified amino acids—including hercynylcysteine sulfoxide, a precursor to ergothioneine—accumulated. Most high-energy metabolites such as ATP, S-adenosyl-methionine or NAD+ remained stable during the whole time course. Very rapid metabolic changes such as the shut-off of purine biosynthesis and the rise of 2-oxoglutarate and succinate can be explained by the depletion of NH4Cl. The changes in the levels of key metabolites, particularly 2-oxoglutarate, might represent an important mechanistic step to trigger subsequent cellular regulations.
Collapse
Affiliation(s)
- Kenichi Sajiki
- G0 Cell Unit, Okinawa Institute of Science and Technology Graduate University (OIST), 1919-1 Tancha, Onna-son, Okinawa 904-0495, Japan.
| | - Tomáš Pluskal
- G0 Cell Unit, Okinawa Institute of Science and Technology Graduate University (OIST), 1919-1 Tancha, Onna-son, Okinawa 904-0495, Japan.
| | - Mizuki Shimanuki
- G0 Cell Unit, Okinawa Institute of Science and Technology Graduate University (OIST), 1919-1 Tancha, Onna-son, Okinawa 904-0495, Japan.
| | - Mitsuhiro Yanagida
- G0 Cell Unit, Okinawa Institute of Science and Technology Graduate University (OIST), 1919-1 Tancha, Onna-son, Okinawa 904-0495, Japan.
| |
Collapse
|
10
|
Rodriguez A, Bjerling P. The links between chromatin spatial organization and biological function. Biochem Soc Trans 2013; 41:1634-9. [PMID: 24256267 PMCID: PMC3836414 DOI: 10.1042/bst20130213] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Indexed: 02/06/2023]
Abstract
During the last few years, there has been a rapid increase in our knowledge of how chromatin is organized inside the nucleus. Techniques such as FISH (fluorescence in situ hybridization) have proved that chromosomes organize themselves in so-called CTs (chromosome territories). In addition, newly developed 3C (chromatin conformation capture) techniques have revealed that certain chromosomal regions tend to interact with adjacent regions on either the same chromosome or adjacent chromosomes, and also that regions in close proximity are replicated simultaneously. Furthermore, transcriptionally repressed or active areas occupy different nuclear compartments. Another new technique, named DamID (DNA adenine methyltransferase identification), has strengthened the notion that transcriptionally repressed genes are often found in close association with the nuclear membrane, whereas transcriptionally active regions are found in the more central regions of the nucleus. However, in response to various stimuli, transcriptionally repressed regions are known to relocalize from the nuclear lamina to the interior of the nucleus, leading to a concomitant up-regulation of otherwise silenced genes. Taken together, these insights are of great interest for the relationship between chromosomal spatial organization and genome function. In the present article, we review recent advances in this field with a focus on mammalian cells and the eukaryotic model organism Schizosaccharomyces pombe.
Collapse
Key Words
- chromatin
- fission yeast
- heterochromatin
- nuclear organization
- transcriptional regulation
- 3c, chromosome conformation capture
- 4c, circularized chromosome conformation capture
- 5c, carbon copy chromosome conformation capture
- cenp, centromere protein
- chip, chromatin immunoprecipitation
- ct, chromosome territory
- dam, dna adenine methyltansferase
- damid, dna adenine methyltransferase identification
- fish, fluorescence in situ hybridization
- hic, genome-wide chromosome conformation capture
- inm, inner nuclear membrane
- lad, lamina-associated domain
- lem, lap2/emerin/man1
- mps, massive parallel sequencing
- nad, nucleoli-associated domain
- nm, nuclear membrane
- onm, outer nuclear membrane
- tfiiic, transcription factor iiic
- tor, time of replication
Collapse
Affiliation(s)
- Alejandro Rodriguez
- *Department of Medical Biochemistry and Microbiology (IMBIM), Science for Life Laboratory, Uppsala University, Box 582, SE-751 23 Uppsala, Sweden
| | - Pernilla Bjerling
- *Department of Medical Biochemistry and Microbiology (IMBIM), Science for Life Laboratory, Uppsala University, Box 582, SE-751 23 Uppsala, Sweden
| |
Collapse
|
11
|
