1
|
Rodríguez Doyágüez P, Furlano M, Ars Criach E, Arce Y, Guirado L, Torra Balcells R. Correlation of X chromosome inactivation with clinical presentation of Fabry disease in a case report. Nefrologia 2023; 43 Suppl 2:91-95. [PMID: 38278716 DOI: 10.1016/j.nefroe.2024.01.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 12/09/2022] [Indexed: 01/28/2024] Open
Abstract
Fabry disease or also called Anderson-Fabry disease (FD) is a rare disease caused by pathogenic variants in the GLA gene, located on the X chromosome. This gene is involved in the metabolism of glycosphingolipids and its pathogenic variants cause a deficit or absence of α-galactosidase A causing the deposition of globotriaosylceramide throughout the body. Females have a variable phenotypic expression and a better prognosis than males. This is due to the X chromosome inactivation phenomenon. We present a clinical case of Fabry disease in a female with predominantly renal involvement and demonstrate how the X chromosome inactivation phenomenon is tissue dependent, showing preferential inactivation of the mutated allele at the renal level.
Collapse
Affiliation(s)
- Pablo Rodríguez Doyágüez
- Sección de Nefrología, Hospital Universitario Príncipe de Asturias, Alcalá de Henares, Madrid, Spain
| | - Mónica Furlano
- Enfermedades Renales Hereditarias, Servicio de Nefrologia, Fundació Puigvert, Institut d'Investigació Biomèdica Sant Pau (IIB-SANT PAU), Universidad Autónoma Barcelona, Barcelona, Spain
| | - Elisabet Ars Criach
- Laboratorio de Biología Molecular, Fundació Puigvert, Institut d'Investigació Biomèdica Sant Pau (IIB-SANT PAU), Barcelona, Spain
| | - Yolanda Arce
- Sección de Anatomía Patológica, Fundació Puigvert, Barcelona, Spain
| | - Lluís Guirado
- Servicio de Nefrología, Fundació Puigvert, Institut d'Investigació Biomèdica Sant Pau (IIB-SANT PAU), Universidad Autónoma Barcelona, Universitat Central de Catalunya (UVIC), Barcelona, Spain
| | - Roser Torra Balcells
- Enfermedades Renales Hereditarias, Servicio de Nefrologia, Fundació Puigvert, Institut d'Investigació Biomèdica Sant Pau (IIB-SANT PAU), Universidad Autónoma Barcelona, Barcelona, Spain.
| |
Collapse
|
2
|
Melnikova L, Golovnin A. Multiple Roles of dXNP and dADD1- Drosophila Orthologs of ATRX Chromatin Remodeler. Int J Mol Sci 2023; 24:16486. [PMID: 38003676 PMCID: PMC10671109 DOI: 10.3390/ijms242216486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/11/2023] [Accepted: 11/16/2023] [Indexed: 11/26/2023] Open
Abstract
The Drosophila melanogaster dADD1 and dXNP proteins are orthologues of the ADD and SNF2 domains of the vertebrate ATRX (Alpha-Thalassemia with mental Retardation X-related) protein. ATRX plays a role in general molecular processes, such as regulating chromatin status and gene expression, while dADD1 and dXNP have similar functions in the Drosophila genome. Both ATRX and dADD1/dXNP interact with various protein partners and participate in various regulatory complexes. Disruption of ATRX expression in humans leads to the development of α-thalassemia and cancer, especially glioma. However, the mechanisms that allow ATRX to regulate various cellular processes are poorly understood. Studying the functioning of dADD1/dXNP in the Drosophila model may contribute to understanding the mechanisms underlying the multifunctional action of ATRX and its connection with various cellular processes. This review provides a brief overview of the currently available information in mammals and Drosophila regarding the roles of ATRX, dXNP, and dADD1. It discusses possible mechanisms of action of complexes involving these proteins.
Collapse
Affiliation(s)
- Larisa Melnikova
- Department of Drosophila Molecular Genetics, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov St., 119334 Moscow, Russia
| | - Anton Golovnin
- Department of Drosophila Molecular Genetics, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov St., 119334 Moscow, Russia
| |
Collapse
|
3
|
van Gerven MR, Bozsaky E, Matser YAH, Vosseberg J, Taschner-Mandl S, Koster J, Tytgat GAM, Molenaar JJ, van den Boogaard M. The mutational spectrum of ATRX aberrations in neuroblastoma and the associated patient and tumor characteristics. Cancer Sci 2022; 113:2167-2178. [PMID: 35384159 PMCID: PMC9207354 DOI: 10.1111/cas.15363] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 03/18/2022] [Accepted: 04/02/2022] [Indexed: 11/30/2022] Open
Abstract
Neuroblastoma is the most common extracranial solid tumor in children. The chromatin remodeler ATRX is frequently mutated in high‐risk patients with a poor prognosis. Although many studies have reported ATRX aberrations and the associated clinical characteristics in neuroblastoma, a comprehensive overview is currently lacking. In this study, we extensively characterize the mutational spectrum of ATRX aberrations in neuroblastoma tumors reported in previous studies and present an overview of patient and tumor characteristics. We collected the data of a total of 127 neuroblastoma patients and three cell lines with ATRX aberrations originating from 20 papers. We subdivide the ATRX aberrations into nonsense, missense, and multiexon deletions (MEDs) and show that 68% of them are MEDs. Of these MEDs, 75% are predicted to be in‐frame. Furthermore, we identify a missense mutational hotspot region in the helicase domain. We also confirm that all three ATRX mutation types are more often identified in patients diagnosed at an older age, but still approximately 40% of the patients are aged 5 years or younger at diagnosis. Surprisingly, we found that 11q deletions are enriched in neuroblastomas with ATRX deletions compared to a reference cohort, but not in neuroblastomas with ATRX point mutations. Taken together, our data emphasizes a distinct ATRX mutation spectrum in neuroblastoma, which should be considered when studying molecular phenotypes and therapeutic strategies.
Collapse
Affiliation(s)
| | - Eva Bozsaky
- Tumor biology group, St Anna Children's Cancer Research Institute, Vienna, Austria
| | - Yvette A H Matser
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Julian Vosseberg
- Theoretical Biology and Bioinformatics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, the Netherlands
| | | | - Jan Koster
- Department of Oncogenomics, Amsterdam UMC, location AMC, Amsterdam, the Netherlands
| | | | - Jan J Molenaar
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands.,Department of Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, the Netherlands
| | | |
Collapse
|
4
|
Barreto VM, Kubasova N, Alves-Pereira CF, Gendrel AV. X-Chromosome Inactivation and Autosomal Random Monoallelic Expression as "Faux Amis". Front Cell Dev Biol 2021; 9:740937. [PMID: 34631717 PMCID: PMC8495168 DOI: 10.3389/fcell.2021.740937] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 08/30/2021] [Indexed: 12/23/2022] Open
Abstract
X-chromosome inactivation (XCI) and random monoallelic expression of autosomal genes (RMAE) are two paradigms of gene expression regulation where, at the single cell level, genes can be expressed from either the maternal or paternal alleles. X-chromosome inactivation takes place in female marsupial and placental mammals, while RMAE has been described in mammals and also other species. Although the outcome of both processes results in random monoallelic expression and mosaicism at the cellular level, there are many important differences. We provide here a brief sketch of the history behind the discovery of XCI and RMAE. Moreover, we review some of the distinctive features of these two phenomena, with respect to when in development they are established, their roles in dosage compensation and cellular phenotypic diversity, and the molecular mechanisms underlying their initiation and stability.
Collapse
Affiliation(s)
- Vasco M Barreto
- Chronic Diseases Research Centre, CEDOC, Nova Medical School, Lisbon, Portugal
| | - Nadiya Kubasova
- Chronic Diseases Research Centre, CEDOC, Nova Medical School, Lisbon, Portugal
| | - Clara F Alves-Pereira
- Department of Genetics, Smurfit Institute of Genetics, Trinity College Dublin, University of Dublin, Dublin, Ireland
| | - Anne-Valerie Gendrel
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
5
|
The Multiple Facets of ATRX Protein. Cancers (Basel) 2021; 13:cancers13092211. [PMID: 34062956 PMCID: PMC8124985 DOI: 10.3390/cancers13092211] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/30/2021] [Accepted: 05/02/2021] [Indexed: 12/21/2022] Open
Abstract
Simple Summary The gene encoding for the epigenetic regulator ATRX is gaining a prominent position among the most important oncosuppressive genes of the human genome. ATRX gene somatic mutations are found across a number of diverse cancer types, suggesting its relevance in tumor induction and progression. In the present review, the multiple activities of ATRX protein are described in the light of the most recent literature available highlighting its multifaceted role in the caretaking of the human genome. Abstract ATRX gene codifies for a protein member of the SWI-SNF family and was cloned for the first time over 25 years ago as the gene responsible for a rare developmental disorder characterized by α-thalassemia and intellectual disability called Alpha Thalassemia/mental Retardation syndrome X-linked (ATRX) syndrome. Since its discovery as a helicase involved in alpha-globin gene transcriptional regulation, our understanding of the multiple roles played by the ATRX protein increased continuously, leading to the recognition of this multifaceted protein as a central “caretaker” of the human genome involved in cancer suppression. In this review, we report recent advances in the comprehension of the ATRX manifold functions that encompass heterochromatin epigenetic regulation and maintenance, telomere function, replicative stress response, genome stability, and the suppression of endogenous transposable elements and exogenous viral genomes.
