1
|
Siqueira E, Kim BH, Reser L, Chow R, Delaney K, Esteller M, Ross MM, Shabanowitz J, Hunt DF, Guil S, Ausió J. Analysis of the interplay between MeCP2 and histone H1 during in vitro differentiation of human ReNCell neural progenitor cells. Epigenetics 2023; 18:2276425. [PMID: 37976174 PMCID: PMC10769555 DOI: 10.1080/15592294.2023.2276425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 10/18/2023] [Indexed: 11/19/2023] Open
Abstract
An immortalized neural cell line derived from the human ventral mesencephalon, called ReNCell, and its MeCP2 knock out were used. With it, we characterized the chromatin compositional transitions undergone during differentiation, with special emphasis on linker histones. While the WT cells displayed the development of dendrites and axons the KO cells did not, despite undergoing differentiation as monitored by NeuN. ReNCell expressed minimal amounts of histone H1.0 and their linker histone complement consisted mainly of histone H1.2, H1.4 and H1.5. The overall level of histone H1 exhibited a trend to increase during the differentiation of MeCP2 KO cells. The phosphorylation levels of histone H1 proteins decreased dramatically during ReNCell's cell differentiation independently of the presence of MeCP2. Immunofluorescence analysis showed that MeCP2 exhibits an extensive co-localization with linker histones. Interestingly, the average size of the nucleus decreased during differentiation but in the MeCP2 KO cells, the smaller size of the nuclei at the start of differentiation increased by almost 40% after differentiation by 8 days (8 DIV). In summary, our data provide a compelling perspective on the dynamic changes of H1 histones during neural differentiation, coupled with the intricate interplay between H1 variants and MeCP2.Abbreviations: ACN, acetonitrile; A230, absorbance at 230 nm; bFGF, basic fibroblast growth factor; CM, chicken erythrocyte histone marker; CNS, central nervous system; CRISPR, clustered regulated interspaced short palindromic repeatsDAPI, 4,'6-diaminidino-2-phenylindole; DIV, days in vitro (days after differentiation is induced); DMEM, Dulbecco's modified Eagle medium; EGF, epidermal growth factor; ESC, embryonic stem cell; GAPDH, glyceraldehyde-3-phosphate dehydrogenase; GFAP, glial fibrillary acidic proteinHPLC, high-performance liquid chromatography; IF, immunofluorescence; iPSCs, induced pluripotent stem cells; MAP2, microtubule-associated protein 2; MBD, methyl-binding domain; MeCP2, methyl-CpG binding protein 2; MS, mass spectrometry; NCP, nucleosome core particle; NeuN, neuron nuclear antigen; NPC, neural progenitor cellPAGE, polyacrylamide gel electrophoresis; PBS, phosphate buffered saline; PFA, paraformaldehyde; PTM, posttranslational modification; RP-HPLC, reversed phase HPLC; ReNCells, ReNCells VM; RPLP0, ribosomal protein lateral stalk subunit P0; RT-qPCR, reverse transcription quantitative polymerase-chain reaction; RTT, Rett Syndrome; SDS, sodium dodecyl sulphate; TAD, topologically associating domain; Triple KO, triple knockout.
Collapse
Affiliation(s)
- Edilene Siqueira
- Josep Carreras Leukaemia Research Institute (IJC), Badalona, Barcelona, Catalonia, Spain
- National Council for Scientific and Technological Development (CNPq), Brasilia, Federal District, Brazil
| | - Bo-Hyun Kim
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada
| | - Larry Reser
- Department of Chemistry, University of Virginia, Charlottesville, Virginia, USA
| | - Robert Chow
- Department of Biology, University of Victoria, Victoria, BC, Canada
| | - Kerry Delaney
- Department of Biology, University of Victoria, Victoria, BC, Canada
| | - Manel Esteller
- Josep Carreras Leukaemia Research Institute (IJC), Badalona, Barcelona, Catalonia, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Catalonia, Spain
- Physiological Sciences Department, School of Medicine and Health Sciences, University of Barcelona (UB), Barcelona, Catalonia, Spain
| | - Mark M. Ross
- Department of Chemistry, University of Virginia, Charlottesville, Virginia, USA
| | - Jeffrey Shabanowitz
- Department of Chemistry, University of Virginia, Charlottesville, Virginia, USA
| | - Donald F. Hunt
- Department of Chemistry, University of Virginia, Charlottesville, Virginia, USA
- Department of Pathology, University of Virginia, Charlottesville, Virginia, USA
| | - Sonia Guil
- Josep Carreras Leukaemia Research Institute (IJC), Badalona, Barcelona, Catalonia, Spain
- GermansTrias i Pujol Health Science Research Institute, Badalona, Barcelona, Catalonia, Spain
| | - Juan Ausió
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada
| |
Collapse
|
2
|
Pascal C, Zonszain J, Hameiri O, Gargi-Levi C, Lev-Maor G, Tammer L, Levy T, Tarabeih A, Roy VR, Ben-Salmon S, Elbaz L, Eid M, Hakim T, Abu Rabe'a S, Shalev N, Jordan A, Meshorer E, Ast G. Human histone H1 variants impact splicing outcome by controlling RNA polymerase II elongation. Mol Cell 2023; 83:3801-3817.e8. [PMID: 37922872 DOI: 10.1016/j.molcel.2023.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 08/17/2023] [Accepted: 10/05/2023] [Indexed: 11/07/2023]
Abstract
Histones shape chromatin structure and the epigenetic landscape. H1, the most diverse histone in the human genome, has 11 variants. Due to the high structural similarity between the H1s, their unique functions in transferring information from the chromatin to mRNA-processing machineries have remained elusive. Here, we generated human cell lines lacking up to five H1 subtypes, allowing us to characterize the genomic binding profiles of six H1 variants. Most H1s bind to specific sites, and binding depends on multiple factors, including GC content. The highly expressed H1.2 has a high affinity for exons, whereas H1.3 binds intronic sequences. H1s are major splicing regulators, especially of exon skipping and intron retention events, through their effects on the elongation of RNA polymerase II (RNAPII). Thus, H1 variants determine splicing fate by modulating RNAPII elongation.
Collapse
Affiliation(s)
- Corina Pascal
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Jonathan Zonszain
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Ofir Hameiri
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Chen Gargi-Levi
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Galit Lev-Maor
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Luna Tammer
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Tamar Levy
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Anan Tarabeih
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Vanessa Rachel Roy
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Stav Ben-Salmon
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Liraz Elbaz
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Mireille Eid
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Tamar Hakim
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Salima Abu Rabe'a
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Nana Shalev
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Albert Jordan
- Instituto de Biologia Molecular de Barcelona (IBMB-CSIC), Carrer de Baldiri Reixac, 15, 08028 Barcelona, Spain
| | - Eran Meshorer
- Department of Genetics, The Alexander Silberman Institute of Life Sciences, Jerusalem 91904, Israel; Edmond and Lily Center for Brain Sciences (ELSC), The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Gil Ast
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel.
| |
Collapse
|
3
|
Joseph FM, Young NL. Histone variant-specific post-translational modifications. Semin Cell Dev Biol 2023; 135:73-84. [PMID: 35277331 PMCID: PMC9458767 DOI: 10.1016/j.semcdb.2022.02.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 02/11/2022] [Accepted: 02/12/2022] [Indexed: 01/12/2023]
Abstract
Post-translational modifications (PTMs) of histones play a key role in DNA-based processes and contribute to cell differentiation and gene function by adding an extra layer of regulation. Variations in histone sequences within each family of histones expands the chromatin repertoire and provide further mechanisms for regulation and signaling. While variants are known to be present in certain genomic loci and carry out important functions, much remains unknown about variant-specific PTMs and their role in regulating chromatin. This ambiguity is in part due to the limited technologies and appropriate reagents to identify and quantitate variant-specific PTMs. Nonetheless, histone variants are an integral portion of the chromatin system and the understanding of their modifications and resolving how PTMs function differently on specific variants is paramount to the advancement of the field. Here we review the current knowledge on post-translational modifications specific to histone variants, with an emphasis on well-characterized PTMs of known function. While not every possible PTM is addressed, we present key variant-specific PTMs and what is known about their function and mechanisms in convenient reference tables.
Collapse
Affiliation(s)
- Faith M Joseph
- Translational Biology and Molecular Medicine Graduate Program, USA
| | - Nicolas L Young
- Translational Biology and Molecular Medicine Graduate Program, USA; Verna & Marrs McLean Department of Biochemistry & Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA; Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
4
|
Kumar A, Maurya P, Hayes JJ. Post-Translation Modifications and Mutations of Human Linker Histone Subtypes: Their Manifestation in Disease. Int J Mol Sci 2023; 24:ijms24021463. [PMID: 36674981 PMCID: PMC9860689 DOI: 10.3390/ijms24021463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/20/2022] [Accepted: 01/03/2023] [Indexed: 01/14/2023] Open
Abstract
Linker histones (LH) are a critical component of chromatin in addition to the canonical histones (H2A, H2B, H3, and H4). In humans, 11 subtypes (7 somatic and 4 germinal) of linker histones have been identified, and their diverse cellular functions in chromatin structure, DNA replication, DNA repair, transcription, and apoptosis have been explored, especially for the somatic subtypes. Delineating the unique role of human linker histone (hLH) and their subtypes is highly tedious given their high homology and overlapping expression patterns. However, recent advancements in mass spectrometry combined with HPLC have helped in identifying the post-translational modifications (PTMs) found on the different LH subtypes. However, while a number of PTMs have been identified and their potential nuclear and non-nuclear functions explored in cellular processes, there are very few studies delineating the direct relevance of these PTMs in diseases. In addition, recent whole-genome sequencing of clinical samples from cancer patients and individuals afflicted with Rahman syndrome have identified high-frequency mutations and therefore broadened the perspective of the linker histone mutations in diseases. In this review, we compile the identified PTMs of hLH subtypes, current knowledge of the relevance of hLH PTMs in human diseases, and the correlation of PTMs coinciding with mutations mapped in diseases.