Subnuclear relocalization and silencing of a chromosomal region by an ectopic ribosomal DNA repeat. Proc Natl Acad Sci U S A 2013; 110:E4465-73. [PMID: 24191010 DOI: 10.1073/pnas.1315581110] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Our research addresses the relationship between subnuclear localization and gene expression in fission yeast. We observed the relocalization of a heterochromatic region, the mating-type region, from its natural location at the spindle-pole body to the immediate vicinity of the nucleolus. Relocalization occurred in response to a DNA rearrangement replacing a boundary element (IR-R) with a ribosomal DNA repeat (rDNA-R). Gene expression was strongly silenced in the relocalized mating-type region through mechanisms that differ from those operating in wild type. Also different from the wild-type situation, programmed recombination events failed to take place in the rDNA-R mutant. Increased silencing and perinucleolar localization depended on Reb1, a DNA-binding protein with cognate sites in the rDNA. Reb1 was recently shown to mediate long-range interchromosomal interactions in the nucleus through dimerization, providing a mechanism for the observed relocalization. Replacing the full rDNA repeat with Reb1-binding sites, and using mutants lacking the histone H3K9 methyltransferase Clr4, indicated that the relocalized region was silenced redundantly by heterochromatin and another mechanism, plausibly antisense transcription, achieving a high degree of repression in the rDNA-R strain.
Collapse
|
12
|
Steglich B, Sazer S, Ekwall K. Transcriptional regulation at the yeast nuclear envelope. Nucleus 2013; 4:379-89. [PMID: 24021962 DOI: 10.4161/nucl.26394] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The spatial organization of the genome inside the nucleus affects many nuclear processes, such as DNA replication, DNA repair, and gene transcription. In metazoans, the nuclear periphery harbors mainly repressed genes that associate with the nuclear lamina. This review discusses how peripheral positioning is connected to transcriptional regulation in yeasts. Tethering of reporter genes to the nuclear envelope was found to result in transcriptional silencing. Similarly, repression of the silent mating type loci and subtelomeric genes is influenced by their position close to the nuclear envelope. In contrast, active genes are bound by nucleoporins and inducible genes associate with the nuclear pore complex upon activation. Taken together, these results portray the nuclear envelope as a platform for transcriptional regulation, both through activation at nuclear pores and silencing at the nuclear envelope.
Collapse
Affiliation(s)
- Babett Steglich
- Department of Biosciences and Nutrition; Center for Biosciences; Karolinska Institutet; Huddinge, Sweden; Verna and Marrs McLean Department of Biochemistry and Molecular Biology; Baylor College of Medicine; Houston, TX USA; Department of Molecular and Cellular Biology; Baylor College of Medicine; Houston, TX USA
| | | | | |
Collapse
|
13
|
Woolcock KJ, Bühler M. Nuclear organisation and RNAi in fission yeast. Curr Opin Cell Biol 2013; 25:372-7. [DOI: 10.1016/j.ceb.2013.02.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Accepted: 02/05/2013] [Indexed: 12/20/2022]
|
14
|
HDAC-mediated suppression of histone turnover promotes epigenetic stability of heterochromatin. Nat Struct Mol Biol 2013; 20:547-54. [PMID: 23604080 PMCID: PMC3661211 DOI: 10.1038/nsmb.2565] [Citation(s) in RCA: 106] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Accepted: 03/20/2013] [Indexed: 11/13/2022]
Abstract
Heterochromatin causes epigenetic repression that can be transmitted through multiple cell divisions. However, the mechanisms underlying silencing and stability of heterochromatin are not fully understood. We show that heterochromatin differs from euchromatin in histone turnover, and identify histone deacetylase (HDAC) Clr3 as a factor required for inhibiting histone turnover across heterochromatin domains in Schizosaccharomyces pombe. Loss of RNAi factors, Clr4 methyltransferase, or HP1 proteins involved in HDAC localization causes increased histone turnover across pericentromeric domains. Clr3 also affects histone turnover at the silent mating–type region where it can be recruited by alternative mechanisms acting in parallel to H3K9me–HP1. Importantly, the JmjC–domain protein Epe1 promotes histone exchange, and loss of Epe1 suppresses both histone turnover and defects in heterochromatic silencing. Our results suggest that heterochromatic silencing factors preclude histone turnover to promote silencing and inheritance of repressive chromatin.