Collapse
|
6
|
Westervelt N, Yoest A, Sayed S, Von Zimmerman M, Kaps K, Chadwick BP. Deletion of the XIST promoter from the human inactive X chromosome compromises polycomb heterochromatin maintenance. Chromosoma 2021; 130:177-197. [PMID: 33745031 DOI: 10.1007/s00412-021-00754-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 02/01/2021] [Accepted: 02/21/2021] [Indexed: 10/21/2022]
Abstract
Silencing most gene expression from all but one X chromosome in female mammals provides a means to overcome X-linked gene expression imbalances with males. Central to establishing gene silencing on the inactivated X chromosome are the actions of the long non-coding RNA XIST that triggers the repackaging of the chosen X into facultative heterochromatin. While understanding the mechanisms through which XIST expression is regulated and mediates its affects has been a major focus of research since its discovery, less is known about the role XIST plays in maintaining chromatin at the human inactive X chromosome (Xi). Here, we use genome engineering to delete the promoter of XIST to knockout expression from the Xi in non-cancerous diploid human somatic cells. Although some heterochromatin features exhibit limited change at the Xi, two of those assessed showed significant reductions including histone H2A monoubiquitylation at lysine 119 and histone H3 trimethylation at lysine 27, both of which are covalent histone modifications catalyzed by the polycomb repressive complexes 1 and 2 respectively. Coupled with these reductions, we observed an occasional gain of euchromatin signatures on Xp, but despite these signs of chromatin instability, we did not observe appreciable changes in the reactivation of genes from the Xi. Collectively, these data are consistent with maintenance of dosage compensation at the Xi involving multiple redundant layers of gene silencing.
Collapse
Affiliation(s)
- Natalia Westervelt
- Department of Biological Science, Florida State University, 319 Stadium Drive, King 3076, Tallahassee, FL, 32306-4295, USA
| | - Andrea Yoest
- Department of Biological Science, Florida State University, 319 Stadium Drive, King 3076, Tallahassee, FL, 32306-4295, USA
| | - Sadia Sayed
- Department of Biological Science, Florida State University, 319 Stadium Drive, King 3076, Tallahassee, FL, 32306-4295, USA
| | - Marina Von Zimmerman
- Department of Biological Science, Florida State University, 319 Stadium Drive, King 3076, Tallahassee, FL, 32306-4295, USA
| | - Kelly Kaps
- Department of Biological Science, Florida State University, 319 Stadium Drive, King 3076, Tallahassee, FL, 32306-4295, USA
| | - Brian P Chadwick
- Department of Biological Science, Florida State University, 319 Stadium Drive, King 3076, Tallahassee, FL, 32306-4295, USA.
| |
Collapse
|
7
|
Deobagkar D. Epigenetics with special reference to the human X chromosome inactivation and the enigma of Drosophila DNA methylation. J Genet 2018; 97:371-378. [PMID: 29932056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Epigenetics confers adaptability and survival advantage to an organism. Most epigenetic processes demonstrate memory and heritability. DNA methylation is an epigenetic process that adds imprints which can be inherited during cell division and across generations. DNA methylation adds an additional level of information to the basic DNA sequence and can influence chromatin organization and the function of the DNA sequence. In bacteria, it works as a defence strategy and preserves genome integrity. DNA methylation in eukaryotes has been implicated in a large number of cellular regulatory processes and is implied in development, differentiation, life style diseases and cancer. Mammals have an intricate DNA methylation machinery with dNMT1, 3A and 3B enzymes. The human X chromosome inactivation, an example of differential regulation of homologous chromosomes, is known to involve many epigenetic processes with intricate interactions of lncRNAs, miRNAs and DNA methylation. Drosophila possesses very low levels of DNA methylation with only dNMT2 gene. Since Drosophila is an important model organism for study of development and differentiation, the implications of this sparse DNA methylation and the lack of DNA methylation machinery in Drosophila is discussed.
Collapse
Affiliation(s)
- Deepti Deobagkar
- ISRO Cell and Centre of Advanced Studies, Department of Zoology, Savitribai Phule Pune University, Pune 411 007, India.
| |
Collapse
|
8
|
Deobagkar D. Epigenetics with special reference to the human X chromosome inactivation and the enigma of Drosophila DNA methylation. J Genet 2018. [DOI: 10.1007/s12041-018-0937-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
9
|
Bano D, Piazzesi A, Salomoni P, Nicotera P. The histone variant H3.3 claims its place in the crowded scene of epigenetics. Aging (Albany NY) 2017; 9:602-614. [PMID: 28284043 PMCID: PMC5391221 DOI: 10.18632/aging.101194] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 02/26/2017] [Indexed: 12/16/2022]
Abstract
Histones are evolutionarily conserved DNA-binding proteins. As scaffolding molecules, they significantly regulate the DNA packaging into the nucleus of all eukaryotic cells. As docking units, they influence the recruitment of the transcriptional machinery, thus establishing unique gene expression patterns that ultimately promote different biological outcomes. While canonical histones H3.1 and H3.2 are synthetized and loaded during DNA replication, the histone variant H3.3 is expressed and deposited into the chromatin throughout the cell cycle. Recent findings indicate that H3.3 replaces the majority of canonical H3 in non-dividing cells, reaching almost saturation levels in a time-dependent manner. Consequently, H3.3 incorporation and turnover represent an additional layer in the regulation of the chromatin landscape during aging. In this respect, work from our group and others suggest that H3.3 plays an important function in age-related processes throughout evolution. Here, we summarize the current knowledge on H3.3 biology and discuss the implications of its aberrant dynamics in the establishment of cellular states that may lead to human pathology. Critically, we review the importance of H3.3 turnover as part of epigenetic events that influence senescence and age-related processes. We conclude with the emerging evidence that H3.3 is required for proper neuronal function and brain plasticity.
Collapse
Affiliation(s)
- Daniele Bano
- German Center for Neurodegenerative Diseases (DZNE), 53127 Bonn, Germany
| | - Antonia Piazzesi
- German Center for Neurodegenerative Diseases (DZNE), 53127 Bonn, Germany
| | - Paolo Salomoni
- German Center for Neurodegenerative Diseases (DZNE), 53127 Bonn, Germany
| | - Pierluigi Nicotera
- German Center for Neurodegenerative Diseases (DZNE), 53127 Bonn, Germany
| |
Collapse
|
10
|
Stepanova IS, Bogolyubov DS. Localization of the chromatin-remodeling protein ATRX in the oocyte nucleus of some insects. ACTA ACUST UNITED AC 2017. [DOI: 10.1134/s1990519x17050091] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
11
|
Palaniappan C, Ramalingam R. Deciphering the Molecular Effects of Mutations on ATRX Cause ATRX Syndrome: A Molecular Dynamics Study. J Cell Biochem 2017; 118:3318-3327. [DOI: 10.1002/jcb.25984] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 03/08/2017] [Indexed: 12/15/2022]
Affiliation(s)
- Chandrasekaran Palaniappan
- Department of BiotechnologyBioinformatics LabSchool of Biosciences and TechnologyVIT UniversityVellore632014Tamil NaduIndia
| | - Rajasekaran Ramalingam
- Department of BiotechnologyBioinformatics LabSchool of Biosciences and TechnologyVIT UniversityVellore632014Tamil NaduIndia
| |
Collapse
|
12
|
O'Shea LC, Daly E, Hensey C, Fair T. ATRX is a novel progesterone-regulated protein and biomarker of low developmental potential in mammalian oocytes. Reproduction 2017; 153:671-682. [PMID: 28250240 DOI: 10.1530/rep-16-0443] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 02/03/2017] [Accepted: 02/28/2017] [Indexed: 01/09/2023]
Abstract
A multi-species meta-analysis of published transcriptomic data from models of oocyte competence identified the chromatin remodelling factor ATRX as a putative biomarker of oocyte competence. The objective of the current study was to test the hypothesis that ATRX protein expression by cumulus-oocyte complexes (COCs) reflects their intrinsic quality and developmental potential. In excess of 10,000 bovine COCs were utilised to test our hypothesis. COCs were in vitro matured (IVM) under conditions associated with reduced developmental potential: IVM in the presence or absence of (1) progesterone synthesis inhibitor (Trilostane); (2) nuclear progesterone receptor inhibitor (Aglepristone) or (3) an inducer of DNA damage (Staurosporine). ATRX protein expression and localisation were determined using immunocytochemistry and Western blot analysis. A proportion of COCs matured in the presence or absence of Trilostane was in vitro fertilised and cultured, and subsequent embryo development characteristics were analysed. In addition, ATRX expression was investigated in 40 human germinal vesicle-stage COCs. Our results showed that ATRX is expressed in human and bovine germinal vesicle oocytes and cumulus cells. In bovine, expression decreases after IVM. However, this decline is not observed in COCs matured under sub-optimal conditions. Blastocyst development rate and cell number are decreased, whereas the incidence of abnormal metaphase phase spindle and chromosome alignment are increased, after IVM in the presence of Trilostane (P < 0.05). In conclusion, localisation of ATRX to the cumulus cell nuclei and oocyte chromatin, after IVM, is associated with poor oocyte quality and low developmental potential. Furthermore, ATRX is dynamically regulated in response to progesterone signalling.
