1
|
Chee CW, Mohd Hashim N, Abdullah I, Nor Rashid N. RNA Sequencing and Bioinformatics Analysis Reveals the Downregulation of DNA Replication Genes by Morindone in Colorectal Cancer Cells. Appl Biochem Biotechnol 2024; 196:3216-3233. [PMID: 37642925 DOI: 10.1007/s12010-023-04690-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/16/2023] [Indexed: 08/31/2023]
Abstract
Morindone, a natural anthraquinone compound, has been reported to have significant pharmacological properties in different cancers. However, its anticancer effects in colorectal cancer (CRC) and the underlying molecular mechanisms remain obscure. In this study, RNA sequencing was used to assess the differentially expressed genes (DEGs) following morindone treatment in two CRC cell lines, HCT116 and HT29 cells. Functional enrichment analysis of overlapping DEGs revealed that negative regulation of cell development from biological processes and the MAPK signalling pathway were the most significant Gene Ontology terms and Kyoto Encyclopaedia of Genes and Genome pathway, respectively. Seven hub genes were identified among the overlapping genes, including MCM5, MCM6, MCM10, GINS2, POLE2, PRIM1, and WDHD1. All hub genes were found downregulated and involved in DNA replication fork. Among these, GINS2 was identified as the most cancer-dependent gene in both cells with better survival outcomes. Validation was performed on seven hub genes with rt-qPCR, and the results were consistent with the RNA sequencing findings. Collectively, this study provides corroboration of the potential therapeutic benefits and suitable pharmacological targets of morindone in the treatment of CRC.
Collapse
Affiliation(s)
- Cheok Wui Chee
- Department of Molecular Medicine, Faculty of Medicine, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Najihah Mohd Hashim
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
- Centre for Natural Products Research and Drug Discovery, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
- Drug Design and Development Research Group, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Iskandar Abdullah
- Drug Design and Development Research Group, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
- Department of Chemistry, Faculty of Science, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Nurshamimi Nor Rashid
- Department of Molecular Medicine, Faculty of Medicine, Universiti Malaya, 50603, Kuala Lumpur, Malaysia.
- Centre for Natural Products Research and Drug Discovery, Universiti Malaya, 50603, Kuala Lumpur, Malaysia.
- Drug Design and Development Research Group, Universiti Malaya, 50603, Kuala Lumpur, Malaysia.
| |
Collapse
|
2
|
Stępień K, Skoneczna A, Kula-Maximenko M, Jurczyk Ł, Mołoń M. Disorders in the CMG helicase complex increase the proliferative capacity and delay chronological aging of budding yeast. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119621. [PMID: 37907194 DOI: 10.1016/j.bbamcr.2023.119621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 10/08/2023] [Accepted: 10/22/2023] [Indexed: 11/02/2023]
Abstract
The replication of DNA requires specialized and intricate machinery. This machinery is known as a replisome and is highly evolutionarily conserved, from simple unicellular organisms such as yeast to human cells. The replisome comprises multiple protein complexes responsible for various steps in the replication process. One crucial component of the replisome is the Cdc45-MCM-GINS (CMG) helicase complex, which unwinds double-stranded DNA and coordinates the assembly and function of other replisome components, including DNA polymerases. The genes encoding the CMG helicase components are essential for initiating DNA replication. In this study, we aimed to investigate how the absence of one copy of the CMG complex genes in heterozygous Saccharomyces cerevisiae cells impacts the cells' physiology and aging. Our data revealed that these cells exhibited a significant reduction in transcript levels for the respective CMG helicase complex proteins, as well as disruptions in the cell cycle, extended doubling times, and alterations in their biochemical profile. Notably, this study provided the first demonstration that cells heterozygous for genes encoding subunits of the CMG helicase exhibited a significantly increased reproductive potential and delayed chronological aging. Additionally, we observed a noteworthy correlation between RNA and polysaccharide levels in yeast and their reproductive potential, as well as a correlation between fatty acid levels and cell doubling times. Our findings also shed new light on the potential utility of yeast in investigating potential therapeutic targets for cancer treatment.