Collapse
Affiliation(s)
- Ashok Kumar
- Department of Biochemistry and Biophysics, University of Rochester, Rochester, NY 14642, USA
- Correspondence:
| | - Preeti Maurya
- Aab Cardiovascular Research Institute, University of Rochester, Rochester, NY 14642, USA
| | - Jeffrey J. Hayes
- Department of Biochemistry and Biophysics, University of Rochester, Rochester, NY 14642, USA
| |
Collapse
|
5
|
Structural basis of RNA polymerase II transcription on the chromatosome containing linker histone H1. Nat Commun 2022; 13:7287. [PMID: 36435862 PMCID: PMC9701232 DOI: 10.1038/s41467-022-35003-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 11/15/2022] [Indexed: 11/28/2022] Open
Abstract
In chromatin, linker histone H1 binds to nucleosomes, forming chromatosomes, and changes the transcription status. However, the mechanism by which RNA polymerase II (RNAPII) transcribes the DNA in the chromatosome has remained enigmatic. Here we report the cryo-electron microscopy (cryo-EM) structures of transcribing RNAPII-chromatosome complexes (forms I and II), in which RNAPII is paused at the entry linker DNA region of the chromatosome due to H1 binding. In the form I complex, the H1 bound to the nucleosome restricts the linker DNA orientation, and the exit linker DNA is captured by the RNAPII DNA binding cleft. In the form II complex, the RNAPII progresses a few bases ahead by releasing the exit linker DNA from the RNAPII cleft, and directly clashes with the H1 bound to the nucleosome. The transcription elongation factor Spt4/5 masks the RNAPII DNA binding region, and drastically reduces the H1-mediated RNAPII pausing.
Collapse
|
6
|
The Highest Density of Phosphorylated Histone H1 Appeared in Prophase and Prometaphase in Parallel with Reduced H3K9me3, and HDAC1 Depletion Increased H1.2/H1.3 and H1.4 Serine 38 Phosphorylation. Life (Basel) 2022; 12:life12060798. [PMID: 35743829 PMCID: PMC9224986 DOI: 10.3390/life12060798] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/24/2022] [Accepted: 05/25/2022] [Indexed: 01/10/2023] Open
Abstract
Background: Variants of linker histone H1 are tissue-specific and are responsible for chromatin compaction accompanying cell differentiation, mitotic chromosome condensation, and apoptosis. Heterochromatinization, as the main feature of these processes, is also associated with pronounced trimethylation of histones H3 at the lysine 9 position (H3K9me3). Methods: By confocal microscopy, we analyzed cell cycle-dependent levels and distribution of phosphorylated histone H1 (H1ph) and H3K9me3. By mass spectrometry, we studied post-translational modifications of linker histones. Results: Phosphorylated histone H1, similarly to H3K9me3, has a comparable level in the G1, S, and G2 phases of the cell cycle. A high density of phosphorylated H1 was inside nucleoli of mouse embryonic stem cells (ESCs). H1ph was also abundant in prophase and prometaphase, while H1ph was absent in anaphase and telophase. H3K9me3 surrounded chromosomal DNA in telophase. This histone modification was barely detectable in the early phases of mitosis. Mass spectrometry revealed several ESC-specific phosphorylation sites of H1. HDAC1 depletion did not change H1 acetylation but potentiated phosphorylation of H1.2/H1.3 and H1.4 at serine 38 positions. Conclusions: Differences in the level and distribution of H1ph and H3K9me3 were revealed during mitotic phases. ESC-specific phosphorylation sites were identified in a linker histone.
Collapse
|
7
|
Burge N, Thuma JL, Hong ZZ, Jamison KB, Ottesen JJ, Poirier MG. H1.0 C Terminal Domain Is Integral for Altering Transcription Factor Binding within Nucleosomes. Biochemistry 2022; 61:625-638. [PMID: 35377618 PMCID: PMC9022651 DOI: 10.1021/acs.biochem.2c00001] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 02/24/2022] [Indexed: 12/25/2022]
Abstract
The linker histone H1 is a highly prevalent protein that compacts chromatin and regulates DNA accessibility and transcription. However, the mechanisms behind H1 regulation of transcription factor (TF) binding within nucleosomes are not well understood. Using in vitro fluorescence assays, we positioned fluorophores throughout human H1 and the nucleosome, then monitored the distance changes between H1 and the histone octamer, H1 and nucleosomal DNA, or nucleosomal DNA and the histone octamer to monitor the H1 movement during TF binding. We found that H1 remains bound to the nucleosome dyad, while the C terminal domain (CTD) releases the linker DNA during nucleosome partial unwrapping and TF binding. In addition, mutational studies revealed that a small 16 amino acid region at the beginning of the H1 CTD is largely responsible for altering nucleosome wrapping and regulating TF binding within nucleosomes. We then investigated physiologically relevant post-translational modifications (PTMs) in human H1 by preparing fully synthetic H1 using convergent hybrid phase native chemical ligation. Both individual PTMs and combinations of phosphorylation and citrullination of H1 had no detectable influence on nucleosome binding and nucleosome wrapping, and had only a minor impact on H1 regulation of TF occupancy within nucleosomes. This suggests that these H1 PTMs function by other mechanisms. Our results highlight the importance of the H1 CTD, in particular, the first 16 amino acids, in regulating nucleosome linker DNA dynamics and TF binding within the nucleosome.
Collapse
Affiliation(s)
- Nathaniel
L. Burge
- Ohio
State Biochemistry Program, The Ohio State
University, Columbus, Ohio 43210, United States
| | - Jenna L. Thuma
- Department
of Physics, The Ohio State University, Columbus, Ohio 43210, United States
| | - Ziyong Z. Hong
- Department
of Chemistry and Biochemistry, The Ohio
State University, Columbus, Ohio 43210, United States
| | - Kevin B. Jamison
- Department
of Physics, The Ohio State University, Columbus, Ohio 43210, United States
| | - Jennifer J. Ottesen
- Ohio
State Biochemistry Program, The Ohio State
University, Columbus, Ohio 43210, United States
- Department
of Chemistry and Biochemistry, The Ohio
State University, Columbus, Ohio 43210, United States
| | - Michael G. Poirier
- Ohio
State Biochemistry Program, The Ohio State
University, Columbus, Ohio 43210, United States
- Department
of Physics, The Ohio State University, Columbus, Ohio 43210, United States
- Department
of Chemistry and Biochemistry, The Ohio
State University, Columbus, Ohio 43210, United States
| |
Collapse
|
8
|
Lai S, Jia J, Cao X, Zhou PK, Gao S. Molecular and Cellular Functions of the Linker Histone H1.2. Front Cell Dev Biol 2022; 9:773195. [PMID: 35087830 PMCID: PMC8786799 DOI: 10.3389/fcell.2021.773195] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 11/24/2021] [Indexed: 01/14/2023] Open
Abstract
Linker histone H1.2, which belongs to the linker histone family H1, plays a crucial role in the maintenance of the stable higher-order structures of chromatin and nucleosomes. As a critical part of chromatin structure, H1.2 has an important function in regulating chromatin dynamics and participates in multiple other cellular processes as well. Recent work has also shown that linker histone H1.2 regulates the transcription levels of certain target genes and affects different processes as well, such as cancer cell growth and migration, DNA duplication and DNA repair. The present work briefly summarizes the current knowledge of linker histone H1.2 modifications. Further, we also discuss the roles of linker histone H1.2 in the maintenance of genome stability, apoptosis, cell cycle regulation, and its association with disease.
Collapse
Affiliation(s)
- Shuting Lai
- Institute for Environmental Medicine and Radiation Hygiene, School of Public Health, University of South China, Hengyang, China.,Beijing Key Laboratory for Radiobiology, Department of Radiation Biology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Jin Jia
- Beijing Key Laboratory for Radiobiology, Department of Radiation Biology, Beijing Institute of Radiation Medicine, Beijing, China.,School of Medicine, University of South China, Hengyang, China
| | - Xiaoyu Cao
- Beijing Key Laboratory for Radiobiology, Department of Radiation Biology, Beijing Institute of Radiation Medicine, Beijing, China.,School of Life Sciences, Hebei University, Baoding, China
| | - Ping-Kun Zhou
- Institute for Environmental Medicine and Radiation Hygiene, School of Public Health, University of South China, Hengyang, China.,Beijing Key Laboratory for Radiobiology, Department of Radiation Biology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Shanshan Gao
- Beijing Key Laboratory for Radiobiology, Department of Radiation Biology, Beijing Institute of Radiation Medicine, Beijing, China
| |
Collapse
|
9
|
Abstract
In this review, Prendergast and Reinberg discuss the likelihood that the family of histone H1 variants may be key to understanding several fundamental processes in chromatin biology and underscore their particular contributions to distinctly significant chromatin-related processes. Major advances in the chromatin and epigenetics fields have uncovered the importance of core histones, histone variants and their post-translational modifications (PTMs) in modulating chromatin structure. However, an acutely understudied related feature of chromatin structure is the role of linker histone H1. Previous assumptions of the functional redundancy of the 11 nonallelic H1 variants are contrasted by their strong evolutionary conservation, variability in their potential PTMs, and increased reports of their disparate functions, sub-nuclear localizations and unique expression patterns in different cell types. The commonly accepted notion that histone H1 functions solely in chromatin compaction and transcription repression is now being challenged by work from multiple groups. These studies highlight histone H1 variants as underappreciated facets of chromatin dynamics that function independently in various chromatin-based processes. In this review, we present notable findings involving the individual somatic H1 variants of which there are seven, underscoring their particular contributions to distinctly significant chromatin-related processes.