Collapse
Affiliation(s)
- Lynne C O'Shea
- School of Agriculture and Food Sciences .,School of Medicine
| | | | - Carmel Hensey
- School of Bimolecular and Biomedical ScienceUniversity College Dublin, Belfield, Dublin 4, Ireland
| | | |
Collapse
|
13
|
Nuclear distribution of the chromatin-remodeling protein ATRX in mouse early embryogenesis. Acta Histochem 2017; 119:18-25. [PMID: 27863708 DOI: 10.1016/j.acthis.2016.11.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 11/03/2016] [Accepted: 11/03/2016] [Indexed: 12/13/2022]
Abstract
The nucleus of mammalian embryos differs by transcriptional activity at different stages of early development. Here, we studied nuclear distribution of the chromatin-remodeling protein ATRX in pre-implantation mouse embryos. Immunofluorescent staining revealed the changes of ATRX nuclear distribution at the initial stages of early mouse development. At the stage of early zygote, a diffuse ATRX distribution pattern was prevalent. During the course of zygotic genome activation (ZGA), zones of increased ATRX concentration are observed, and they are most expressed in the nuclei of late 2-cell embryos. In the morula stage, the ATRX distribution becomes diffuse again. In zygotes, the patterns of ATRX distribution differ between male and female pronuclei. At all the stages, ATRX concentrates in the DAPI-positive areas of condensed chromatin. The level of colocalization between ATRX and heterochromatin was found the highest at the late 2-cell stage. When transcription was artificially suppressed, the pattern of intranuclear ATRX distribution was mostly determined by the mechanism of inhibitor action rather than the decreased level of transcriptional activity. Thus, the obvious changes of ATRX distribution occur and partially correlate with the main stages of ZGA during mouse early development, but these changes seem to be determined by other processes of structural and functional rearrangements of blastomere nuclei.
Collapse
|
14
|
Cooper S, Grijzenhout A, Underwood E, Ancelin K, Zhang T, Nesterova TB, Anil-Kirmizitas B, Bassett A, Kooistra SM, Agger K, Helin K, Heard E, Brockdorff N. Jarid2 binds mono-ubiquitylated H2A lysine 119 to mediate crosstalk between Polycomb complexes PRC1 and PRC2. Nat Commun 2016; 7:13661. [PMID: 27892467 PMCID: PMC5133711 DOI: 10.1038/ncomms13661] [Citation(s) in RCA: 197] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Accepted: 10/21/2016] [Indexed: 12/19/2022] Open
Abstract
The Polycomb repressive complexes PRC1 and PRC2 play a central role in developmental gene regulation in multicellular organisms. PRC1 and PRC2 modify chromatin by catalysing histone H2A lysine 119 ubiquitylation (H2AK119u1), and H3 lysine 27 methylation (H3K27me3), respectively. Reciprocal crosstalk between these modifications is critical for the formation of stable Polycomb domains at target gene loci. While the molecular mechanism for recognition of H3K27me3 by PRC1 is well defined, the interaction of PRC2 with H2AK119u1 is poorly understood. Here we demonstrate a critical role for the PRC2 cofactor Jarid2 in mediating the interaction of PRC2 with H2AK119u1. We identify a ubiquitin interaction motif at the amino-terminus of Jarid2, and demonstrate that this domain facilitates PRC2 localization to H2AK119u1 both in vivo and in vitro. Our findings ascribe a critical function to Jarid2 and define a key mechanism that links PRC1 and PRC2 in the establishment of Polycomb domains. The Polycomb repressive complexes PRC1 and PRC2 play a central role in developmental regulation of the genome in multicellular organisms. Here the authors describe how the PRC2 cofactor Jarid2 mediates the recruitment of the PRC2 complex to chromatin via interaction with H2AK119u1.
Collapse
Affiliation(s)
- Sarah Cooper
- Developmental Epigenetics, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Anne Grijzenhout
- Developmental Epigenetics, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Elizabeth Underwood
- Developmental Epigenetics, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Katia Ancelin
- Institut Curie, CNRS UMR3215, INSERM U934, 26 rue d'Ulm, Paris 75248, France
| | - Tianyi Zhang
- Developmental Epigenetics, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Tatyana B Nesterova
- Developmental Epigenetics, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Burcu Anil-Kirmizitas
- Developmental Epigenetics, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Andrew Bassett
- Genome Engineering Oxford, Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Susanne M Kooistra
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, 2200 Copenhagen, Denmark.,Centre for Epigenetics, Ole Maaløes Vej 5, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Karl Agger
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, 2200 Copenhagen, Denmark.,Centre for Epigenetics, Ole Maaløes Vej 5, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Kristian Helin
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, 2200 Copenhagen, Denmark.,Centre for Epigenetics, Ole Maaløes Vej 5, University of Copenhagen, 2200 Copenhagen, Denmark.,The Danish Stem Cell Center (Danstem), University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen, Denmark
| | - Edith Heard
- Institut Curie, CNRS UMR3215, INSERM U934, 26 rue d'Ulm, Paris 75248, France
| | - Neil Brockdorff
- Developmental Epigenetics, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| |
Collapse
|
15
|
Pinter SF. A Tale of Two Cities: How Xist and its partners localize to and silence the bicompartmental X. Semin Cell Dev Biol 2016; 56:19-34. [PMID: 27072488 DOI: 10.1016/j.semcdb.2016.03.023] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2016] [Revised: 03/30/2016] [Accepted: 03/30/2016] [Indexed: 10/22/2022]
Abstract
Sex chromosomal dosage compensation in mammals takes the form of X chromosome inactivation (XCI), driven by the non-coding RNA Xist. In contrast to dosage compensation systems of flies and worms, mammalian XCI has to restrict its function to the Xist-producing X chromosome, while leaving autosomes and active X untouched. The mechanisms behind the long-range yet cis-specific localization and silencing activities of Xist have long been enigmatic, but genomics, proteomics, super-resolution microscopy, and innovative genetic approaches have produced significant new insights in recent years. In this review, I summarize and integrate these findings with a particular focus on the redundant yet mutually reinforcing pathways that enable long-term transcriptional repression throughout the soma. This includes an exploration of concurrent epigenetic changes acting in parallel within two distinct compartments of the inactive X. I also examine how Polycomb repressive complexes 1 and 2 and macroH2A may bridge XCI establishment and maintenance. XCI is a remarkable phenomenon that operates across multiple scales, combining changes in nuclear architecture, chromosome topology, chromatin compaction, and nucleosome/nucleotide-level epigenetic cues. Learning how these pathways act in concert likely holds the answer to the riddle posed by Cattanach's and other autosomal translocations: What makes the X especially receptive to XCI?
Collapse
Affiliation(s)
- Stefan F Pinter
- Department of Genetics and Genome Sciences, Institute for Systems Genomics, University of Connecticut Health Center, 263 Farmington Ave, Farmington, CT 06030-6403, USA.
| |
Collapse
|
16
|
Maduro C, de Hoon B, Gribnau J. Fitting the Puzzle Pieces: the Bigger Picture of XCI. Trends Biochem Sci 2016; 41:138-147. [DOI: 10.1016/j.tibs.2015.12.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 12/08/2015] [Accepted: 12/08/2015] [Indexed: 01/06/2023]
|
17
|
Abstract
ATRX was identified over 20 years ago as the gene responsible for a rare developmental disorder characterized by α-thalassemia and intellectual disability. Similarities to the sucrose nonfermentable SNF2 type chromatin remodelers initially suggested a role in transcriptional regulation. However, over the last years, our knowledge of the epigenetic activities of ATRX has expanded steadily. Recent exciting discoveries have propelled ATRX into the limelight of chromatin and telomere biology, development and cancer research. This review summarizes recent breakthroughs in understanding ATRX function in heterochromatin structure, genome stability and its frequent dysregulation in a variety of cancers.