Collapse
Affiliation(s)
- Karolina Stępień
- Institute of Medical Sciences, Rzeszów University, 35-959 Rzeszów, Poland
| | - Adrianna Skoneczna
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland.
| | - Monika Kula-Maximenko
- The Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, 30-239 Krakow, Poland
| | - Łukasz Jurczyk
- Institute of Agricultural Sciences, Rzeszów University, 35-601 Rzeszów, Poland
| | - Mateusz Mołoń
- Institute of Biology, Rzeszów University, 35-601 Rzeszów, Poland.
| |
Collapse
|
3
|
Hatwik J, Patil HN, Limaye AM. Proliferative response of ERα-positive breast cancer cells to 10 μM enterolactone, and the associated alteration in the transcriptomic landscape. Gene 2023:147640. [PMID: 37453722 DOI: 10.1016/j.gene.2023.147640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 07/11/2023] [Accepted: 07/12/2023] [Indexed: 07/18/2023]
Abstract
Enterolactone (EL) is a product of gut-microbial metabolism of dietary plant lignans. Studies linking EL with breast cancer risk have bolstered investigations into its effects on the mammary epithelial cells, and the mechanisms thereof. While it binds to the estrogen receptor α; ERα, its effect on the proliferation of mammary tumor cell lines is reportedly ambivalent; depending on its concentration. The genomic correlates of EL actions also remain unexplored. Here we have elaborately studied the effect of EL on proliferation of ERα-positive, and ERα-negative cell lines. 10 µM EL significantly enhanced the growth of the ERα-positive MCF-7 or T47D breast cancer cells, but not the ERα-negative MDA-MB-231 or MDA-MB-453 cells. In MCF-7 cells, it significantly increased the expression of TFF1 mRNA, an estrogen-induced transcript. The binding of ERα to the estrogen response element within the TFF1 locus further demonstrated the pro-estrogenic effect of 10 µM EL. We further explored the genome-wide transcriptomic effect of 10 µM EL using the next generation sequencing technology (RNA-seq). Analysis of RNA-seq data obtained from vehicle (0.1% DMSO)- or 10 µM EL treated- MCF-7 cells revealed modulation of expression of diverse sets of functionally related genes, which reflected cell cycle progression. The manner in which 10 µM EL regulated the hallmark G2/M checkpoint, and estrogen-response-late genes correlated with proliferation inducing, and estrogen-like effects of EL on MCF-7 cells.
Collapse
Affiliation(s)
- Juana Hatwik
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India; Department of Health Sciences, Al-Baath University, Homs, Syria
| | - Hrishikesh Nitin Patil
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Anil Mukund Limaye
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India.
| |
Collapse
|
4
|
Zhang K, Zhou J, Wu T, Tian Q, Liu T, Wang W, Zhong H, Chen Z, Xiao X, Wu G. Combined analysis of expression, prognosis and immune infiltration of GINS family genes in human sarcoma. Aging (Albany NY) 2022; 14:5895-5907. [PMID: 35896011 PMCID: PMC9365567 DOI: 10.18632/aging.204191] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 07/05/2022] [Indexed: 11/30/2022]
Abstract
Objective: This study was undertaken to explore the expression and prognostic value of GINS family in human sarcoma, as well as the association between the expression levels of the GINS family and sarcoma immune infiltration. Results: We discovered that the mRNA expression levels of GINS1, GINS2, GINS3, and GINS4 were all higher in the majority of tumor tissues than in normal samples, of course, including sarcoma. Through the CCLE, all the four members expression were observed in high levels in sarcoma cell lines. In Gene Expression Profiling Analysis (GEPIA) and Kaplan-Meier Plotter, our results indicated that the poor overall survival (OS), disease-free survival (DFS) and relapse free survival (RFS) were tightly associated with the increased expression of GINS genes. In TIMER database, we found that highly expressed GINS was significantly correlated with the low infiltration level of CD4+ T cell and macrophage. Conclusions: The four GINS family members were all the prognostic biomarkers for the prognosis of human sarcoma and can reduce the level of immune cell infiltration in the sarcoma microenvironment. Methods: In terms of the expression levels of mRNA for GINS family members, a particular contrast in various cancers, especially human sarcoma, was conducted through ONCOMINE and GEPIA and CCLE databases. Kaplan-Meier Plotter was used to identify the prognostic value of GINS family in sarcoma. The relationship between the expression level of GINS and the infiltration of immune cells was analyzed in TIMER database.