Collapse
Affiliation(s)
- Laura Prendergast
- Howard Hughes Medical Institute, New York University Langone Health, New York, New York 10016, USA.,Department of Biochemistry and Molecular Pharmacology, New York University Langone Medical School, New York, New York 10016, USA
| | - Danny Reinberg
- Howard Hughes Medical Institute, New York University Langone Health, New York, New York 10016, USA.,Department of Biochemistry and Molecular Pharmacology, New York University Langone Medical School, New York, New York 10016, USA
| |
Collapse
|
10
|
Wu H, Dalal Y, Papoian GA. Binding Dynamics of Disordered Linker Histone H1 with a Nucleosomal Particle. J Mol Biol 2021; 433:166881. [PMID: 33617899 DOI: 10.1016/j.jmb.2021.166881] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 02/11/2021] [Accepted: 02/12/2021] [Indexed: 01/30/2023]
Abstract
Linker histone H1 is an essential regulatory protein for many critical biological processes, such as eukaryotic chromatin packaging and gene expression. Mis-regulation of H1s is commonly observed in tumor cells, where the balance between different H1 subtypes has been shown to alter the cancer phenotype. Consisting of a rigid globular domain and two highly charged terminal domains, H1 can bind to multiple sites on a nucleosomal particle to alter chromatin hierarchical condensation levels. In particular, the disordered H1 amino- and carboxyl-terminal domains (NTD/CTD) are believed to enhance this binding affinity, but their detailed dynamics and functions remain unclear. In this work, we used a coarse-grained computational model, AWSEM-DNA, to simulate the H1.0b-nucleosome complex, namely chromatosome. Our results demonstrate that H1 disordered domains restrict the dynamics and conformation of both globular H1 and linker DNA arms, resulting in a more compact and rigid chromatosome particle. Furthermore, we identified regions of H1 disordered domains that are tightly tethered to DNA near the entry-exit site. Overall, our study elucidates at near-atomic resolution the way the disordered linker histone H1 modulates nucleosome's structural preferences and conformational dynamics.
Collapse
Affiliation(s)
- Hao Wu
- Biophysics Program, Institute for Physical Science and Technology, University of Maryland, College Park, MD 20742, United States
| | - Yamini Dalal
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, United States.
| | - Garegin A Papoian
- Biophysics Program, Institute for Physical Science and Technology, University of Maryland, College Park, MD 20742, United States; Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, United States.
| |
Collapse
|
11
|
Site-Specific Phosphorylation of Histone H1.4 Is Associated with Transcription Activation. Int J Mol Sci 2020; 21:ijms21228861. [PMID: 33238524 PMCID: PMC7700352 DOI: 10.3390/ijms21228861] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 11/12/2020] [Accepted: 11/16/2020] [Indexed: 01/05/2023] Open
Abstract
Core histone variants, such as H2A.X and H3.3, serve specialized roles in chromatin processes that depend on the genomic distributions and amino acid sequence differences of the variant proteins. Modifications of these variants alter interactions with other chromatin components and thus the protein’s functions. These inferences add to the growing arsenal of evidence against the older generic view of those linker histones as redundant repressors. Furthermore, certain modifications of specific H1 variants can confer distinct roles. On the one hand, it has been reported that the phosphorylation of H1 results in its release from chromatin and the subsequent transcription of HIV-1 genes. On the other hand, recent evidence indicates that phosphorylated H1 may in fact be associated with active promoters. This conflict suggests that different H1 isoforms and modified versions of these variants are not redundant when together but may play distinct functional roles. Here, we provide the first genome-wide evidence that when phosphorylated, the H1.4 variant remains associated with active promoters and may even play a role in transcription activation. Using novel, highly specific antibodies, we generated the first genome-wide view of the H1.4 isoform phosphorylated at serine 187 (pS187-H1.4) in estradiol-inducible MCF7 cells. We observe that pS187-H1.4 is enriched primarily at the transcription start sites (TSSs) of genes activated by estradiol treatment and depleted from those that are repressed. We also show that pS187-H1.4 associates with ‘early estrogen response’ genes and stably interacts with RNAPII. Based on the observations presented here, we propose that phosphorylation at S187 by CDK9 represents an early event required for gene activation. This event may also be involved in the release of promoter-proximal polymerases to begin elongation by interacting directly with the polymerase or other parts of the transcription machinery. Although we focused on estrogen-responsive genes, taking into account previous evidence of H1.4′s enrichment of promoters of pluripotency genes, and its involvement with rDNA activation, we propose that H1.4 phosphorylation for gene activation may be a more global observation.
Collapse
|
12
|
Histone H1 Post-Translational Modifications: Update and Future Perspectives. Int J Mol Sci 2020; 21:ijms21165941. [PMID: 32824860 PMCID: PMC7460583 DOI: 10.3390/ijms21165941] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 08/07/2020] [Accepted: 08/08/2020] [Indexed: 12/12/2022] Open
Abstract
Histone H1 is the most variable histone and its role at the epigenetic level is less characterized than that of core histones. In vertebrates, H1 is a multigene family, which can encode up to 11 subtypes. The H1 subtype composition is different among cell types during the cell cycle and differentiation. Mass spectrometry-based proteomics has added a new layer of complexity with the identification of a large number of post-translational modifications (PTMs) in H1. In this review, we summarize histone H1 PTMs from lower eukaryotes to humans, with a particular focus on mammalian PTMs. Special emphasis is made on PTMs, whose molecular function has been described. Post-translational modifications in H1 have been associated with the regulation of chromatin structure during the cell cycle as well as transcriptional activation, DNA damage response, and cellular differentiation. Additionally, PTMs in histone H1 that have been linked to diseases such as cancer, autoimmune disorders, and viral infection are examined. Future perspectives and challenges in the profiling of histone H1 PTMs are also discussed.
Collapse
|
13
|
Abstract
Disparities in cancer patient responses have prompted widespread searches to identify differences in sensitive vs. nonsensitive populations and form the basis of personalized medicine. This customized approach is dependent upon the development of pathway-specific therapeutics in conjunction with biomarkers that predict patient responses. Here, we show that Cdk5 drives growth in subgroups of patients with multiple types of neuroendocrine neoplasms. Phosphoproteomics and high throughput screening identified phosphorylation sites downstream of Cdk5. These phosphorylation events serve as biomarkers and effectively pinpoint Cdk5-driven tumors. Toward achieving targeted therapy, we demonstrate that mouse models of neuroendocrine cancer are responsive to selective Cdk5 inhibitors and biomimetic nanoparticles are effective vehicles for enhanced tumor targeting and reduction of drug toxicity. Finally, we show that biomarkers of Cdk5-dependent tumors effectively predict response to anti-Cdk5 therapy in patient-derived xenografts. Thus, a phosphoprotein-based diagnostic assay combined with Cdk5-targeted therapy is a rational treatment approach for neuroendocrine malignancies.
Collapse
|
14
|
Schmitz ML, Higgins JMG, Seibert M. Priming chromatin for segregation: functional roles of mitotic histone modifications. Cell Cycle 2020; 19:625-641. [PMID: 31992120 DOI: 10.1080/15384101.2020.1719585] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Posttranslational modifications (PTMs) of histone proteins are important for various cellular processes including regulation of gene expression and chromatin structure, DNA damage response and chromosome segregation. Here we comprehensively review mitotic histone PTMs, in particular phosphorylations, and discuss their interplay and functions in the control of dynamic protein-protein interactions as well as their contribution to centromere and chromosome structure and function during cell division. Histone phosphorylations can create binding sites for mitotic regulators such as the chromosomal passenger complex, which is required for correction of erroneous spindle attachments and chromosome bi-orientation. Other histone PTMs can alter the structural properties of nucleosomes and the accessibility of chromatin. Epigenetic marks such as lysine methylations are maintained during mitosis and may also be important for mitotic transcription as well as bookmarking of transcriptional states to ensure the transmission of gene expression programs through cell division. Additionally, histone phosphorylation can dissociate readers of methylated histones without losing epigenetic information. Through all of these processes, mitotic histone PTMs play a functional role in priming the chromatin for faithful chromosome segregation and preventing genetic instability, one of the characteristic hallmarks of cancer cells.