Collapse
Affiliation(s)
- L Ashley Watson
- Departments of Paediatrics, Biochemistry & Oncology, University of Western Ontario, Victoria Research Laboratories, 800 Commissioners Road East, London, Canada.,Children's Health Research Institute, London, Canada.,Lawson Health Research Institute, London, Canada
| | - Hannah Goldberg
- Departments of Paediatrics, Biochemistry & Oncology, University of Western Ontario, Victoria Research Laboratories, 800 Commissioners Road East, London, Canada.,Children's Health Research Institute, London, Canada.,Lawson Health Research Institute, London, Canada
| | - Nathalie G Bérubé
- Departments of Paediatrics, Biochemistry & Oncology, University of Western Ontario, Victoria Research Laboratories, 800 Commissioners Road East, London, Canada.,Children's Health Research Institute, London, Canada.,Lawson Health Research Institute, London, Canada
| |
Collapse
|
18
|
Dixon-McDougall T, Brown C. The making of a Barr body: the mosaic of factors that eXIST on the mammalian inactive X chromosome. Biochem Cell Biol 2015; 94:56-70. [PMID: 26283003 DOI: 10.1139/bcb-2015-0016] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
During X-chromosome inactivation (XCI), nearly an entire X chromosome is permanently silenced and converted into a Barr body, providing dosage compensation for eutherians between the sexes. XCI is facilitated by the upregulation of the long non-coding RNA gene, XIST, which coats its chromosome of origin, recruits heterochromatin factors, and silences gene expression. During XCI, at least two distinct types of heterochromatin are established, and in this review we discuss the enrichment of facultative heterochromatin marks such as H3K27me3, H2AK119ub, and macroH2A as well as pericentric heterochromatin marks such as HP1, H3K9me3, and H4K20me3. The extremely stable maintenance of silencing is a product of reinforcing interactions within and between these domains. This paper "Xplores" the current knowledge of the pathways involved in XCI, how the pathways interact, and the gaps in our understanding that need to be filled.
Collapse
Affiliation(s)
- Thomas Dixon-McDougall
- Department of Medical Genetics, University of British Columbia, Vancouver, BC V6T 1Z3, Canada.,Department of Medical Genetics, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Carolyn Brown
- Department of Medical Genetics, University of British Columbia, Vancouver, BC V6T 1Z3, Canada.,Department of Medical Genetics, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| |
Collapse
|
19
|
Sarma K, Cifuentes-Rojas C, Ergun A, Del Rosario A, Jeon Y, White F, Sadreyev R, Lee JT. ATRX directs binding of PRC2 to Xist RNA and Polycomb targets. Cell 2015; 159:869-83. [PMID: 25417162 DOI: 10.1016/j.cell.2014.10.019] [Citation(s) in RCA: 159] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Revised: 07/22/2014] [Accepted: 10/08/2014] [Indexed: 12/20/2022]
Abstract
X chromosome inactivation (XCI) depends on the long noncoding RNA Xist and its recruitment of Polycomb Repressive Complex 2 (PRC2). PRC2 is also targeted to other sites throughout the genome to effect transcriptional repression. Using XCI as a model, we apply an unbiased proteomics approach to isolate Xist and PRC2 regulators and identified ATRX. ATRX unexpectedly functions as a high-affinity RNA-binding protein that directly interacts with RepA/Xist RNA to promote loading of PRC2 in vivo. Without ATRX, PRC2 cannot load onto Xist RNA nor spread in cis along the X chromosome. Moreover, epigenomic profiling reveals that genome-wide targeting of PRC2 depends on ATRX, as loss of ATRX leads to spatial redistribution of PRC2 and derepression of Polycomb responsive genes. Thus, ATRX is a required specificity determinant for PRC2 targeting and function.
Collapse
Affiliation(s)
- Kavitha Sarma
- Howard Hughes Medical Institute; Department of Molecular Biology, Massachusetts General Hospital, Boston, MA USA; Department of Genetics, Harvard Medical School, Boston, MA USA
| | - Catherine Cifuentes-Rojas
- Howard Hughes Medical Institute; Department of Molecular Biology, Massachusetts General Hospital, Boston, MA USA; Department of Genetics, Harvard Medical School, Boston, MA USA
| | - Ayla Ergun
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA USA; Department of Genetics, Harvard Medical School, Boston, MA USA
| | - Amanda Del Rosario
- Department of Bioengineering, Massachusetts Institute of Technology, Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA USA
| | - Yesu Jeon
- Howard Hughes Medical Institute; Department of Molecular Biology, Massachusetts General Hospital, Boston, MA USA; Department of Genetics, Harvard Medical School, Boston, MA USA
| | - Forest White
- Department of Bioengineering, Massachusetts Institute of Technology, Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA USA
| | - Ruslan Sadreyev
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA USA; Department of Genetics, Harvard Medical School, Boston, MA USA; Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, MA USA
| | - Jeannie T Lee
- Howard Hughes Medical Institute; Department of Molecular Biology, Massachusetts General Hospital, Boston, MA USA; Department of Genetics, Harvard Medical School, Boston, MA USA; Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, MA USA.
| |
Collapse
|
20
|
Levy MA, Kernohan KD, Jiang Y, Bérubé NG. ATRX promotes gene expression by facilitating transcriptional elongation through guanine-rich coding regions. Hum Mol Genet 2014; 24:1824-35. [PMID: 25452430 DOI: 10.1093/hmg/ddu596] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
ATRX is a chromatin remodeling protein involved in deposition of the histone variant H3.3 at telomeres and pericentromeric heterochromatin. It also influences the expression level of specific genes; however, deposition of H3.3 at transcribed genes is currently thought to occur independently of ATRX. We focused on a set of genes, including the autism susceptibility gene Neuroligin 4 (Nlgn4), that exhibit decreased expression in ATRX-null cells to investigate the mechanisms used by ATRX to promote gene transcription. Overall TERRA levels, as well as DNA methylation and histone modifications at ATRX target genes are not altered and thus cannot explain transcriptional dysregulation. We found that ATRX does not associate with the promoter of these genes, but rather binds within regions of the gene body corresponding to high H3.3 occupancy. These intragenic regions consist of guanine-rich DNA sequences predicted to form non-B DNA structures called G-quadruplexes during transcriptional elongation. We demonstrate that ATRX deficiency corresponds to reduced H3.3 incorporation and stalling of RNA polymerase II at these G-rich intragenic sites. These findings suggest that ATRX promotes the incorporation of histone H3.3 at particular transcribed genes and facilitates transcriptional elongation through G-rich sequences. The inability to transcribe genes such as Nlgn4 could cause deficits in neuronal connectivity and cognition associated with ATRX mutations in humans.
Collapse
Affiliation(s)
- Michael A Levy
- Department of Paediatrics, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada N6A 5C1, Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada N6A 5C1 Children's Health Research Institute, London, Ontario, Canada N6C 2V5
| | - Kristin D Kernohan
- Department of Paediatrics, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada N6A 5C1, Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada N6A 5C1 Children's Health Research Institute, London, Ontario, Canada N6C 2V5
| | - Yan Jiang
- Department of Paediatrics, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada N6A 5C1, Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada N6A 5C1 Children's Health Research Institute, London, Ontario, Canada N6C 2V5
| | - Nathalie G Bérubé
- Department of Paediatrics, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada N6A 5C1, Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada N6A 5C1 Children's Health Research Institute, London, Ontario, Canada N6C 2V5
| |
Collapse
|
21
|
Meeker A, Heaphy C. Gastroenteropancreatic endocrine tumors. Mol Cell Endocrinol 2014; 386:101-20. [PMID: 23906538 DOI: 10.1016/j.mce.2013.07.015] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Revised: 07/19/2013] [Accepted: 07/22/2013] [Indexed: 02/06/2023]
Abstract
Gastroenteropancreatic endocrine tumors (GEP-NETs) are relatively uncommon; comprising approximately 0.5% of all human cancers. Although they often exhibit relatively indolent clinical courses, GEP-NETs have the potential for lethal progression. Due to their scarcity and various technical challenges, GEP-NETs have been understudied. As a consequence, we have few diagnostic, prognostic and predictive biomarkers for these tumors. Early detection and surgical removal is currently the only reliable curative treatment for GEP-NET patients; many of whom, unfortunately, present with advanced disease. Here, we review the genetics and epigenetics of GEP-NETs. The last few years have witnessed unprecedented technological advances in these fields, and their application to GEP-NETS has already led to important new information on the molecular abnormalities underlying them. As outlined here, we expect that "omics" studies will provide us with new diagnostic and prognostic biomarkers, inform the development of improved pre-clinical models, and identify novel therapeutic targets for GEP-NET patients.