Collapse
|
15
|
Abstract
Several microscopy techniques are available today that can detect a specific protein within the cell. During the last decade live cell imaging using fluorochromes like Green Fluorescent Protein (GFP) directly attached to the protein of interest has become increasingly popular. Using GFP and similar fluorochromes the subcellular localisations and movements of proteins can be detected in a fluorescent microscope. Moreover, also the subnuclear localisation of a certain region of a chromosome can be studied using this technique. GFP is fused to the Lac Repressor protein (LacR) and ectopically expressed in the cell where tandem repeats of the lacO sequence has been inserted into the region of interest on the chromosome. The LacR-GFP will bind to the lacO repeats and that area of the genome will be visible as a green dot in the fluorescence microscope. Yeast is especially suited for this type of manipulation since homologous recombination is very efficient and thereby enables targeted integration of the lacO repeats and engineered fusion proteins with GFP. Here we describe a quantitative method for live cell analysis of fission yeast. Additional protocols for live cell analysis of fission yeast can be found, for example on how to make a movie of the meiotic chromosomal behaviour. In this particular experiment we focus on subnuclear organisation and how it is affected during gene induction. We have labelled a gene cluster, named Chr1, by the introduction of lacO binding sites in the vicinity of the genes. The gene cluster is enriched for genes that are induced early during nitrogen starvation of fission yeast. In the strain the nuclear membrane (NM) is labelled by the attachment of mCherry to the NM protein Cut11 giving rise to a red fluorescent signal. The Spindle Pole body (SPB) compound Sid4 is fused to Red Fluorescent Protein (Sid4-mRFP). In vegetatively growing yeast cells the centromeres are always attached to the SPB that is embedded in the NM. The SPB is identified as a large round structure in the NM. By imaging before and 20 minutes after depletion of the nitrogen source we can determine the distance between the gene cluster (GFP) and the NM/SPB. The mean or median distances before and after nitrogen depletion are compared and we can thus quantify whether or not there is a shift in subcellular localisation of the gene cluster after nitrogen depletion.
Collapse
Affiliation(s)
- Pernilla Bjerling
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, University of Uppsala.
| | | | | |
Collapse
|
16
|
Advancing our understanding of functional genome organisation through studies in the fission yeast. Curr Genet 2010; 57:1-12. [PMID: 21113595 PMCID: PMC3023017 DOI: 10.1007/s00294-010-0327-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2010] [Revised: 11/01/2010] [Accepted: 11/08/2010] [Indexed: 12/30/2022]
Abstract
Significant progress has been made in understanding the functional organisation of the cell nucleus. Still many questions remain to be answered about the relationship between the spatial organisation of the nucleus and the regulation of the genome function. There are many conflicting data in the field making it very difficult to merge published results on mammalian cells into one model on subnuclear chromatin organisation. The fission yeast, Schizosaccharomyces pombe, over the last decades has emerged as a valuable model organism in understanding basic biological mechanisms, especially the cell cycle and chromosome biology. In this review we describe and compare the nuclear organisation in mammalian and fission yeast cells. We believe that fission yeast is a good tool to resolve at least some of the contradictions and unanswered questions concerning functional nuclear architecture, since S. pombe has chromosomes structurally similar to that of human. S. pombe also has the advantage over higher eukaryotes in that the genome can easily be manipulated via homologous recombination making it possible to integrate the tools needed for visualisation of chromosomes using live-cell microscopy. Classical genetic experiments can be used to elucidate what factors are involved in a certain mechanism. The knowledge we have gained during the last few years indicates similarities between the genome organisation in fission yeast and mammalian cells. We therefore propose the use of fission yeast for further advancement of our understanding of functional nuclear organisation.