Collapse
Affiliation(s)
- M Lienhard Schmitz
- Institute of Biochemistry, Medical Faculty, Member of the German Center for Lung Research, Justus-Liebig-University, Giessen, Germany
| | - Jonathan M G Higgins
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Markus Seibert
- Institute of Biochemistry, Medical Faculty, Member of the German Center for Lung Research, Justus-Liebig-University, Giessen, Germany
| |
Collapse
|
15
|
Mezquita-Pla J. Gordon H. Dixon's trace in my personal career and the quantic jump experienced in regulatory information. Syst Biol Reprod Med 2018; 64:448-468. [PMID: 30136864 DOI: 10.1080/19396368.2018.1503752] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Even before Rosalin Franklin had discovered the DNA double helix, in her impressive X-ray diffraction image pattern, Erwin Schröedinger, described, in his excellent book, What is Life, how the finding of aperiodic crystals in biological systems surprised him (an aperiodic crystal, which, in my opinion is the material carrier of life). In the 21st century and still far from being able to define life, we are attending to a quick acceleration of knowledge on regulatory information. With the discovery of new codes and punctuation marks, we will greatly increase our understanding in front of an impressive avalanche of genomic sequences. Trifonov et al. defined a genetic code as a widespread DNA sequence pattern that carries a message with an impact on biology. These patterns are largely captured in transcribed messages that give meaning and identity to the particular cells. In this review, I will go through my personal career in and after my years of work in the laboratory of Gordon H. Dixon, extending toward the impressive acquisition of new knowledge on regulatory information and genetic codes provided by remarkable scientists in the field. Abbreviations: CA II: carbonic anhydridase II (chicken); Car2: carbonic anhydridase 2 (mouse); CpG islands: short (>0.5 kb) stretches of DNA with a G+C content ≥55%; DNMT1: DNA methyltransferases 1; DNMT3b: DNA methyltransferases 3B; DSB: double-strand DNA breaks; ERT: endogenous retrotransposon; ERV: endogenous retroviruses; ES cells: embryonic stem cells; GAPDH: glyceraldehide phosphate dehydrogenase; H1: histone H1; HATs: histone acetyltransferases; HDACs: histone deacetylases; H3K4me3: histone 3 trimethylated at lys 4; H3K79me2: histone 3 dimethylated at lys 79; HMG: high mobility group proteins; HMT: histone methyltransferase; HP1: heterochromatin protein 1; HR: homologous recombination; HSE: heat-shock element; ICRs: imprinted control regions; IRF: interferon regulatory factor; LDH-A/-B: lactate dehydrogenase A/B; LTR: long terminal repeats; MeCP2: methyl CpG binding protein 2; OCT4: octamer-binding transcription factor 4; PAF1: RNA Polymerase II associated factor 1; piRNA: PIWI-interacting RNA; poly(A) tails: poly-adenine tails; PRC2: polycomb repressive complex 2; PTMs: post-translational modifications; SIRT 1: sirtuin 1, silent information regulator; STAT3: signal transducer and activator of transcription; tRNAs: transfer RNA; tRFs: tRNA-derived fragments; TSS: transcription start site; TE: transposable elements; UB I: polyubiquitin I; UB II: polyubiquitin II; UBE 2N: ubiquitin conjugating enzyme E2N; 5'-UTR: 5'-untranslated sequences; 3'-UTR: 3'-untranslated sequences.
Collapse
Affiliation(s)
- Jovita Mezquita-Pla
- a Molecular Genetics and Control of Pluripotency Laboratory, Department of Biomedicine, IDIBAPS, Faculty of Medicine , University of Barcelona , Catalonia , Spain
| |
Collapse
|
16
|
Emerging roles of linker histones in regulating chromatin structure and function. Nat Rev Mol Cell Biol 2017; 19:192-206. [PMID: 29018282 DOI: 10.1038/nrm.2017.94] [Citation(s) in RCA: 286] [Impact Index Per Article: 40.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Together with core histones, which make up the nucleosome, the linker histone (H1) is one of the five main histone protein families present in chromatin in eukaryotic cells. H1 binds to the nucleosome to form the next structural unit of metazoan chromatin, the chromatosome, which may help chromatin to fold into higher-order structures. Despite their important roles in regulating the structure and function of chromatin, linker histones have not been studied as extensively as core histones. Nevertheless, substantial progress has been made recently. The first near-atomic resolution crystal structure of a chromatosome core particle and an 11 Å resolution cryo-electron microscopy-derived structure of the 30 nm nucleosome array have been determined, revealing unprecedented details about how linker histones interact with the nucleosome and organize higher-order chromatin structures. Moreover, several new functions of linker histones have been discovered, including their roles in epigenetic regulation and the regulation of DNA replication, DNA repair and genome stability. Studies of the molecular mechanisms of H1 action in these processes suggest a new paradigm for linker histone function beyond its architectural roles in chromatin.
Collapse
|
17
|
Liao R, Mizzen CA. Site-specific regulation of histone H1 phosphorylation in pluripotent cell differentiation. Epigenetics Chromatin 2017; 10:29. [PMID: 28539972 PMCID: PMC5440973 DOI: 10.1186/s13072-017-0135-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 05/11/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Structural variation among histone H1 variants confers distinct modes of chromatin binding that are important for differential regulation of chromatin condensation, gene expression and other processes. Changes in the expression and genomic distributions of H1 variants during cell differentiation appear to contribute to phenotypic differences between cell types, but few details are known about the roles of individual H1 variants and the significance of their disparate capacities for phosphorylation. In this study, we investigated the dynamics of interphase phosphorylation at specific sites in individual H1 variants during the differentiation of pluripotent NT2 and mouse embryonic stem cells and characterized the kinases involved in regulating specific H1 variant phosphorylations in NT2 and HeLa cells. RESULTS Here, we show that the global levels of phosphorylation at H1.5-Ser18 (pS18-H1.5), H1.2/H1.5-Ser173 (pS173-H1.2/5) and H1.4-Ser187 (pS187-H1.4) are regulated differentially during pluripotent cell differentiation. Enrichment of pS187-H1.4 near the transcription start site of pluripotency factor genes in pluripotent cells is markedly reduced upon differentiation, whereas pS187-H1.4 levels at housekeeping genes are largely unaltered. Selective inhibition of CDK7 or CDK9 rapidly diminishes pS187-H1.4 levels globally and its enrichment at housekeeping genes, and similar responses were observed following depletion of CDK9. These data suggest that H1.4-S187 is a bona fide substrate for CDK9, a notion that is further supported by the significant colocalization of CDK9 and pS187-H1.4 to gene promoters in reciprocal re-ChIP analyses. Moreover, treating cells with actinomycin D to inhibit transcription and trigger the release of active CDK9/P-TEFb from 7SK snRNA complexes induces the accumulation of pS187-H1.4 at promoters and gene bodies. Notably, the levels of pS187-H1.4 enrichment after actinomycin D treatment or cell differentiation reflect the extent of CDK9 recruitment at the same loci. Remarkably, the global levels of H1.5-S18 and H1.2/H1.5-S173 phosphorylation are not affected by these transcription inhibitor treatments, and selective inhibition of CDK2 does not affect the global levels of phosphorylation at H1.4-S187 or H1.5-S18. CONCLUSIONS Our data provide strong evidence that H1 variant interphase phosphorylation is dynamically regulated in a site-specific and gene-specific fashion during pluripotent cell differentiation, and that enrichment of pS187-H1.4 at genes is positively related to their transcription. H1.4-S187 is likely to be a direct target of CDK9 during interphase, suggesting the possibility that this particular phosphorylation may contribute to the release of paused RNA pol II. In contrast, the other H1 variant phosphorylations we investigated appear to be mediated by distinct kinases and further analyses are needed to determine their functional significance.
Collapse
Affiliation(s)
- Ruiqi Liao
- Department of Cell and Developmental Biology, University of Illinois at Urbana Champaign, B107 Chemistry and Life Sciences Building, MC-123 601 S. Goodwin Ave., Urbana, IL 61801 USA
| | - Craig A Mizzen
- Department of Cell and Developmental Biology, University of Illinois at Urbana Champaign, B107 Chemistry and Life Sciences Building, MC-123 601 S. Goodwin Ave., Urbana, IL 61801 USA.,Institute for Genomic Biology, University of Illinois at Urbana Champaign, Urbana, IL 61801 USA
| |
Collapse
|
18
|
Roque A, Ponte I, Suau P. Post-translational modifications of the intrinsically disordered terminal domains of histone H1: effects on secondary structure and chromatin dynamics. Chromosoma 2016; 126:83-91. [DOI: 10.1007/s00412-016-0591-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 04/05/2016] [Accepted: 04/07/2016] [Indexed: 01/14/2023]
|
19
|
Liao R, Mizzen CA. Interphase H1 phosphorylation: Regulation and functions in chromatin. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2015; 1859:476-85. [PMID: 26657617 DOI: 10.1016/j.bbagrm.2015.11.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Revised: 11/24/2015] [Accepted: 11/25/2015] [Indexed: 12/25/2022]
Abstract
Many metazoan cell types differentially express multiple non-allelic amino acid sequence variants of histone H1. Although early work revealed that H1 variants, collectively, are phosphorylated during interphase and mitosis, differences between individual H1 variants in the sites they possess for mitotic and interphase phosphorylation have been elucidated only relatively recently. Here, we review current knowledge on the regulation and function of interphase H1 phosphorylation, with a particular emphasis on how differences in interphase phosphorylation among the H1 variants of mammalian cells may enable them to have differential effects on transcription and other chromatin processes.