Collapse
Affiliation(s)
- Alan Meeker
- The Johns Hopkins University School of Medicine, Department of Pathology, Bond Street Research Annex Bldg., Room B300, 411 North Caroline Street, Baltimore, MD 21231, United States.
| | - Christopher Heaphy
- The Johns Hopkins University School of Medicine, Department of Pathology, Bond Street Research Annex Bldg., Room B300, 411 North Caroline Street, Baltimore, MD 21231, United States
| |
Collapse
|
22
|
Sismani C, Donoghue J, Alexandrou A, Karkaletsi M, Christopoulou S, Konstantinidou AE, Livanos P, Patsalis PC, Velissariou V. A prenatally ascertained, maternally inherited 14.8 Mb duplication of chromosomal bands Xq13.2-q21.31 associated with multiple congenital abnormalities in a male fetus. Gene 2013; 530:138-42. [PMID: 23973723 DOI: 10.1016/j.gene.2013.08.032] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Revised: 08/06/2013] [Accepted: 08/08/2013] [Indexed: 11/29/2022]
Abstract
Duplications of the X chromosome are rare cytogenetic findings, and have been associated with an abnormal phenotype in the male offspring of apparently normal or near normal female carriers. We report on the prenatal diagnosis of a duplication on the long arm of chromosome X from chromosomal band Xq13.2 to q21.31 in a male fetus with increased nuchal translucency in the first trimester and polyhydramnios at 22 weeks of gestation. Amniocentesis was undertaken and cytogenetic analysis revealed additional chromosomal material in the long arm of chromosome X at position Xq13. Analysis with high resolution array CGH revealed the additional material is in fact a duplication of the region Xq13.2-q21.13. The duplication is 14.8 Mb in size and includes fourteen genes: SLC16A2, KIAA2022, ABCB7, ZDHHC15, ATRX, MAGT1, ATP7A, PGK1, TBX22, BRWD3, POU3F4, ZNF711, POF1B and CHM. Analysis of the parents revealed the mother to be a carrier of the same duplication. After elected termination of the pregnancy at 28 weeks a detailed autopsy of the fetus allowed for genotype-phenotype correlations.
Collapse
Affiliation(s)
- C Sismani
- Department of Cytogenetics and Genomics, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Chandrasekaran P, Doss CGP, Nisha J, Sethumadhavan R, Shanthi V, Ramanathan K, Rajasekaran R. In silico analysis of detrimental mutations in ADD domain of chromatin remodeling protein ATRX that cause ATR-X syndrome: X-linked disorder. ACTA ACUST UNITED AC 2013. [DOI: 10.1007/s13721-013-0031-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
24
|
Sado T, Brockdorff N. Advances in understanding chromosome silencing by the long non-coding RNA Xist. Philos Trans R Soc Lond B Biol Sci 2013; 368:20110325. [PMID: 23166390 DOI: 10.1098/rstb.2011.0325] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
In female mammals, one of the two X chromosomes becomes genetically silenced to compensate for dosage imbalance of X-linked genes between XX females and XY males. X chromosome inactivation (X-inactivation) is a classical model for epigenetic gene regulation in mammals and has been studied for half a century. In the last two decades, efforts have been focused on the X inactive-specific transcript (Xist) locus, discovered to be the master regulator of X-inactivation. The Xist gene produces a non-coding RNA that functions as the primary switch for X-inactivation, coating the X chromosome from which it is transcribed in cis. Significant progress has been made towards understanding how Xist is regulated at the onset of X-inactivation, but our understanding of the molecular basis of silencing mediated by Xist RNA has progressed more slowly. A picture has, however, begun to emerge, and new tools and resources hold out the promise of further advances to come. Here, we provide an overview of the current state of our knowledge, what is known about Xist RNA and how it may trigger chromosome silencing.
Collapse
Affiliation(s)
- Takashi Sado
- Division of Epigenomics, Medical Institute of Bioregulation, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka 812-8582, Japan.
| | | |
Collapse
|
25
|
Corbel C, Diabangouaya P, Gendrel AV, Chow JC, Heard E. Unusual chromatin status and organization of the inactive X chromosome in murine trophoblast giant cells. Development 2013; 140:861-72. [PMID: 23362347 DOI: 10.1242/dev.087429] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Mammalian X-chromosome inactivation (XCI) enables dosage compensation between XX females and XY males. It is an essential process and its absence in XX individuals results in early lethality due primarily to extra-embryonic defects. This sensitivity to X-linked gene dosage in extra-embryonic tissues is difficult to reconcile with the reported tendency of escape from XCI in these tissues. The precise transcriptional status of the inactive X chromosome in different lineages has mainly been examined using transgenes or in in vitro differentiated stem cells and the degree to which endogenous X-linked genes are silenced in embryonic and extra-embryonic lineages during early postimplantation stages is unclear. Here we investigate the precise temporal and lineage-specific X-inactivation status of several genes in postimplantation mouse embryos. We find stable gene silencing in most lineages, with significant levels of escape from XCI mainly in one extra-embryonic cell type: trophoblast giant cells (TGCs). To investigate the basis of this epigenetic instability, we examined the chromatin structure and organization of the inactive X chromosome in TGCs obtained from ectoplacental cone explants. We find that the Xist RNA-coated X chromosome has a highly unusual chromatin content in TGCs, presenting both heterochromatic marks such as H3K27me3 and euchromatic marks such as histone H4 acetylation and H3K4 methylation. Strikingly, Xist RNA does not form an overt silent nuclear compartment or Cot1 hole in these cells. This unusual combination of silent and active features is likely to reflect, and might underlie, the partial activity of the X chromosome in TGCs.
Collapse
Affiliation(s)
- Catherine Corbel
- Unité de Génétique et Biologie du Développement, Institut Curie, CNRS UMR 3215, INSERM U934, 26 rue d'Ulm, 75248 Paris Cedex 05, France.
| | | | | | | | | |
Collapse
|
26
|
Ratnakumar K, Bernstein E. ATRX: the case of a peculiar chromatin remodeler. Epigenetics 2012; 8:3-9. [PMID: 23249563 DOI: 10.4161/epi.23271] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The SWI/SNF-like chromatin remodeler ATRX has recently garnered renewed attention. ATRX mutations were first identified in patients bearing the syndrome after which it is named, alpha thalassemia/mental retardation, X-linked. While ATRX has long been implicated in transcriptional regulation through multiple mechanisms, recent studies have identified a role for ATRX in the regulation of histone variant deposition. In addition, current reports describe ATRX to be mutated at high percentages in multiple tumor types, suggestive of a potential 'driver' role in cancer. Here we discuss the numerous and seemingly diverse roles for ATRX in transcriptional regulation and histone deposition and suggest that ATRX's effects are mediated by its regulation of histones within the chromatin template.
Collapse
Affiliation(s)
- Kajan Ratnakumar
- Department of Oncological Sciences, Mount Sinai School of Medicine, New York, NY, USA
| | | |
Collapse
|
27
|
Genome-wide DNA methylation analysis in patients with familial ATR-X mental retardation syndrome. Epigenomics 2012. [DOI: 10.1017/cbo9780511777271.037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
28
|
Jeon Y, Sarma K, Lee JT. New and Xisting regulatory mechanisms of X chromosome inactivation. Curr Opin Genet Dev 2012; 22:62-71. [PMID: 22424802 PMCID: PMC3361064 DOI: 10.1016/j.gde.2012.02.007] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2012] [Accepted: 02/07/2012] [Indexed: 01/30/2023]
Abstract
Equalization of X linked gene expression is necessary in mammalian cells due to the presence of two X chromosomes in females and one in males. To achieve this, all female cells inactivate one of the two X chromosomes during development. This process, termed X chromosome inactivation (XCI), is a quintessential epigenetic phenomenon and involves a complex interplay between noncoding RNAs and protein factors. Progress in this area of study has consequently resulted in new approaches to study epigenetics and regulatory RNA function. Here we will discuss recent developments in the field that have advanced our understanding of XCI and its regulatory mechanisms.
Collapse
Affiliation(s)
- Yesu Jeon
- Howard Hughes Medical Institute, Dept. of Molecular Biology, Massachusetts General Hospital, Dept. of Genetics, Harvard Medical School, Boston, MA 02114, USA
| | | | | |
Collapse
|
29
|
De La Fuente R, Baumann C, Viveiros MM. Chromatin structure and ATRX function in mouse oocytes. Results Probl Cell Differ 2012; 55:45-68. [PMID: 22918800 DOI: 10.1007/978-3-642-30406-4_3] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Differentiation of chromatin structure and function during oogenesis is essential to confer the mammalian oocyte with meiotic and developmental potential. Errors in chromosome segregation during female meiosis and subsequent transmission of an abnormal chromosome complement (aneuploidy) to the early conceptus are one of the leading causes of pregnancy loss in women. The chromatin remodeling protein ATRX (α-thalassemia mental retardation X-linked) has recently emerged as a critical factor involved in heterochromatin formation at mammalian centromeres during meiosis. In mammalian oocytes, ATRX binds to centromeric heterochromatin domains where it is required for accurate chromosome segregation. Loss of ATRX function induces abnormal meiotic chromosome morphology, reduces histone H3 phosphorylation, and promotes a high incidence of aneuploidy associated with severely reduced fertility. The presence of centromeric breaks during the transition to the first mitosis in the early embryo indicates that the role of ATRX in chromosome segregation is mediated through an epigenetic mechanism involving the maintenance of chromatin modifications associated with pericentric heterochromatin (PCH) formation and chromosome condensation. This is consistent with the existence of a potential molecular link between centromeric and PCH in the epigenetic control of centromere function and maintenance of chromosome stability in mammalian oocytes. Dissecting the molecular mechanisms of ATRX function during meiosis will have important clinical implications towards uncovering the epigenetic factors contributing to the onset of aneuploidy in the human oocyte.