Collapse
Affiliation(s)
- Kexin Zhang
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China.,Department of Psychology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Jian Zhou
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Tong Wu
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Qunyan Tian
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Tang Liu
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Wanchun Wang
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Hua Zhong
- Department of Orthopedics, The Fifth Affiliated Hospital, Southern Medical University, Guangzhou 510900, Guangdong, China
| | - Ziyuan Chen
- Department of Orthopedics, The First People's Hospital of Changde City, Changde 415003, Hunan, China
| | - Xungang Xiao
- Department of Orthopedics, Chenzhou No.1 People's Hospital, Chenzhou 423000, Hunan, China
| | - Gen Wu
- Department of Orthopedics, The Fifth Affiliated Hospital, Southern Medical University, Guangzhou 510900, Guangdong, China
| |
Collapse
|
5
|
Rubio-Ferrera I, Baladrón-de-Juan P, Clarembaux-Badell L, Truchado-Garcia M, Jordán-Álvarez S, Thor S, Benito-Sipos J, Monedero Cobeta I. Selective role of the DNA helicase Mcm5 in BMP retrograde signaling during Drosophila neuronal differentiation. PLoS Genet 2022; 18:e1010255. [PMID: 35737938 PMCID: PMC9258838 DOI: 10.1371/journal.pgen.1010255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 07/06/2022] [Accepted: 05/13/2022] [Indexed: 11/17/2022] Open
Abstract
The MCM2-7 complex is a highly conserved hetero-hexameric protein complex, critical for DNA unwinding at the replicative fork during DNA replication. Overexpression or mutation in MCM2-7 genes is linked to and may drive several cancer types in humans. In mice, mutations in MCM2-7 genes result in growth retardation and mortality. All six MCM2-7 genes are also expressed in the developing mouse CNS, but their role in the CNS is not clear. Here, we use the central nervous system (CNS) of Drosophila melanogaster to begin addressing the role of the MCM complex during development, focusing on the specification of a well-studied neuropeptide expressing neuron: the Tv4/FMRFa neuron. In a search for genes involved in the specification of the Tv4/FMRFa neuron we identified Mcm5 and find that it plays a highly specific role in the specification of the Tv4/FMRFa neuron. We find that other components of the MCM2-7 complex phenocopies Mcm5, indicating that the role of Mcm5 in neuronal subtype specification involves the MCM2-7 complex. Surprisingly, we find no evidence of reduced progenitor proliferation, and instead find that Mcm5 is required for the expression of the type I BMP receptor Tkv, which is critical for the FMRFa expression. These results suggest that the MCM2-7 complex may play roles during CNS development outside of its well-established role during DNA replication. The MCM2-7 complex plays a critical role in the DNA replication allowing cells to progress throughout the cell cycle and divide. Overexpression or mutation in MCM2-7 genes is linked to and may drive several cancer types in humans. While MCM2-7 complex is widely expressed in the central nervous system (CNS) during development, its role is not yet clear. Here, we use the CNS of Drosophila melanogaster to address the role of the MCM complex, focusing on the specification of a well-studied neuropeptide expressing neuron: the Tv4/FMRFa neuron. We identified that Mcm5 plays a highly specific role in the specification of this neuron, and it involves other components of the MCM2-7 complex. Despite the described importance of this complex on DNA replication, we find no evidence of reduced progenitor proliferation, and instead we find that Mcm5 is required for the expression of the type I BMP receptor Tkv, which is critical for the specification of the Tv4/FMRFa neuron. These results suggest that the MCM2-7 complex may play roles during CNS development outside of its well-established role during DNA replication.
Collapse
Affiliation(s)
- Irene Rubio-Ferrera
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Cantoblanco, Madrid, Spain
| | - Pablo Baladrón-de-Juan
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Cantoblanco, Madrid, Spain
| | - Luis Clarembaux-Badell
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Cantoblanco, Madrid, Spain
| | | | - Sheila Jordán-Álvarez
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Cantoblanco, Madrid, Spain
| | - Stefan Thor
- School of Biomedical Sciences, The University of Queensland, Brisbane, Australia
| | - Jonathan Benito-Sipos
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Cantoblanco, Madrid, Spain
- * E-mail: (JB-S); (IMC)
| | - Ignacio Monedero Cobeta
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Cantoblanco, Madrid, Spain
- Departamento de Fisiología, Facultad de Medicina, Universidad Autónoma de Madrid, Cantoblanco, Madrid, Spain
- * E-mail: (JB-S); (IMC)
| |
Collapse
|
6
|
Increased contribution of DNA polymerase delta to the leading strand replication in yeast with an impaired CMG helicase complex. DNA Repair (Amst) 2022; 110:103272. [DOI: 10.1016/j.dnarep.2022.103272] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/24/2021] [Accepted: 01/04/2022] [Indexed: 11/19/2022]