Collapse
Affiliation(s)
- Ruiqi Liao
- Department of Cell and Developmental Biology, University of Illinois at Urbana Champaign, USA
| | - Craig A Mizzen
- Department of Cell and Developmental Biology, University of Illinois at Urbana Champaign, USA; Institute for Genomic Biology, University of Illinois at Urbana Champaign, USA.
| |
Collapse
|
20
|
Bednar J, Hamiche A, Dimitrov S. H1-nucleosome interactions and their functional implications. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2015; 1859:436-43. [PMID: 26477489 DOI: 10.1016/j.bbagrm.2015.10.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 10/09/2015] [Accepted: 10/13/2015] [Indexed: 01/13/2023]
Abstract
Linker histones are three domain proteins and consist of a structured (globular) domain, flanked by two likely non-structured NH2- and COOH-termini. The binding of the linker histones to the nucleosome was characterized by different methods in solution. Apparently, the globular domain interacts with the linker DNA and the nucleosome dyad, while the binding of the large and rich in lysines COOH-terminus results in "closing" the linker DNA of the nucleosome and the formation of the "stem" structure. What is the mode of binding of the linker histones within the chromatin fiber remains still elusive. Nonetheless, it is clear that linker histones are essential for both the assembly and maintenance of the condensed chromatin fiber. Interestingly, linker histones are post-translationally modified and how this affects both their binding to chromatin and functions is now beginning to emerge. In addition, linker histones are highly mobile in vivo, but not in vitro. No explanation of this finding is reported for the moment. The higher mobility of the linker histones should, however, have strong impact on their function. Linker histones plays an important role in gene expression regulation and other chromatin related process and their function is predominantly regulated by their posttranslational modifications. However, the detailed mechanism how the linker histones do function remains still not well understood despite numerous efforts. Here we will summarize and analyze the data on the linker histone binding to the nucleosome and the chromatin fiber and will discuss its functional consequences.
Collapse
Affiliation(s)
- Jan Bednar
- Université de Grenoble Alpes/CNRS, Laboratoire Interdisciplinaire de Physique, UMR 5588, 140 rue de la Physique, B.P. 87, St. Martin d'Heres, F-38402, France.
| | - Ali Hamiche
- Equipe labellisée Ligue contre le Cancer, Département de Génomique Fonctionnelle et Cancer, Institut de Génétique et Biologie Moléculaire et Cellulaire (IGBMC), UDS, CNRS, INSERM, 1 rue Laurent Fries, B.P. 10142, 67404 Illkirch Cedex, France
| | - Stefan Dimitrov
- INSERM/UJF, Institut Albert Bonniot, U823, Site Santé-BP 170, 38042 Grenoble Cedex 9, France
| |
Collapse
|
21
|
Hergeth SP, Schneider R. The H1 linker histones: multifunctional proteins beyond the nucleosomal core particle. EMBO Rep 2015; 16:1439-53. [PMID: 26474902 DOI: 10.15252/embr.201540749] [Citation(s) in RCA: 225] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 09/14/2015] [Indexed: 12/21/2022] Open
Abstract
The linker histone H1 family members are a key component of chromatin and bind to the nucleosomal core particle around the DNA entry and exit sites. H1 can stabilize both nucleosome structure and higher-order chromatin architecture. In general, H1 molecules consist of a central globular domain with more flexible tail regions at both their N- and C-terminal ends. The existence of multiple H1 subtypes and a large variety of posttranslational modifications brings about a considerable degree of complexity and makes studying this protein family challenging. Here, we review recent progress in understanding the function of linker histones and their subtypes beyond their role as merely structural chromatin components. We summarize current findings on the role of H1 in heterochromatin formation, transcriptional regulation and embryogenesis with a focus on H1 subtypes and their specific modifications.
Collapse
Affiliation(s)
| | - Robert Schneider
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS UMR 7104, Inserm U964, Université de Strasbourg, Illkirch, France
| |
Collapse
|
22
|
Roque A, Ponte I, Suau P. Interplay between histone H1 structure and function. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2015; 1859:444-54. [PMID: 26415976 DOI: 10.1016/j.bbagrm.2015.09.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 09/21/2015] [Accepted: 09/22/2015] [Indexed: 01/10/2023]
Abstract
H1 linker histones are involved both in the maintenance of higher-order chromatin structure and in gene regulation. Histone H1 exists in multiple isoforms, is evolutionarily variable and undergoes a large variety of post-translational modifications. We review recent progress in the understanding of the folding and structure of histone H1 domains with an emphasis on the interactions with DNA. The importance of intrinsic disorder and hydrophobic interactions in the folding and function of the carboxy-terminal domain (CTD) is discussed. The induction of a molten globule-state in the CTD by macromolecular crowding is also considered. The effects of phosphorylation by cyclin-dependent kinases on the structure of the CTD, as well as on chromatin condensation and oligomerization, are described. We also address the extranuclear functions of histone H1, including the interaction with the β-amyloid peptide.
Collapse
Affiliation(s)
- Alicia Roque
- Departamento de Bioquímica y Biología Molecular, Facultad de Biociencias, Universidad Autónoma de Barcelona, Spain
| | - Inma Ponte
- Departamento de Bioquímica y Biología Molecular, Facultad de Biociencias, Universidad Autónoma de Barcelona, Spain
| | - Pedro Suau
- Departamento de Bioquímica y Biología Molecular, Facultad de Biociencias, Universidad Autónoma de Barcelona, Spain.
| |
Collapse
|
23
|
Izzo A, Schneider R. The role of linker histone H1 modifications in the regulation of gene expression and chromatin dynamics. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2015; 1859:486-95. [PMID: 26348411 DOI: 10.1016/j.bbagrm.2015.09.003] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 08/07/2015] [Accepted: 09/02/2015] [Indexed: 12/27/2022]
Abstract
BACKGROUND Linker histone H1 is a structural component of chromatin. It exists as a family of related proteins known as variants and/or subtypes. H1.1, H1.2, H1.3, H1.4 and H1.5 are present in most somatic cells, whereas other subtypes are mainly expressed in more specialized cells. SCOPE OF REVIEW H1 subtypes have been shown to have unique functions in chromatin structure and dynamics. This can occur at least in part via specific post-translational modifications of distinct H1 subtypes. However, while core histone modifications have been extensively studied, our knowledge of H1 modifications and their molecular functions has remained for a long time limited to phosphorylation. In this review we discuss the current state of knowledge of linker histone H1 modifications and where possible highlight functional differences in the modifications of distinct H1 subtypes. MAJOR CONCLUSIONS AND GENERAL SIGNIFICANCE H1 histones are intensely post-translationally modified. These modifications are located in the N- and C-terminal tails as well as within the globular domain. Recently, advanced mass spectrometrical analysis revealed a large number of novel histone H1 subtype specific modification sites and types. H1 modifications include phosphorylation, acetylation, methylation, ubiquitination, and ADP ribosylation. They are involved in the regulation of all aspects of linker histone functions, however their mechanism of action is often only poorly understood. Therefore systematic functional characterization of H1 modifications will be necessary in order to better understand their role in gene regulation as well as in higher-order chromatin structure and dynamics.
Collapse
Affiliation(s)
- Annalisa Izzo
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS UMR 7104, INSERM U 964, Université de Strasbourg, 67404 Illkirch, France
| | - Robert Schneider
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS UMR 7104, INSERM U 964, Université de Strasbourg, 67404 Illkirch, France.
| |
Collapse
|
24
|
Chen Y, Hoover ME, Dang X, Shomo AA, Guan X, Marshall AG, Freitas MA, Young NL. Quantitative Mass Spectrometry Reveals that Intact Histone H1 Phosphorylations are Variant Specific and Exhibit Single Molecule Hierarchical Dependence. Mol Cell Proteomics 2015. [PMID: 26209608 DOI: 10.1074/mcp.m114.046441] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Breast cancer was the second leading cause of cancer related mortality for females in 2014. Recent studies suggest histone H1 phosphorylation may be useful as a clinical biomarker of breast and other cancers because of its ability to recognize proliferative cell populations. Although monitoring a single phosphorylated H1 residue is adequate to stratify high-grade breast tumors, expanding our knowledge of how H1 is phosphorylated through the cell cycle is paramount to understanding its role in carcinogenesis. H1 analysis by bottom-up MS is challenging because of the presence of highly homologous sequence variants expressed by most cells. These highly basic proteins are difficult to analyze by LC-MS/MS because of the small, hydrophilic nature of peptides produced by tryptic digestion. Although bottom-up methods permit identification of several H1 phosphorylation events, these peptides are not useful for observing the combinatorial post-translational modification (PTM) patterns on the protein of interest. To complement the information provided by bottom-up MS, we utilized a top-down MS/MS workflow to permit identification and quantitation of H1 proteoforms related to the progression of breast cells through the cell cycle. Histones H1.2 and H1.4 were observed in MDA-MB-231 metastatic breast cells, whereas an additional histone variant, histone H1.3, was identified only in nonneoplastic MCF-10A cells. Progressive phosphorylation of histone H1.4 was identified in both cell lines at mitosis (M phase). Phosphorylation occurred first at S172 followed successively by S187, T18, T146, and T154. Notably, phosphorylation at S173 of histone H1.2 and S172, S187, T18, T146, and T154 of H1.4 significantly increases during M phase relative to S phase, suggesting that these events are cell cycle-dependent and may serve as markers for proliferation. Finally, we report the observation of the H1.2 SNP variant A18V in MCF-10A cells.