Collapse
|
30
|
Sanchez-Mut J, Huertas D, Esteller M. Aberrant epigenetic landscape in intellectual disability. PROGRESS IN BRAIN RESEARCH 2012; 197:53-71. [DOI: 10.1016/b978-0-444-54299-1.00004-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
31
|
Basu R, Zhang LF. X chromosome inactivation: a silence that needs to be broken. Genesis 2011; 49:821-34. [PMID: 21898762 DOI: 10.1002/dvg.20792] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2011] [Revised: 08/04/2011] [Accepted: 08/06/2011] [Indexed: 11/08/2022]
Abstract
Each mammalian female cell transcriptionally inactivates one X chromosome to balance X-linked gene dosage between males and females. This phenomenon, called X chromosome inactivation, is a perfect epigenetic event, in which two chromosomes with identical DNA sequences are solely distinguished by epigenetic modifications. In this case, epigenetic marks, such as histone modifications, histone variants, DNA methylation, and ncRNAs, are all enriched on one chromosome, the inactive X chromosome (Xi), to establish its chromosome-wide gene silencing. At face value, it seems that the gene silencing mechanism of Xi is well understood. However, the "silence" of Xi in somatic cells is so tightly maintained that it remains largely intact even after almost all known epigenetic modifications are artificially depleted. To understand how the gene silence of Xi is maintained in soma is a major challenge in current research. We summarize the current knowledge related with this issue and discuss future research directions.
Collapse
Affiliation(s)
- Reelina Basu
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore
| | | |
Collapse
|
32
|
Bérubé NG. ATRX in chromatin assembly and genome architecture during development and disease. Biochem Cell Biol 2011; 89:435-44. [DOI: 10.1139/o11-038] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The regulation of genome architecture is essential for a variety of fundamental cellular phenomena that underlie the complex orchestration of mammalian development. The ATP-dependent chromatin remodeling protein ATRX is emerging as a key regulatory component of nucleosomal dynamics and higher order chromatin conformation. Here we provide an overview of the role of ATRX at chromatin and during development, and discuss recent studies exposing a repertoire of ATRX functions at heterochromatin, in gene regulation, and during mitosis and meiosis. Exciting new progress on several fronts suggest that ATRX operates in histone variant deposition and in the modulation of higher order chromatin structure. Not surprisingly, dysfunction or absence of ATRX protein has devastating consequences on embryonic development and leads to human disease.
Collapse
Affiliation(s)
- Nathalie G. Bérubé
- Victoria Research Laboratories 800 Commissioners Road East London, ON, Canada N6C 2V5
| |
Collapse
|
33
|
De La Fuente R, Baumann C, Viveiros MM. Role of ATRX in chromatin structure and function: implications for chromosome instability and human disease. Reproduction 2011; 142:221-34. [PMID: 21653732 PMCID: PMC3253860 DOI: 10.1530/rep-10-0380] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Functional differentiation of chromatin structure is essential for the control of gene expression, nuclear architecture, and chromosome stability. Compelling evidence indicates that alterations in chromatin remodeling proteins play an important role in the pathogenesis of human disease. Among these, α-thalassemia mental retardation X-linked protein (ATRX) has recently emerged as a critical factor involved in heterochromatin formation at mammalian centromeres and telomeres as well as facultative heterochromatin on the murine inactive X chromosome. Mutations in human ATRX result in an X-linked neurodevelopmental condition with various degrees of gonadal dysgenesis (ATRX syndrome). Patients with ATRX syndrome may exhibit skewed X chromosome inactivation (XCI) patterns, and ATRX-deficient mice exhibit abnormal imprinted XCI in the trophoblast cell line. Non-random or skewed XCI can potentially affect both the onset and severity of X-linked disease. Notably, failure to establish epigenetic modifications associated with the inactive X chromosome (Xi) results in several conditions that exhibit genomic and chromosome instability such as fragile X syndrome as well as cancer development. Insight into the molecular mechanisms of ATRX function and its interacting partners in different tissues will no doubt contribute to our understanding of the pathogenesis of ATRX syndrome as well as the epigenetic origins of aneuploidy. In turn, this knowledge will be essential for the identification of novel drug targets and diagnostic tools for cancer progression as well as the therapeutic management of global epigenetic changes commonly associated with malignant neoplastic transformation.
Collapse
Affiliation(s)
- Rabindranath De La Fuente
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, Georgia 30602, USA.
| | | | | |
Collapse
|
34
|
Abstract
In humans, sexual dimorphism is associated with the presence of two X chromosomes in the female, whereas males possess only one X and a small and largely degenerate Y chromosome. How do men cope with having only a single X chromosome given that virtually all other chromosomal monosomies are lethal? Ironically, or even typically many might say, women and more generally female mammals contribute most to the job by shutting down one of their two X chromosomes at random. This phenomenon, called X-inactivation, was originally described some 50 years ago by Mary Lyon and has captivated an increasing number of scientists ever since. The fascination arose in part from the realisation that the inactive X corresponded to a dense heterochromatin mass called the “Barr body” whose number varied with the number of Xs within the nucleus and from the many intellectual questions that this raised: How does the cell count the X chromosomes in the nucleus and inactivate all Xs except one? What kind of molecular mechanisms are able to trigger such a profound, chromosome-wide metamorphosis? When is X-inactivation initiated? How is it transmitted to daughter cells and how is it reset during gametogenesis? This review retraces some of the crucial findings, which have led to our current understanding of a biological process that was initially considered as an exception completely distinct from conventional regulatory systems but is now viewed as a paradigm “par excellence” for epigenetic regulation.
Collapse
Affiliation(s)
- Céline Morey
- Institut Pasteur, Unité de Génétique Moléculaire Murine, CNRS, URA2578, Paris, France
- * E-mail:
| | - Philip Avner
- Institut Pasteur, Unité de Génétique Moléculaire Murine, CNRS, URA2578, Paris, France
| |
Collapse
|
35
|
Evolutionary diversity and developmental regulation of X-chromosome inactivation. Hum Genet 2011; 130:307-27. [PMID: 21687993 PMCID: PMC3132430 DOI: 10.1007/s00439-011-1029-2] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2011] [Accepted: 05/31/2011] [Indexed: 12/26/2022]
Abstract
X-chromosome inactivation (XCI) results in the transcriptional silencing of one X-chromosome in females to attain gene dosage parity between XX female and XY male mammals. Mammals appear to have developed rather diverse strategies to initiate XCI in early development. In placental mammals XCI depends on the regulatory noncoding RNA X-inactive specific transcript (Xist), which is absent in marsupials and monotremes. Surprisingly, even placental mammals show differences in the initiation of XCI in terms of Xist regulation and the timing to acquire dosage compensation. Despite this, all placental mammals achieve chromosome-wide gene silencing at some point in development, and this is maintained by epigenetic marks such as chromatin modifications and DNA methylation. In this review, we will summarise recent findings concerning the events that occur downstream of Xist RNA coating of the inactive X-chromosome (Xi) to ensure its heterochromatinization and the maintenance of the inactive state in the mouse and highlight similarities and differences between mammals.
Collapse
|
36
|
XCI in preimplantation mouse and human embryos: first there is remodelling…. Hum Genet 2011; 130:203-15. [PMID: 21647603 PMCID: PMC3132436 DOI: 10.1007/s00439-011-1014-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2011] [Accepted: 05/19/2011] [Indexed: 12/21/2022]
Abstract
Female eutherians silence one of their X chromosomes to accomplish an equal dose of X-linked gene expression compared with males. The mouse is the most widely used animal model in XCI research and has proven to be of great significance for understanding the complex mechanism of X-linked dosage compensation. Although the basic principles of XCI are similar in mouse and humans, differences exist in the timing of XCI initiation, the genetic elements involved in XCI regulation and the form of XCI in specific tissues. Therefore, the mouse has its limitations as a model to understand early human XCI and analysis of human tissues is required. In this review, we describe these differences with respect to initiation of XCI in human and mouse preimplantation embryos, the extra-embryonic tissues and the in vitro model of the epiblast: the embryonic stem cells.