|
7
|
Li H, Cao Y, Ma J, Luo L, Ma B. Expression and prognosis analysis of GINS subunits in human breast cancer. Medicine (Baltimore) 2021; 100:e24827. [PMID: 33725952 PMCID: PMC7982226 DOI: 10.1097/md.0000000000024827] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 01/26/2021] [Accepted: 01/26/2021] [Indexed: 01/05/2023] Open
Abstract
ABSTRACT GINS subunits, a protein complex composed of GINS1, GINS2, GINS3 and GINS4 in the human genome and the expression level of each GINS subunits plays an important role in different human cancers. As one of the most common malignancies after lung cancer in the world, precise biomarkers for early diagnosis and treatment in breast cancer are important. The purpose of our study was to elucidate the expression and prognostic value of GINS subunits in breast cancer.The purpose of present study was to explore the expression level of GINS subunits in breast cancer patients.In the present study, we investigated the gene alteration, gene expression and potential prognostic value of GINS subunits by using the Gene Expression Profiling Interactive Analysis (GEPIA), UALCAN, cBioPortal, and bc-GenExMiner databases. Then, the GeneMANIA database was used to show the genes that associated with GINS subunits. Furthermore, gene ontology pathway analysis was conducted by using the Metascape database. Finally, immune infiltration analysis in GINS subunits were evaluated using the Tumor Immune Estimation Resource (TIMER) database.Our analyses demonstrated that the expression levels of different GINS subunits were different between breast cancer and normal breast tissues. The expression levels of GINS1, GINS2, and GINS4 were significantly higher in breast cancer tissues than in normal tissues. Survival analysis revealed that increased the expression levels of GINS subunits were associated with poor prognoses in all patients with breast cancer. Gene ontology pathway enrichment analysis of the GINS subunits suggested that GINS subunits involved in pathways including the cell cycle checkpoint, DNA replication and other meaningful signaling pathways.We systemically analyzed the expression, prognostic, clinicopathologic values, and potential functional networks of GINS subunits in breast cancer. Our findings showed that individual GINS subunits could be new potential prognostic biomarkers for breast cancer. However, further verification studies are still needed to prove the clinical value of GINS subunits in breast cancer patients.
Collapse
Affiliation(s)
- Hongtao Li
- Department of Breast, Head and Neck Surgery
| | - Yanzhen Cao
- Department of Pathology, Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Jing Ma
- Department of Breast, Head and Neck Surgery
| | - Lin Luo
- Department of Breast, Head and Neck Surgery
| | - Binlin Ma
- Department of Breast, Head and Neck Surgery
| |
Collapse
|
8
|
Mohammed Khalid AA, Parisse P, Medagli B, Onesti S, Casalis L. Atomic Force Microscopy Investigation of the Interactions between the MCM Helicase and DNA. MATERIALS 2021; 14:ma14030687. [PMID: 33540751 PMCID: PMC7867263 DOI: 10.3390/ma14030687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/21/2021] [Accepted: 01/26/2021] [Indexed: 11/16/2022]
Abstract
The MCM (minichromosome maintenance) protein complex forms an hexameric ring and has a key role in the replication machinery of Eukaryotes and Archaea, where it functions as the replicative helicase opening up the DNA double helix ahead of the polymerases. Here, we present a study of the interaction between DNA and the archaeal MCM complex from Methanothermobacter thermautotrophicus by means of atomic force microscopy (AFM) single molecule imaging. We first optimized the protocol (surface treatment and buffer conditions) to obtain AFM images of surface-equilibrated DNA molecules before and after the interaction with the protein complex. We discriminated between two modes of interaction, one in which the protein induces a sharp bend in the DNA, and one where there is no bending. We found that the presence of the MCM complex also affects the DNA contour length. A possible interpretation of the observed behavior is that in one case the hexameric ring encircles the dsDNA, while in the other the nucleic acid wraps on the outside of the ring, undergoing a change of direction. We confirmed this topographical assignment by testing two mutants, one affecting the N-terminal β-hairpins projecting towards the central channel, and thus preventing DNA loading, the other lacking an external subdomain and thus preventing wrapping. The statistical analysis of the distribution of the protein complexes between the two modes, together with the dissection of the changes of DNA contour length and binding angle upon interaction, for the wild type and the two mutants, is consistent with the hypothesis. We discuss the results in view of the various modes of nucleic acid interactions that have been proposed for both archaeal and eukaryotic MCM complexes.
Collapse
Affiliation(s)
- Amna Abdalla Mohammed Khalid
- Elettra-Sincrotrone Trieste, 34149 Trieste, Italy; (A.A.M.K.); (B.M.)