Collapse
Affiliation(s)
- Yu Chen
- From the ‡Ion Cyclotron Resonance Program, National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida, 32310
| | - Michael E Hoover
- §Department of Molecular Virology, Immunology and Medical Genetics, The Ohio State University, Columbus, Ohio, College of Medicine and Arthur G. James Comprehensive Cancer Center, Columbus, Ohio, 43210
| | - Xibei Dang
- ¶Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida, 32306
| | - Alan A Shomo
- ¶Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida, 32306
| | - Xiaoyan Guan
- From the ‡Ion Cyclotron Resonance Program, National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida, 32310
| | - Alan G Marshall
- From the ‡Ion Cyclotron Resonance Program, National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida, 32310; ¶Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida, 32306
| | - Michael A Freitas
- §Department of Molecular Virology, Immunology and Medical Genetics, The Ohio State University, Columbus, Ohio, College of Medicine and Arthur G. James Comprehensive Cancer Center, Columbus, Ohio, 43210;
| | - Nicolas L Young
- From the ‡Ion Cyclotron Resonance Program, National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida, 32310;
| |
Collapse
|
25
|
Lopez R, Sarg B, Lindner H, Bartolomé S, Ponte I, Suau P, Roque A. Linker histone partial phosphorylation: effects on secondary structure and chromatin condensation. Nucleic Acids Res 2015; 43:4463-76. [PMID: 25870416 PMCID: PMC4482070 DOI: 10.1093/nar/gkv304] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Accepted: 03/27/2015] [Indexed: 11/29/2022] Open
Abstract
Linker histones are involved in chromatin higher-order structure and gene regulation. We have successfully achieved partial phosphorylation of linker histones in chicken erythrocyte soluble chromatin with CDK2, as indicated by HPCE, MALDI-TOF and Tandem MS. We have studied the effects of linker histone partial phosphorylation on secondary structure and chromatin condensation. Infrared spectroscopy analysis showed a gradual increase of β-structure in the phosphorylated samples, concomitant to a decrease in α-helix/turns, with increasing linker histone phosphorylation. This conformational change could act as the first step in the phosphorylation-induced effects on chromatin condensation. A decrease of the sedimentation rate through sucrose gradients of the phosphorylated samples was observed, indicating a global relaxation of the 30-nm fiber following linker histone phosphorylation. Analysis of specific genes, combining nuclease digestion and qPCR, showed that phosphorylated samples were more accessible than unphosphorylated samples, suggesting local chromatin relaxation. Chromatin aggregation was induced by MgCl2 and analyzed by dynamic light scattering (DLS). Phosphorylated chromatin had lower percentages in volume of aggregated molecules and the aggregates had smaller hydrodynamic diameter than unphosphorylated chromatin, indicating that linker histone phosphorylation impaired chromatin aggregation. These findings provide new insights into the effects of linker histone phosphorylation in chromatin condensation.
Collapse
Affiliation(s)
- Rita Lopez
- Departamento de Bioquímica y Biología Molecular, Facultad de Biociencias, Universidad Autónoma de Barcelona, 08193, Bellaterra, Barcelona, Spain
| | - Bettina Sarg
- Division of Clinical Biochemistry, Biocenter, Innsbruck Medical University, A-6020, Innsbruck, Austria
| | - Herbert Lindner
- Division of Clinical Biochemistry, Biocenter, Innsbruck Medical University, A-6020, Innsbruck, Austria
| | - Salvador Bartolomé
- Laboratorio de Luminiscencia y Espectroscopia de Biomoléculas, Universidad Autónoma de Barcelona, 08193, Bellaterra, Barcelona, Spain
| | - Inma Ponte
- Departamento de Bioquímica y Biología Molecular, Facultad de Biociencias, Universidad Autónoma de Barcelona, 08193, Bellaterra, Barcelona, Spain
| | - Pedro Suau
- Departamento de Bioquímica y Biología Molecular, Facultad de Biociencias, Universidad Autónoma de Barcelona, 08193, Bellaterra, Barcelona, Spain
| | - Alicia Roque
- Departamento de Bioquímica y Biología Molecular, Facultad de Biociencias, Universidad Autónoma de Barcelona, 08193, Bellaterra, Barcelona, Spain
| |
Collapse
|
26
|
Terme JM, Millán-Ariño L, Mayor R, Luque N, Izquierdo-Bouldstridge A, Bustillos A, Sampaio C, Canes J, Font I, Sima N, Sancho M, Torrente L, Forcales S, Roque A, Suau P, Jordan A. Dynamics and dispensability of variant-specific histone H1 Lys-26/Ser-27 and Thr-165 post-translational modifications. FEBS Lett 2014; 588:2353-62. [PMID: 24873882 DOI: 10.1016/j.febslet.2014.05.035] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Revised: 05/14/2014] [Accepted: 05/15/2014] [Indexed: 12/31/2022]
Abstract
In mammals, the linker histone H1, involved in DNA packaging into chromatin, is represented by a family of variants. H1 tails undergo post-translational modifications (PTMs) that can be detected by mass spectrometry. We developed antibodies to analyze several of these as yet unexplored PTMs including the combination of H1.4 K26 acetylation or trimethylation and S27 phosphorylation. H1.2-T165 phosphorylation was detected at S and G2/M phases of the cell cycle and was dispensable for chromatin binding and cell proliferation; while the H1.4-K26 residue was essential for proper cell cycle progression. We conclude that histone H1 PTMs are dynamic over the cell cycle and that the recognition of modified lysines may be affected by phosphorylation of adjacent residues.
Collapse
Affiliation(s)
- Jean-Michel Terme
- Institut de Biologia Molecular de Barcelona (IBMB-CSIC), Parc Científic de Barcelona, Barcelona, Catalonia, Spain
| | - Lluís Millán-Ariño
- Institut de Biologia Molecular de Barcelona (IBMB-CSIC), Parc Científic de Barcelona, Barcelona, Catalonia, Spain
| | - Regina Mayor
- Institut de Biologia Molecular de Barcelona (IBMB-CSIC), Parc Científic de Barcelona, Barcelona, Catalonia, Spain
| | - Neus Luque
- Institut de Biologia Molecular de Barcelona (IBMB-CSIC), Parc Científic de Barcelona, Barcelona, Catalonia, Spain
| | | | - Alberto Bustillos
- Institut de Biologia Molecular de Barcelona (IBMB-CSIC), Parc Científic de Barcelona, Barcelona, Catalonia, Spain
| | - Cristina Sampaio
- Institut de Biologia Molecular de Barcelona (IBMB-CSIC), Parc Científic de Barcelona, Barcelona, Catalonia, Spain
| | - Jordi Canes
- Institut de Biologia Molecular de Barcelona (IBMB-CSIC), Parc Científic de Barcelona, Barcelona, Catalonia, Spain
| | - Isaura Font
- Institut de Biologia Molecular de Barcelona (IBMB-CSIC), Parc Científic de Barcelona, Barcelona, Catalonia, Spain
| | - Núria Sima
- Institut de Biologia Molecular de Barcelona (IBMB-CSIC), Parc Científic de Barcelona, Barcelona, Catalonia, Spain
| | - Mónica Sancho
- Centro de Investigación Príncipe Felipe, Valencia, Spain
| | - Laura Torrente
- Institut de Medecina Predictiva i Personalitzada del Cancer, Badalona, Catalonia, Spain
| | - Sonia Forcales
- Institut de Medecina Predictiva i Personalitzada del Cancer, Badalona, Catalonia, Spain
| | - Alicia Roque
- Universitat Autònoma de Barcelona, Bellaterra, Catalonia, Spain
| | - Pere Suau
- Universitat Autònoma de Barcelona, Bellaterra, Catalonia, Spain
| | - Albert Jordan
- Institut de Biologia Molecular de Barcelona (IBMB-CSIC), Parc Científic de Barcelona, Barcelona, Catalonia, Spain.
| |
Collapse
|
27
|
Harshman SW, Hoover ME, Huang C, Branson OE, Chaney S, Cheney CM, Rosol TJ, Shapiro CL, Wysocki VH, Huebner K, Freitas MA. Histone H1 phosphorylation in breast cancer. J Proteome Res 2014; 13:2453-67. [PMID: 24601643 PMCID: PMC4012839 DOI: 10.1021/pr401248f] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Indexed: 12/18/2022]
Abstract
Breast cancer is the second leading cause of cancer-related deaths in women. The need for new clinical biomarkers in breast cancer is necessary to further predict prognosis and therapeutic response. In this article, the LC-MS histone H1 phosphorylation profiles were established for three distinct breast cancer cell lines. The results show that the extent of H1 phosphorylation can distinguish between the different cell lines. The histone H1 from the metastatic cell line, MDA-MB-231, was subjected to chemical derivitization and LC-MS/MS analysis. The results suggest that the phosphorylation at threonine 146 is found on both histone H1.2 and histone H1.4. Cell lines were then treated with an extracellular stimulus, estradiol or kinase inhibitor LY294002, to monitor changes in histone H1 phosphorylation. The data show that histone H1 phosphorylation can increase and decrease in response to extracellular stimuli. Finally, primary breast tissues were stained for the histone H1 phosphorylation at threonine 146. Variable staining patterns across tumor grades and subtypes were observed with pT146 labeling correlating with tumor grade. These results establish the potential for histone H1 phosphorylation at threonine 146 as a clinical biomarker in breast cancer.