Collapse
|
37
|
Affiliation(s)
- Céline Morey
- Département de Biologie du Développement, Unité de Génétique Moléculaire Murine, Institut Pasteur, CNRS, Paris, France
| | | |
Collapse
|
38
|
Iwase S, Shi Y. Histone and DNA modifications in mental retardation. PROGRESS IN DRUG RESEARCH. FORTSCHRITTE DER ARZNEIMITTELFORSCHUNG. PROGRES DES RECHERCHES PHARMACEUTIQUES 2011; 67:147-73. [PMID: 21141729 DOI: 10.1007/978-3-7643-8989-5_8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Mental retardation (MR), which affects 1-3% of the total population, refers to a pathological condition whereby the affected individuals suffer from cognitive impairment, which is diagnosed by a low intelligence quotient (IQ) (< 70). Over the years, human genetic studies identified a plethora of candidate genes causing MR, but mechanisms by which these candidates regulate cognitive function remain poorly understood. While the functions of MR genes range from cell signaling and gene expression to synaptic plasticity, there is growing evidence supporting a critical role for epigenetic and chromatin regulatory proteins in MR. Excitingly, recent molecular and genetic studies suggest the possibility of improving cognitive functions via modulation of epigenetic regulators, highlighting a potentially new avenue for therapeutic intervention. In this review, we discuss recent studies on epigenetic regulation in MR and explore the concept of epigenetic therapy for MR.
Collapse
Affiliation(s)
- Shigeki Iwase
- Department of Pathology, Harvard Medical School, 77 Ave Louis Pasteur, Boston, MA 02115, USA
| | | |
Collapse
|
39
|
Gontan C, Jonkers I, Gribnau J. Long Noncoding RNAs and X Chromosome Inactivation. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2011; 51:43-64. [PMID: 21287133 DOI: 10.1007/978-3-642-16502-3_3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Abstract
In female somatic cells, one of the two X chromosomes is inactivated to equalize the dose of sex-linked gene products between female and male cells. X chromosome inactivation X chromosome inactivation (XCI) is initiated very early during development and requires Xist Xist , which is a noncoding X-linked gene. Upon initiation of XCI, Xist-RNA spreads along the X chromosome in cis, and Xist spreading is required for the recruitment of different chromatin remodeling complexes involved in the establishment and maintenance of the inactive X chromosome. Because XCI acts chromosomewise, Xist-mediated silencing has served as an important paradigm to study the function of noncoding RNAs (ncRNA) in gene silencing. In this chapter, we describe the current knowledge about the structure and function of Xist. We also discuss the important cis- and trans-regulatory elements and proteins in the initiation, establishment, and maintenance of XCI. In addition, we highlight new findings with other ncRNAs involved in gene repression and discuss these findings in relation to Xist-mediated gene silencing.
Collapse
Affiliation(s)
- Cristina Gontan
- Department of Reproduction and Development, Erasmus MC, University Medical Center, Room Ee 09-71, 2040, 3000, CA, Rotterdam, The Netherlands
| | | | | |
Collapse
|
40
|
Abstract
Embryonic development is regulated by both genetic and epigenetic mechanisms, with nearly all DNA-templated processes influenced by chromatin architecture. Sequence variations in histone proteins, core components of chromatin, provide a means to generate diversity in the chromatin structure, resulting in distinct and profound biological outcomes in the developing embryo. Emerging literature suggests that epigenetic contributions from histone variants play key roles in a number of developmental processes such as the initiation and maintenance of pericentric heterochromatin, X-inactivation, and germ cell differentiation. Here, we review the role of histone variants in the embryo with particular emphasis on early mammalian development.
Collapse
Affiliation(s)
- Laura A Banaszynski
- Laboratory of Chromatin Biology and Epigenetics, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | | | | |
Collapse
|
41
|
Baumann C, Viveiros MM, De La Fuente R. Loss of maternal ATRX results in centromere instability and aneuploidy in the mammalian oocyte and pre-implantation embryo. PLoS Genet 2010; 6:e1001137. [PMID: 20885787 PMCID: PMC2944790 DOI: 10.1371/journal.pgen.1001137] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2010] [Accepted: 08/24/2010] [Indexed: 01/10/2023] Open
Abstract
The α-thalassemia/mental retardation X-linked protein (ATRX) is a chromatin-remodeling factor known to regulate DNA methylation at repetitive sequences of the human genome. We have previously demonstrated that ATRX binds to pericentric heterochromatin domains in mouse oocytes at the metaphase II stage where it is involved in mediating chromosome alignment at the meiotic spindle. However, the role of ATRX in the functional differentiation of chromatin structure during meiosis is not known. To test ATRX function in the germ line, we developed an oocyte-specific transgenic RNAi knockdown mouse model. Our results demonstrate that ATRX is required for heterochromatin formation and maintenance of chromosome stability during meiosis. During prophase I arrest, ATRX is necessary to recruit the transcriptional regulator DAXX (death domain associated protein) to pericentric heterochromatin. At the metaphase II stage, transgenic ATRX-RNAi oocytes exhibit abnormal chromosome morphology associated with reduced phosphorylation of histone 3 at serine 10 as well as chromosome segregation defects leading to aneuploidy and severely reduced fertility. Notably, a large proportion of ATRX-depleted oocytes and 1-cell stage embryos exhibit chromosome fragments and centromeric DNA–containing micronuclei. Our results provide novel evidence indicating that ATRX is required for centromere stability and the epigenetic control of heterochromatin function during meiosis and the transition to the first mitosis. The transmission of an abnormal chromosome complement from the gametes to the early embryo, a condition called aneuploidy, is a major cause of congenital birth defects and pregnancy loss. Human embryos are particularly susceptible to aneuploidy, which in the majority of cases is the result of abnormal meiosis in the female gamete. However, the molecular mechanisms involved in the onset of aneuploidy in mammalian oocytes are not fully understood. We show here that, the α-thalassemia/mental retardation X-linked protein (ATRX) is essential for the maintenance of chromosome stability during female meiosis. ATRX is required to recruit the transcriptional regulator DAXX to pericentric heterochromatin at prophase I of meiosis. Notably, lack of ATRX function at the metaphase II stage interferes with the establishment of chromatin modifications associated with chromosome condensation leading to segregation defects, chromosome fragmentation, and severely reduced fertility. Our results provide direct evidence for a role of ATRX in the regulation of pericentric heterochromatin structure and function in mammalian oocytes and have important implications for our understanding of the epigenetic factors contributing to the onset of aneuploidy in the female gamete.
Collapse
Affiliation(s)
- Claudia Baumann
- Female Germ Cell Biology Group, Department of Clinical Studies, University of Pennsylvania, Kennett Square, Pennsylvania, United States of America
| | - Maria M. Viveiros
- Department of Animal Biology, Center for Animal Transgenesis and Germ Cell Research, School of Veterinary Medicine, University of Pennsylvania, Kennett Square, Pennsylvania, United States of America
| | - Rabindranath De La Fuente
- Female Germ Cell Biology Group, Department of Clinical Studies, University of Pennsylvania, Kennett Square, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
42
|
Daxx is an H3.3-specific histone chaperone and cooperates with ATRX in replication-independent chromatin assembly at telomeres. Proc Natl Acad Sci U S A 2010; 107:14075-80. [PMID: 20651253 DOI: 10.1073/pnas.1008850107] [Citation(s) in RCA: 636] [Impact Index Per Article: 42.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The histone variant H3.3 is implicated in the formation and maintenance of specialized chromatin structure in metazoan cells. H3.3-containing nucleosomes are assembled in a replication-independent manner by means of dedicated chaperone proteins. We previously identified the death domain associated protein (Daxx) and the alpha-thalassemia X-linked mental retardation protein (ATRX) as H3.3-associated proteins. Here, we report that the highly conserved N terminus of Daxx interacts directly with variant-specific residues in the H3.3 core. Recombinant Daxx assembles H3.3/H4 tetramers on DNA templates, and the ATRX-Daxx complex catalyzes the deposition and remodeling of H3.3-containing nucleosomes. We find that the ATRX-Daxx complex is bound to telomeric chromatin, and that both components of this complex are required for H3.3 deposition at telomeres in murine embryonic stem cells (ESCs). These data demonstrate that Daxx functions as an H3.3-specific chaperone and facilitates the deposition of H3.3 at heterochromatin loci in the context of the ATRX-Daxx complex.