- Department of Physics, PhD School in Nanotechnology, University of Trieste, 34127 Trieste, Italy
| | - Pietro Parisse
- Elettra-Sincrotrone Trieste, 34149 Trieste, Italy; (A.A.M.K.); (B.M.)
- Istituto Officina dei Materiali, Consiglio Nazionale delle Ricerche (IOM-CNR), 34149 Trieste, Italy
- Correspondence: (P.P.); (S.O.); (L.C.)
| | - Barbara Medagli
- Elettra-Sincrotrone Trieste, 34149 Trieste, Italy; (A.A.M.K.); (B.M.)
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, 34127 Trieste, Italy
| | - Silvia Onesti
- Elettra-Sincrotrone Trieste, 34149 Trieste, Italy; (A.A.M.K.); (B.M.)
- Correspondence: (P.P.); (S.O.); (L.C.)
| | - Loredana Casalis
- Elettra-Sincrotrone Trieste, 34149 Trieste, Italy; (A.A.M.K.); (B.M.)
- Correspondence: (P.P.); (S.O.); (L.C.)
| |
Collapse
|
9
|
Pérez-Arnaiz P, Dattani A, Smith V, Allers T. Haloferax volcanii-a model archaeon for studying DNA replication and repair. Open Biol 2020; 10:200293. [PMID: 33259746 PMCID: PMC7776575 DOI: 10.1098/rsob.200293] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 11/09/2020] [Indexed: 12/16/2022] Open
Abstract
The tree of life shows the relationship between all organisms based on their common ancestry. Until 1977, it comprised two major branches: prokaryotes and eukaryotes. Work by Carl Woese and other microbiologists led to the recategorization of prokaryotes and the proposal of three primary domains: Eukarya, Bacteria and Archaea. Microbiological, genetic and biochemical techniques were then needed to study the third domain of life. Haloferax volcanii, a halophilic species belonging to the phylum Euryarchaeota, has provided many useful tools to study Archaea, including easy culturing methods, genetic manipulation and phenotypic screening. This review will focus on DNA replication and DNA repair pathways in H. volcanii, how this work has advanced our knowledge of archaeal cellular biology, and how it may deepen our understanding of bacterial and eukaryotic processes.
Collapse
Affiliation(s)
| | | | | | - Thorsten Allers
- School of Life Sciences, University of Nottingham, Queen's Medical Centre, Nottingham, UK
| |
Collapse
|
10
|
Bu F, Zhu X, Zhu J, Liu Z, Wu T, Luo C, Lin K, Huang J. Bioinformatics Analysis Identifies a Novel Role of GINS1 Gene in Colorectal Cancer. Cancer Manag Res 2020; 12:11677-11687. [PMID: 33235499 PMCID: PMC7680165 DOI: 10.2147/cmar.s279165] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 10/15/2020] [Indexed: 12/15/2022] Open
Abstract
Background Colorectal cancer (CRC) is one of the most lethal malignancies and the incidence of CRC has been on the rise. Herein, we aimed to identify effective biomarkers for early diagnosis and treatment of colorectal cancer via bioinformatic tools. Methods To identify differentially expressed genes (DEGs) in CRC, we downloaded CRC gene expression data from GSE24514 and GSE110223 datasets in Gene Expression Omnibus (GEO) and employed R to analyze the data. We further performed functional enrichment analysis of the DEGs on the DAVID gene ontology analysis tool. STRING database and Cytoscape visualization tool were employed to construct a PPI (protein–protein interaction) network and establish intensive intervals in the network. Immunohistochemistry, qRT-PCR and Western blotting were performed to identify the expression level of GINS1 in CRC. In vitro and in vivo experiments were performed to assess the impact of GINS1 in the pathogenesis of CRC in terms of proliferation, migration and metastasis. Results Among the two datasets, 389 DEGs were identified and used to construct a PPI network. These genes were mainly involved in cell proliferation and cell cycle. Among them, 15 genes including GINS1 were found to be strongly associated with the PPI network. We further performed immunohistochemistry, qRT-PCR and Western blotting to identify that GINS1 expression was higher in CRC than in paired normal tissues. Moreover, in vitro and in vivo experiments demonstrated GINS1 could promote the proliferation, invasion and migration of colorectal cancer cells. Conclusions GINS1 could be considered as a potential biomarker for CRC patients.