Collapse
Affiliation(s)
- Sean W. Harshman
- Department of Molecular Virology, Immunology and
Medical Genetics, Comprehensive Cancer
Center, Department
of Chemistry & Biochemistry, Veterinary Biosciences, College of Veterinary
Medicine, and Department of Internal Medicine, Division of Hematology, The Ohio State University, Columbus, Ohio 43210, United States
| | - Michael E. Hoover
- Department of Molecular Virology, Immunology and
Medical Genetics, Comprehensive Cancer
Center, Department
of Chemistry & Biochemistry, Veterinary Biosciences, College of Veterinary
Medicine, and Department of Internal Medicine, Division of Hematology, The Ohio State University, Columbus, Ohio 43210, United States
| | - Chengsi Huang
- Department of Molecular Virology, Immunology and
Medical Genetics, Comprehensive Cancer
Center, Department
of Chemistry & Biochemistry, Veterinary Biosciences, College of Veterinary
Medicine, and Department of Internal Medicine, Division of Hematology, The Ohio State University, Columbus, Ohio 43210, United States
| | - Owen E. Branson
- Department of Molecular Virology, Immunology and
Medical Genetics, Comprehensive Cancer
Center, Department
of Chemistry & Biochemistry, Veterinary Biosciences, College of Veterinary
Medicine, and Department of Internal Medicine, Division of Hematology, The Ohio State University, Columbus, Ohio 43210, United States
| | - Sarah
B. Chaney
- Department of Molecular Virology, Immunology and
Medical Genetics, Comprehensive Cancer
Center, Department
of Chemistry & Biochemistry, Veterinary Biosciences, College of Veterinary
Medicine, and Department of Internal Medicine, Division of Hematology, The Ohio State University, Columbus, Ohio 43210, United States
| | - Carolyn M. Cheney
- Department of Molecular Virology, Immunology and
Medical Genetics, Comprehensive Cancer
Center, Department
of Chemistry & Biochemistry, Veterinary Biosciences, College of Veterinary
Medicine, and Department of Internal Medicine, Division of Hematology, The Ohio State University, Columbus, Ohio 43210, United States
| | - Thomas J. Rosol
- Department of Molecular Virology, Immunology and
Medical Genetics, Comprehensive Cancer
Center, Department
of Chemistry & Biochemistry, Veterinary Biosciences, College of Veterinary
Medicine, and Department of Internal Medicine, Division of Hematology, The Ohio State University, Columbus, Ohio 43210, United States
| | - Charles L. Shapiro
- Department of Molecular Virology, Immunology and
Medical Genetics, Comprehensive Cancer
Center, Department
of Chemistry & Biochemistry, Veterinary Biosciences, College of Veterinary
Medicine, and Department of Internal Medicine, Division of Hematology, The Ohio State University, Columbus, Ohio 43210, United States
| | - Vicki H. Wysocki
- Department of Molecular Virology, Immunology and
Medical Genetics, Comprehensive Cancer
Center, Department
of Chemistry & Biochemistry, Veterinary Biosciences, College of Veterinary
Medicine, and Department of Internal Medicine, Division of Hematology, The Ohio State University, Columbus, Ohio 43210, United States
| | - Kay Huebner
- Department of Molecular Virology, Immunology and
Medical Genetics, Comprehensive Cancer
Center, Department
of Chemistry & Biochemistry, Veterinary Biosciences, College of Veterinary
Medicine, and Department of Internal Medicine, Division of Hematology, The Ohio State University, Columbus, Ohio 43210, United States
| | - Michael A. Freitas
- Department of Molecular Virology, Immunology and
Medical Genetics, Comprehensive Cancer
Center, Department
of Chemistry & Biochemistry, Veterinary Biosciences, College of Veterinary
Medicine, and Department of Internal Medicine, Division of Hematology, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
28
|
Over RS, Michaels SD. Open and closed: the roles of linker histones in plants and animals. MOLECULAR PLANT 2014; 7:481-91. [PMID: 24270504 PMCID: PMC3941478 DOI: 10.1093/mp/sst164] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Accepted: 11/11/2013] [Indexed: 05/19/2023]
Abstract
Histones package DNA in all eukaryotes and play key roles in regulating gene expression. Approximately 150 base pairs of DNA wraps around an octamer of core histones to form the nucleosome, the basic unit of chromatin. Linker histones compact chromatin further by binding to and neutralizing the charge of the DNA between nucleosomes. It is well established that chromatin packing is regulated by a complex pattern of posttranslational modifications (PTMs) to core histones, but linker histone function is less well understood. In this review, we describe the current understanding of the many roles that linker histones play in cellular processes, including gene regulation, cell division, and development, while putting the linker histone in the context of other nuclear proteins. Although intriguing roles for plant linker histones are beginning to emerge, much of our current understanding comes from work in animal systems. Many unanswered questions remain and additional work is required to fully elucidate the complex processes mediated by linker histones in plants.
Collapse
Affiliation(s)
| | - Scott D. Michaels
- To whom correspondence should be addressed. E-mail , fax 812-855-6082, tel. 812-856-0302
| |
Collapse
|
29
|
Harshman SW, Young NL, Parthun MR, Freitas MA. H1 histones: current perspectives and challenges. Nucleic Acids Res 2013; 41:9593-609. [PMID: 23945933 PMCID: PMC3834806 DOI: 10.1093/nar/gkt700] [Citation(s) in RCA: 168] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
H1 and related linker histones are important both for maintenance of higher-order chromatin structure and for the regulation of gene expression. The biology of the linker histones is complex, as they are evolutionarily variable, exist in multiple isoforms and undergo a large variety of posttranslational modifications in their long, unstructured, NH2- and COOH-terminal tails. We review recent progress in understanding the structure, genetics and posttranslational modifications of linker histones, with an emphasis on the dynamic interactions of these proteins with DNA and transcriptional regulators. We also discuss various experimental challenges to the study of H1 and related proteins, including limitations of immunological reagents and practical difficulties in the analysis of posttranslational modifications by mass spectrometry.
Collapse
Affiliation(s)
- Sean W Harshman
- Department of Molecular Virology, Immunology and Medical Genetics, The Ohio State University, Columbus, Ohio, USA, College of Medicine and Arthur G. James Comprehensive Cancer Center, Columbus, Ohio, USA, National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL, USA and Molecular and Cellular Biochemistry, The Ohio State University, Columbus, Ohio, USA
| | | | | | | |
Collapse
|
30
|
Mass spectrometry-based proteomics for the analysis of chromatin structure and dynamics. Int J Mol Sci 2013; 14:5402-31. [PMID: 23466885 PMCID: PMC3634404 DOI: 10.3390/ijms14035402] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Revised: 01/24/2013] [Accepted: 02/20/2013] [Indexed: 12/22/2022] Open
Abstract
Chromatin is a highly structured nucleoprotein complex made of histone proteins and DNA that controls nearly all DNA-dependent processes. Chromatin plasticity is regulated by different associated proteins, post-translational modifications on histones (hPTMs) and DNA methylation, which act in a concerted manner to enforce a specific "chromatin landscape", with a regulatory effect on gene expression. Mass Spectrometry (MS) has emerged as a powerful analytical strategy to detect histone PTMs, revealing interplays between neighbouring PTMs and enabling screens for their readers in a comprehensive and quantitative fashion. Here we provide an overview of the recent achievements of state-of-the-art mass spectrometry-based proteomics for the detailed qualitative and quantitative characterization of histone post-translational modifications, histone variants, and global interactomes at specific chromatin regions. This synopsis emphasizes how the advances in high resolution MS, from "Bottom Up" to "Top Down" analysis, together with the uptake of quantitative proteomics methods by chromatin biologists, have made MS a well-established method in the epigenetics field, enabling the acquisition of original information, highly complementary to that offered by more conventional, antibody-based, assays.
Collapse
|
31
|
Tang D, Yuan H, Vielemeyer O, Perez F, Wang Y. Sequential phosphorylation of GRASP65 during mitotic Golgi disassembly. Biol Open 2012; 1:1204-14. [PMID: 23259055 PMCID: PMC3522882 DOI: 10.1242/bio.20122659] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Accepted: 09/04/2012] [Indexed: 01/30/2023] Open
Abstract
GRASP65 phosphorylation during mitosis and dephosphorylation after mitosis are required for Golgi disassembly and reassembly during the cell cycle. At least eight phosphorylation sites on GRASP65 have been identified, but whether they are modified in a coordinated fashion during mitosis is so far unknown. In this study, we raised phospho-specific antibodies that recognize phosphorylated T220/T224, S277 and S376 residues of GRASP65, respectively. Biochemical analysis showed that cdc2 phosphorylates all three sites, while plk1 enhances the phosphorylation. Microscopic studies using these antibodies for double and triple labeling demonstrate sequential phosphorylation and dephosphorylation during the cell cycle. S277 and S376 are phosphorylated from late G2 phase through metaphase until telophase when the new Golgi is reassembled. T220/224 is not modified until prophase, but is highly modified from prometaphase to anaphase. In metaphase, phospho-T220/224 signal localizes on both Golgi haze and mitotic Golgi clusters that represent dispersed Golgi vesicles and Golgi remnants, respectively, while phospho-S277 and S376 labeling is more concentrated on mitotic Golgi clusters. Expression of a phosphorylation-resistant GRASP65 mutant T220A/T224A inhibited mitotic Golgi fragmentation to a much larger extent than the expression of the S277A and S376A mutants. In cytokinesis, T220/224 dephosphorylation occurs prior to that of S277, but after S376. This study provides evidence that GRASP65 is sequentially phosphorylated and dephosphorylated during mitosis at different sites to orchestrate Golgi disassembly and reassembly during cell division, with phosphorylation of the T220/224 site being most critical in the process.