Collapse
|
43
|
Kernohan KD, Jiang Y, Tremblay DC, Bonvissuto AC, Eubanks JH, Mann MRW, Bérubé NG. ATRX partners with cohesin and MeCP2 and contributes to developmental silencing of imprinted genes in the brain. Dev Cell 2010; 18:191-202. [PMID: 20159591 DOI: 10.1016/j.devcel.2009.12.017] [Citation(s) in RCA: 128] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2009] [Revised: 10/12/2009] [Accepted: 12/17/2009] [Indexed: 11/27/2022]
Abstract
Human developmental disorders caused by chromatin dysfunction often display overlapping clinical manifestations, such as cognitive deficits, but the underlying molecular links are poorly defined. Here, we show that ATRX, MeCP2, and cohesin, chromatin regulators implicated in ATR-X, RTT, and CdLS syndromes, respectively, interact in the brain and colocalize at the H19 imprinting control region (ICR) with preferential binding on the maternal allele. Importantly, we show that ATRX loss of function alters enrichment of cohesin, CTCF, and histone modifications at the H19 ICR, without affecting DNA methylation on the paternal allele. ATRX also affects cohesin, CTCF, and MeCP2 occupancy within the Gtl2/Dlk1 imprinted domain. Finally, we show that loss of ATRX interferes with the postnatal silencing of the maternal H19 gene along with a larger network of imprinted genes. We propose that ATRX, cohesin, and MeCP2 cooperate to silence a subset of imprinted genes in the postnatal mouse brain.
Collapse
Affiliation(s)
- Kristin D Kernohan
- Department of Paediatrics, 800 Commissioners Road East, London, ON N6C 2V5, Canada
| | | | | | | | | | | | | |
Collapse
|
44
|
Barakat TS, Gribnau J. X chromosome inactivation and embryonic stem cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 695:132-54. [PMID: 21222204 DOI: 10.1007/978-1-4419-7037-4_10] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
X chromosome inactivation (XCI) is a process required to equalize the dosage of X-encoded genes between female and male cells. XCI is initiated very early during female embryonic development or upon differentiation of female embryonic stem (ES) cells and results in inactivation of one X chromosome in every female somatic cell. The regulation of XCI involves factors that also play a crucial role in ES cell maintenance and differentiation and the XCI process therefore provides a beautiful paradigm to study ES cell biology. In this chapter we describe the important cis and trans acting regulators of XCI and introduce the models that have been postulated to explain initiation of XCI in female cells only. We also discuss the proteins involved in the establishment of the inactive X chromosome and describe the different chromatin modifications associated with the inactivation process. Finally, we describe the potential of mouse and human ES and induced pluripotent stem (iPS) cells as model systems to study the XCI process.
Collapse
Affiliation(s)
- Tahsin Stefan Barakat
- Department of Reproduction and Development, University Medical Center, Room Ee 09-71, Erasmus MC, 3015 GE, Rotterdam, Netherlands
| | | |
Collapse
|
45
|
Urdinguio RG, Sanchez-Mut JV, Esteller M. Epigenetic mechanisms in neurological diseases: genes, syndromes, and therapies. Lancet Neurol 2009; 8:1056-72. [PMID: 19833297 DOI: 10.1016/s1474-4422(09)70262-5] [Citation(s) in RCA: 408] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Epigenetic mechanisms such as DNA methylation and modifications to histone proteins regulate high-order DNA structure and gene expression. Aberrant epigenetic mechanisms are involved in the development of many diseases, including cancer. The neurological disorder most intensely studied with regard to epigenetic changes is Rett syndrome; patients with Rett syndrome have neurodevelopmental defects associated with mutations in MeCP2, which encodes the methyl CpG binding protein 2, that binds to methylated DNA. Other mental retardation disorders are also linked to the disruption of genes involved in epigenetic mechanisms; such disorders include alpha thalassaemia/mental retardation X-linked syndrome, Rubinstein-Taybi syndrome, and Coffin-Lowry syndrome. Moreover, aberrant DNA methylation and histone modification profiles of discrete DNA sequences, and those at a genome-wide level, have just begun to be described for neurodegenerative disorders such as Alzheimer's disease, Parkinson's disease, and Huntington's disease, and in other neurological disorders such as multiple sclerosis, epilepsy, and amyotrophic lateral sclerosis. In this Review, we describe epigenetic changes present in neurological diseases and discuss the therapeutic potential of epigenetic drugs, such as histone deacetylase inhibitors.
Collapse
Affiliation(s)
- Rocio G Urdinguio
- Cancer Epigenetics and Biology Program, Bellvitge Biomedical Research Institute, Catalonia, Spain
| | | | | |
Collapse
|
46
|
|
47
|
Chow J, Heard E. X inactivation and the complexities of silencing a sex chromosome. Curr Opin Cell Biol 2009; 21:359-66. [PMID: 19477626 DOI: 10.1016/j.ceb.2009.04.012] [Citation(s) in RCA: 135] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2009] [Revised: 04/17/2009] [Accepted: 04/17/2009] [Indexed: 10/20/2022]
Abstract
X chromosome inactivation represents a paradigm for monoallelic gene expression and epigenetic regulation in mammals. Since its discovery over half a century ago, the pathways involved in the establishment of X-chromosomal silencing, assembly, and maintenance of the heterochromatic state have been the subjects of intensive research. In placental mammals, it is becoming clear that X inactivation involves an interplay between noncoding transcripts such as Xist, chromatin modifiers, and factors involved in nuclear organization. Together these result in a changed chromatin structure and in the spatial reorganization of the X chromosome. Exciting new work is starting to uncover the factors involved in some of these changes. Recent studies have also revealed surprising diversity in the kinetics and extent of gene silencing across the X chromosome, as well as in the mechanisms of XCI between mammals.
Collapse
Affiliation(s)
- Jennifer Chow
- Mammalian Developmental Epigenetics Group, Institut Curie, CNRS UMR3215, INSERM 934, 26 rue d'Ulm, Paris 75005, France.
| | | |
Collapse
|
48
|
Dynamic changes in paternal X-chromosome activity during imprinted X-chromosome inactivation in mice. Proc Natl Acad Sci U S A 2009; 106:5198-203. [PMID: 19273861 DOI: 10.1073/pnas.0810683106] [Citation(s) in RCA: 136] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
In mammals, X-chromosome dosage compensation is achieved by inactivating one of the two X chromosomes in females. In mice, X inactivation is initially imprinted, with inactivation of the paternal X (Xp) chromosome occurring during preimplantation development. One theory is that the Xp is preinactivated in female embryos, because of its previous silence during meiosis in the male germ line. The extent to which the Xp is active after fertilization and the exact time of onset of X-linked gene silencing have been the subject of debate. We performed a systematic, single-cell transcriptional analysis to examine the activity of the Xp chromosome for a panel of X-linked genes throughout early preimplantation development in the mouse. Rather than being preinactivated, we found the Xp to be fully active at the time of zygotic gene activation, with silencing beginning from the 4-cell stage onward. X-inactivation patterns were, however, surprisingly diverse between genes. Some loci showed early onset (4-8-cell stage) of X inactivation, and some showed extremely late onset (postblastocyst stage), whereas others were never fully inactivated. Thus, we show that silencing of some X-chromosomal regions occurs outside of the usual time window and that escape from X inactivation can be highly lineage specific. These results reveal that imprinted X inactivation in mice is far less concerted than previously thought and highlight the epigenetic diversity underlying the dosage compensation process during early mammalian development.
Collapse
|
49
|
Tsend-Ayush E, Lim SL, Pask AJ, Hamdan DDM, Renfree MB, Grützner F. Characterisation of ATRX, DMRT1, DMRT7 and WT1 in the platypus (Ornithorhynchus anatinus). Reprod Fertil Dev 2009; 21:985-91. [DOI: 10.1071/rd09090] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2009] [Accepted: 08/28/2009] [Indexed: 11/23/2022] Open
Abstract
One of the most puzzling aspects of monotreme reproductive biology is how they determine sex in the absence of the SRY gene that triggers testis development in most other mammals. Although monotremes share a XX female/XY male sex chromosome system with other mammals, their sex chromosomes show homology to the chicken Z chromosome, including the DMRT1 gene, which is a dosage-dependent sex determination gene in birds. In addition, monotremes feature an extraordinary multiple sex chromosome system. However, no sex determination gene has been identified as yet on any of the five X or five Y chromosomes and there is very little knowledge about the conservation and function of other known genes in the monotreme sex determination and differentiation pathway. We have analysed the expression pattern of four evolutionarily conserved genes that are important at different stages of sexual development in therian mammals. DMRT1 is a conserved sex-determination gene that is upregulated in the male developing gonad in vertebrates, while DMRT7 is a mammal-specific spermatogenesis gene. ATRX, a chromatin remodelling protein, lies on the therian X but there is a testis-expressed Y-copy in marsupials. However, in monotremes, the ATRX orthologue is autosomal. WT1 is an evolutionarily conserved gene essential for early gonadal formation in both sexes and later in testis development. We show that these four genes in the adult platypus have the same expression pattern as in other mammals, suggesting that they have a conserved role in sexual development independent of genomic location.
Collapse
|