Collapse
|
17
|
A second protein disulfide isomerase plays a protective role against nitrosative and nutritional stresses in Schizosaccharomyces pombe. Mol Biol Rep 2010; 37:3663-71. [PMID: 20204527 DOI: 10.1007/s11033-010-0018-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2009] [Accepted: 02/17/2010] [Indexed: 10/19/2022]
Abstract
In the present work, a second gene encoding protein disulfide isomerase (PDI2) was cloned and characterized from Schizosaccharomyces pombe, and its regulation was studied. The structural gene encoding PDI2 was amplified from the genomic DNA using PCR, and ligated into the E. coli-yeast shuttle vector pRS316 to generate the recombinant plasmid pYPDI2. The determined DNA sequence carries 2,578 bp and is able to encode a protein of 726 amino acid sequence with CGAC at the putative active site. The fission yeast cells harboring pYPDI2 contained 1.62- and 2.73-fold higher PDI activity than the control yeast cells in exponential and stationary phases, respectively, indicating that the cloned gene is in vivo functioning. The PDI2 mRNA levels in both vector control and pYPDI2-containing yeast cells were found to be significantly higher in the stationary phase than in the exponential phase, suggesting that expression of the PDI2 gene is under stationary control. The yeast cells harboring pYPDI2 showed enhanced survival on minimal media plates containing nitric oxide (NO)-generating sodium nitroprusside (SNP) and no nitrogen. The synthesis of β-galactosidase from the PDI2-lacZ fusion gene was markedly enhanced in the Pap1-positive KP1 cells by SNP and nitrogen starvation. However, the enhancement in the synthesis of β-galactosidase from the PDI2-lacZ fusion gene by SNP and nitrogen starvation appeared to be relatively reduced in the Pap1-negative TP108-3C cells than in the Pap1-positive KP1 cells. The PDI2 mRNA level was elevated by SNP and nitrogen starvation in the Pap1-positive cells but not in the Pap1-negative cells. In brief, the S. pombe PDI2 plays a protective role against nitrosative and nutritional stresses, and is positively regulated by NO and nitrogen starvation in a Pap1-dependent manner.
Collapse
|
18
|
Kristell C, Orzechowski Westholm J, Olsson I, Ronne H, Komorowski J, Bjerling P. Nitrogen depletion in the fission yeast Schizosaccharomyces pombe causes nucleosome loss in both promoters and coding regions of activated genes. Genome Res 2010; 20:361-71. [PMID: 20086243 DOI: 10.1101/gr.098558.109] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Gene transcription is associated with local changes in chromatin, both in nucleosome positions and in chemical modifications of the histones. Chromatin dynamics has mostly been studied on a single-gene basis. Those genome-wide studies that have been made primarily investigated steady-state transcription. However, three studies of genome-wide changes in chromatin during the transcriptional response to heat shock in the budding yeast Saccharomyces cerevisiae revealed nucleosome eviction in promoter regions but only minor effects in coding regions. Here, we describe the short-term response to nitrogen starvation in the fission yeast Schizosaccharomyces pombe. Nitrogen depletion leads to a fast induction of a large number of genes in S. pombe and is thus suitable for genome-wide studies of chromatin dynamics during gene regulation. After 20 min of nitrogen removal, 118 transcripts were up-regulated. The distribution of regulated genes throughout the genome was not random; many up-regulated genes were found in clusters, while large parts of the genome were devoid of up-regulated genes. Surprisingly, this up-regulation was associated with nucleosome eviction of equal magnitudes in the promoters and in the coding regions. The nucleosome loss was not limited to induction by nitrogen depletion but also occurred during cadmium treatment. Furthermore, the lower nucleosome density persisted for at least 60 min after induction. Two highly induced genes, urg1(+) and urg2(+), displayed a substantial nucleosome loss, with only 20% of the nucleosomes being left in the coding region. We conclude that nucleosome loss during transcriptional activation is not necessarily limited to promoter regions.
Collapse
Affiliation(s)
- Carolina Kristell
- Department of Medical Biochemistry and Microbiology (IMBIM), University of Uppsala, SE-751 23 Uppsala, Sweden
| | | | | | | | | | | |
Collapse
|
19
|
Current awareness on yeast. Yeast 2009. [DOI: 10.1002/yea.1622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|