Collapse
Affiliation(s)
- Danming Tang
- Department of Molecular, Cellular and Developmental Biology, University of Michigan , 830 North University Avenue, Ann Arbor, MI 48109-1048 , USA
| | | | | | | | | |
Collapse
|
32
|
Arnaudo AM, Molden RC, Garcia BA. Revealing histone variant induced changes via quantitative proteomics. Crit Rev Biochem Mol Biol 2011; 46:284-94. [PMID: 21526979 DOI: 10.3109/10409238.2011.577052] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Histone variants are isoforms of linker and core histone proteins that differ in their amino acid sequences. These variants have distinct genomic locations and posttranslational modifications, thus increasing the complexity of the chromatin architecture. Biological studies of histone variants indicate that they play a role in many processes including transcription, DNA damage response, and the cell cycle. The small differences in amino acid sequence and the diverse posttranslational modification states that exist between histone variants make traditional analysis using immunoassay methods challenging. In recent years, a number of mass spectrometric techniques have been developed to identify and quantify histones at the whole protein or peptide levels. In this review, we discuss the biology of histone variants and methods to characterize them using mass spectrometry-based proteomics.
Collapse
Affiliation(s)
- Anna M Arnaudo
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | | | | |
Collapse
|
33
|
Gréen A, Sarg B, Gréen H, Lönn A, Lindner HH, Rundquist I. Histone H1 interphase phosphorylation becomes largely established in G1 or early S phase and differs in G1 between T-lymphoblastoid cells and normal T cells. Epigenetics Chromatin 2011; 4:15. [PMID: 21819549 PMCID: PMC3177758 DOI: 10.1186/1756-8935-4-15] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2011] [Accepted: 08/05/2011] [Indexed: 01/01/2023] Open
Abstract
Background Histone H1 is an important constituent of chromatin, and is involved in regulation of its structure. During the cell cycle, chromatin becomes locally decondensed in S phase, highly condensed during metaphase, and again decondensed before re-entry into G1. This has been connected to increasing phosphorylation of H1 histones through the cell cycle. However, many of these experiments have been performed using cell-synchronization techniques and cell cycle-arresting drugs. In this study, we investigated the H1 subtype composition and phosphorylation pattern in the cell cycle of normal human activated T cells and Jurkat T-lymphoblastoid cells by capillary electrophoresis after sorting of exponentially growing cells into G1, S and G2/M populations. Results We found that the relative amount of H1.5 protein increased significantly after T-cell activation. Serine phosphorylation of H1 subtypes occurred to a large extent in late G1 or early S phase in both activated T cells and Jurkat cells. Furthermore, our data confirm that the H1 molecules newly synthesized during S phase achieve a similar phosphorylation pattern to the previous ones. Jurkat cells had more extended H1.5 phosphorylation in G1 compared with T cells, a difference that can be explained by faster cell growth and/or the presence of enhanced H1 kinase activity in G1 in Jurkat cells. Conclusion Our data are consistent with a model in which a major part of interphase H1 phosphorylation takes place in G1 or early S phase. This implies that H1 serine phosphorylation may be coupled to changes in chromatin structure necessary for DNA replication. In addition, the increased H1 phosphorylation of malignant cells in G1 may be affecting the G1/S transition control and enabling facilitated S-phase entry as a result of relaxed chromatin condensation. Furthermore, increased H1.5 expression may be coupled to the proliferative capacity of growth-stimulated T cells.
Collapse
Affiliation(s)
- Anna Gréen
- Division of Cell Biology, Department of Clinical and Experimental Medicine, Linköping University, SE-58185 Linköping, Sweden.
| | | | | | | | | | | |
Collapse
|
34
|
Bronze-da-Rocha E, Lin CM, Shimura T, Aladjem MI. Interactions of MCP1 with components of the replication machinery in mammalian cells. Int J Biol Sci 2011; 7:193-208. [PMID: 21383955 PMCID: PMC3048848 DOI: 10.7150/ijbs.7.193] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2010] [Accepted: 02/12/2011] [Indexed: 11/18/2022] Open
Abstract
Eukaryotic DNA replication starts with the assembly of a pre-replication complex (pre-RC) at replication origins. We have previously demonstrated that Metaphase Chromosome Protein 1 (MCP1) is involved in the early events of DNA replication. Here we show that MCP1 associates with proteins that are required for the establishment of the pre-replication complex. Reciprocal immunoprecipitation analysis showed that MCP1 interacted with Cdc6, ORC2, ORC4, MCM2, MCM3 and MCM7, with Cdc45 and PCNA. Immunofluorescence studies demonstrated the co-localization of MCP1 with some of those proteins. Moreover, biochemical studies utilizing chromatin-immunoprecipitation (ChIP) revealed that MCP1 preferentially binds replication initiation sites in human cells. Interestingly, although members of the pre-RC are known to interact with some hallmarks of heterochromatin, our co-immunoprecipitation and immunofluorescence analyses showed that MCP1 did not interact and did not co-localize with heterochromatic proteins including HP1β and MetH3K9. These observations suggest that MCP1 is associated with replication factors required for the initiation of DNA replication and binds to the initiation sites in loci that replicate early in S-phase. In addition, immunological assays revealed the association of MCP1 forms with histone H1 variants and mass spectrometry analysis confirmed that MCP1 peptides share common sequences with H1.2 and H1.5 subtypes.
Collapse
Affiliation(s)
- Elsa Bronze-da-Rocha
- Departamento de Ciências Biológicas, Laboratório de Bioquímica, Faculdade de Farmácia da Universidade do Porto, Portugal.
| | | | | | | |
Collapse
|
35
|
Gréen A, Lönn A, Peterson KH, Ollinger K, Rundquist I. Translocation of histone H1 subtypes between chromatin and cytoplasm during mitosis in normal human fibroblasts. Cytometry A 2010; 77:478-84. [PMID: 20104577 DOI: 10.1002/cyto.a.20851] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Histone H1 is an important constituent of chromatin, which undergoes major structural rearrangements during mitosis. However, the role of H1, multiple H1 subtypes, and H1 phosphorylation is still unclear. In normal human fibroblasts, phosphorylated H1 was found located in nuclei during prophase and in both cytoplasm and condensed chromosomes during metaphase, anaphase, and telophase as detected by immunocytochemistry. Moreover, we detected remarkable differences in the distribution of the histone H1 subtypes H1.2, H1.3, and H1.5 during mitosis. H1.2 was found in chromatin during prophase and almost solely in the cytoplasm of metaphase and early anaphase cells. In late anaphase, it appeared in both chromatin and cytoplasm and again in chromatin during telophase. H1.5 distribution pattern resembled that of H1.2, but H1.5 was partitioned between chromatin and cytoplasm during metaphase and early anaphase. H1.3 was detected in chromatin in all cell cycle phases. We propose therefore, that H1 subtype translocation during mitosis is controlled by phosphorylation, in combination with H1 subtype inherent affinity. We conclude that H1 subtypes, or theirphosphorylated forms, may leave chromatin in a regulated way to give access for chromatin condensing factors or transcriptional regulators during mitosis.
Collapse
Affiliation(s)
- Anna Gréen
- Division of Cell Biology, Department of Clinical and Experimental Medicine, Linköping University, SE-58185 Linköping, Sweden
| | | | | | | | | |
Collapse
|
36
|
Zheng Y, John S, Pesavento JJ, Schultz-Norton JR, Schiltz RL, Baek S, Nardulli AM, Hager GL, Kelleher NL, Mizzen CA. Histone H1 phosphorylation is associated with transcription by RNA polymerases I and II. ACTA ACUST UNITED AC 2010; 189:407-15. [PMID: 20439994 PMCID: PMC2867294 DOI: 10.1083/jcb.201001148] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Histone H1 phosphorylation affects chromatin condensation and function, but little is known about how specific phosphorylations impact the function of H1 variants in higher eukaryotes. In this study, we show that specific sites in H1.2 and H1.4 of human cells are phosphorylated only during mitosis or during both mitosis and interphase. Antisera generated to individual H1.2/H1.4 interphase phosphorylations reveal that they are distributed throughout nuclei and enriched in nucleoli. Moreover, interphase phosphorylated H1.4 is enriched at active 45S preribosomal RNA gene promoters and is rapidly induced at steroid hormone response elements by hormone treatment. Our results imply that site-specific interphase H1 phosphorylation facilitates transcription by RNA polymerases I and II and has an unanticipated function in ribosome biogenesis and control of cell growth. Differences in the numbers, structure, and locations of interphase phosphorylation sites may contribute to the functional diversity of H1 variants.
Collapse
Affiliation(s)
- Yupeng Zheng
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|