Collapse
Affiliation(s)
- Fanqin Bu
- Department of Gastrointestinal Surgery, Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, People's Republic of China.,Jiangxi Medical College of Nanchang University, Nanchang, People's Republic of China
| | - Xiaojian Zhu
- Research Center of The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, People's Republic of China
| | - Jinfeng Zhu
- Department of Gastrointestinal Surgery, Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, People's Republic of China.,Jiangxi Medical College of Nanchang University, Nanchang, People's Republic of China
| | - Zitao Liu
- Department of Gastrointestinal Surgery, Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, People's Republic of China.,Jiangxi Medical College of Nanchang University, Nanchang, People's Republic of China
| | - Ting Wu
- Department of Infectious Diseases of Guixi Traditional Chinese Medicine Hospital, Yingtan, People's Republic of China
| | - Chen Luo
- Department of Gastrointestinal Surgery, Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, People's Republic of China.,Jiangxi Medical College of Nanchang University, Nanchang, People's Republic of China
| | - Kang Lin
- Department of Gastrointestinal Surgery, Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, People's Republic of China.,Jiangxi Medical College of Nanchang University, Nanchang, People's Republic of China
| | - Jun Huang
- Department of Gastrointestinal Surgery, Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, People's Republic of China
| |
Collapse
|
11
|
Yu S, Zhu L, Xie P, Jiang S, Wang K, Liu Y, He J, Ren Y. Mining the prognostic significance of the GINS2 gene in human breast cancer using bioinformatics analysis. Oncol Lett 2020; 20:1300-1310. [PMID: 32724372 PMCID: PMC7377083 DOI: 10.3892/ol.2020.11651] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 11/26/2019] [Indexed: 12/24/2022] Open
Abstract
A number of studies have demonstrated the crucial functions of GINS2 within the GINS complex in various types of cancer. However, the molecular mechanisms and prognostic value of GINS2 in breast cancer remain unknown. The present study used; BC-GenExMiner, COSMIC, UCSC Xena, The Human Protein Atlas, GEPIA, cBioPortal, GeneMANIA, TIMER and Oncomine, in order to investigate gene expression, co-expression, clinical parameters and mutations in GINS2 in patients with breast cancer. Furthermore, the present study assessed the prognostic value of GINS2 in patients with breast cancer via the Kaplan-Meier plotter database. The results of the present study demonstrated that the mRNA levels of GINS2 were significantly higher in breast cancer tissue compared with normal tissue. In addition, high mRNA expression levels of GINS2 were associated with high Scarff-Bloom-Richardson status grades, a basal-like status and age (≤51 years); however, it was not associated with lymph node metastasis. The survival analysis revealed that increased GINS2 mRNA levels were associated with a worse prognosis for relapse-free survival in all patients with breast cancer, particularly in those with estrogen receptor-positive and progesterone receptor-positive subtypes. In addition, a positive association between the GINS2, CENPM and MCM4 genes was confirmed. The results of the present study suggest that GINS2 could be used as a potential prognostic biomarker for breast cancer. Nevertheless, further studies are necessary to confirm the effects of GINS2 on the pathogenesis and development of patients with breast cancer.
Collapse
Affiliation(s)
- Shibo Yu
- Department of Breast Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Lizhe Zhu
- Department of Breast Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Peiling Xie
- Department of Breast Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Siyuan Jiang
- Department of Breast Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Ke Wang
- Department of Breast Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Yang Liu
- Department of Breast Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Jianjun He
- Department of Breast Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Yu Ren
- Department of Breast Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| |
Collapse
|
12
|
Hsieh HY, Jia W, Jin ZC, Kidoya H, Takakura N. High expression of PSF1 promotes drug resistance and cell cycle transit in leukemia cells. Cancer Sci 2020; 111:2400-2412. [PMID: 32391593 PMCID: PMC7385346 DOI: 10.1111/cas.14452] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 04/08/2020] [Accepted: 04/09/2020] [Indexed: 01/10/2023] Open
Abstract
Escape of cancer cells from chemotherapy is a problem in the management of cancer patients. Research on chemotherapy resistance has mainly focused on the heterogeneity of cancer cells, multiple gene mutations, and quiescence of malignant cancer cells. However, some studies have indicated that interactions between cancer cells and vascular cells promote resistance to chemotherapy. Here, we established mouse leukemia models using the cell lines THP‐1 or MEG‐1. These were derived from acute and chronic myeloid leukemias, respectively, and highly expressed DNA replication factor PSF1, a member of the GINS complex. We found that, after anti‐cancer drug administration, surviving GFP‐positive leukemia cells in the bone marrow were located adjacent to blood vessels, as previously reported in a subcutaneous solid tumor transplantation model. Treating THP‐1 and MEG‐1 cells with anti‐cancer drugs in vitro revealed that those most strongly expressing PSF1 were most chemoresistant, suggesting that PSF1 induces not only cell cycle progression but also facilitates cell survival. Indeed, when PSF1 expression was suppressed by shRNA, the growth rate was reduced and cell death was enhanced in both cell lines. Furthermore, PSF1 knockdown in leukemia cells led to a change in their location at a distance from the blood vessels in a bone marrow transplantation model. These findings potentially reflect a mechanism of escape of leukemic cells from chemotherapy and suggest that PSF1 may be a possible therapeutic target to enhance the effect of chemotherapy.
Collapse
Affiliation(s)
- Han-Yun Hsieh
- Department of Signal Transduction, Research Institute for Microbial Disease, Osaka University, Suita, Osaka, Japan
| | - Weizhen Jia
- Department of Signal Transduction, Research Institute for Microbial Disease, Osaka University, Suita, Osaka, Japan
| | - Ze-Cheng Jin
- Department of Signal Transduction, Research Institute for Microbial Disease, Osaka University, Suita, Osaka, Japan
| | - Hiroyasu Kidoya
- Department of Signal Transduction, Research Institute for Microbial Disease, Osaka University, Suita, Osaka, Japan
| | - Nobuyuki Takakura
- Department of Signal Transduction, Research Institute for Microbial Disease, Osaka University, Suita, Osaka, Japan
| |
Collapse
|
13
|
Abstract
Replicative DNA helicases are essential cellular enzymes that unwind duplex DNA in front of the replication fork during chromosomal DNA replication. Replicative helicases were discovered, beginning in the 1970s, in bacteria, bacteriophages, viruses, and eukarya, and, in the mid-1990s, in archaea. This year marks the 20th anniversary of the first report on the archaeal replicative helicase, the minichromosome maintenance (MCM) protein. This minireview summarizes 2 decades of work on the archaeal MCM.
Collapse
|
14
|
Defects in the GINS complex increase the instability of repetitive sequences via a recombination-dependent mechanism. PLoS Genet 2019; 15:e1008494. [PMID: 31815930 PMCID: PMC6922473 DOI: 10.1371/journal.pgen.1008494] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 12/19/2019] [Accepted: 10/25/2019] [Indexed: 12/16/2022] Open
Abstract
Faithful replication and repair of DNA lesions ensure genome maintenance. During replication in eukaryotic cells, DNA is unwound by the CMG helicase complex, which is composed of three major components: the Cdc45 protein, Mcm2-7, and the GINS complex. The CMG in complex with DNA polymerase epsilon (CMG-E) participates in the establishment and progression of the replisome. Impaired functioning of the CMG-E was shown to induce genomic instability and promote the development of various diseases. Therefore, CMG-E components play important roles as caretakers of the genome. In Saccharomyces cerevisiae, the GINS complex is composed of the Psf1, Psf2, Psf3, and Sld5 essential subunits. The Psf1-1 mutant form fails to interact with Psf3, resulting in impaired replisome assembly and chromosome replication. Here, we show increased instability of repeat tracts (mononucleotide, dinucleotide, trinucleotide and longer) in yeast psf1-1 mutants. To identify the mechanisms underlying this effect, we analyzed repeated sequence instability using derivatives of psf1-1 strains lacking genes involved in translesion synthesis, recombination, or mismatch repair. Among these derivatives, deletion of RAD52, RAD51, MMS2, POL32, or PIF1 significantly decreased DNA repeat instability. These results, together with the observed increased amounts of single-stranded DNA regions and Rfa1 foci suggest that recombinational mechanisms make important contributions to repeat tract instability in psf1-1 cells. We propose that defective functioning of the CMG-E complex in psf1-1 cells impairs the progression of DNA replication what increases the contribution of repair mechanisms such as template switch and break-induced replication. These processes require sequence homology search which in case of a repeated DNA tract may result in misalignment leading to its expansion or contraction. Processes that ensure genome stability are crucial for all organisms to avoid mutations and decrease the risk of diseases. The coordinated activity of mechanisms underlying the maintenance of high-fidelity DNA duplication and repair is critical to deal with the malfunction of replication forks or DNA damage. Repeated sequences in DNA are particularly prone to instability; these sequences undergo expansions or contractions, leading in humans to various neurological, neurodegenerative, and neuromuscular disorders. A mutant form of one of the noncatalytic subunits of active DNA helicase complex impairs DNA replication. Here, we show that this form also significantly increases the instability of mononucleotide, dinucleotide, trinucleotide and longer repeat tracts. Our results suggest that in cells that harbor a mutated variant of the helicase complex, continuation of DNA replication is facilitated by recombination processes, and this mechanism can be highly mutagenic during repair synthesis through repetitive regions, especially regions that form secondary structures. Our results indicate that proper functioning of the DNA helicase complex is crucial for maintenance of the stability of repeated DNA sequences, especially in the context of recently described disorders in which mutations or deregulation of the human homologs of genes encoding DNA helicase subunits were observed.
Collapse
|
15
|
Gardner AF, Kelman Z. Editorial: The DNA Replication Machinery as Therapeutic Targets. Front Mol Biosci 2019; 6:35. [PMID: 31179285 PMCID: PMC6537510 DOI: 10.3389/fmolb.2019.00035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 05/02/2019] [Indexed: 11/24/2022] Open
Affiliation(s)
| | - Zvi Kelman
- Biomolecular Labeling Laboratory, Institute for Bioscience and Biotechnology Research, Rockville, MD, United States.,National Institute of Standards and Technology, Rockville, MD, United States
| |
Collapse
|
16
|
Embryonic expression of GINS members in the development of the mammalian nervous system. Neurochem Int 2019; 129:104465. [PMID: 31095979 DOI: 10.1016/j.neuint.2019.104465] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Revised: 05/07/2019] [Accepted: 05/12/2019] [Indexed: 12/30/2022]
Abstract
The GINS (Go, Ichi, Nii, and San) complex contains four protein subunits (PSF1, PSF2, PSF3, and SLD5) and has been identified as a factor essential for the initiation and elongation stages of the DNA replication process. A previous study indicated that PSF2 participated in the developing central nervous system (CNS) of Xenopus laevis. However, the expression and function of GINS members in the mammalian developing nervous system remains unclear. Here, we examined the expression of GINS members in mice during nervous system development via immunofluorescence staining. At the beginning of neural development, PSF1 and SLD5 were highly expressed in neuroepithelial stem cells (NSCs) of the inner surface of neural tube (NT) and overlapped with proliferation marker Ki67. After entering the mid- and late-phase of neural development, PSF1 and SLD5 changed their regions of expression. These genes were highly expressed in dorsal root ganglion (DRG) progenitors, but they showed no overlap with Ki67 positive cells. Instead, a reduction of SLD5 expression promoted neuronal differentiation and maturation in the late-phase. PSF2 and PSF3 showed no tissue-specificity. PSF2 was constitutively and highly expressed whereas PSF3 was expressed at very low levels during neural development. In this study, we demonstrated variations in proteins and expression regions of the GINS members during mammalian CNS development and revealed a correlation between GINS expression and cell proliferation. Furthermore, we have suggested a novel function of GINS member SLD5, which regulates the differentiation of neural stem/progenitors.
Collapse
|
17
|
Zatopek KM, Gardner AF, Kelman Z. Archaeal DNA replication and repair: new genetic, biophysical and molecular tools for discovering and characterizing enzymes, pathways and mechanisms. FEMS Microbiol Rev 2018; 42:477-488. [PMID: 29912309 DOI: 10.1093/femsre/fuy017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 04/17/2018] [Indexed: 01/03/2023] Open
Abstract
DNA replication and repair are essential biological processes needed for the survival of all organisms. Although these processes are fundamentally conserved in the three domains, archaea, bacteria and eukarya, the proteins and complexes involved differ. The genetic and biophysical tools developed for archaea in the last several years have accelerated the study of DNA replication and repair in this domain. In this review, the current knowledge of DNA replication and repair processes in archaea will be summarized, with emphasis on the contribution of genetics and other recently developed biophysical and molecular tools, including capillary gel electrophoresis, next-generation sequencing and single-molecule approaches. How these new tools will continue to drive archaeal DNA replication and repair research will also be discussed.
Collapse
Affiliation(s)
| | | | - Zvi Kelman
- Biomolecular Labeling Laboratory, Institute for Bioscience and Biotechnology Research, National Institute of Standards and Technology and the University of Maryland, Rockville, MD 20850, USA
| |
Collapse
|
18
|
Neves H, Kwok HF. In sickness and in health: The many roles of the minichromosome maintenance proteins. Biochim Biophys Acta Rev Cancer 2017; 1868:295-308. [DOI: 10.1016/j.bbcan.2017.06.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 05/29/2017] [Accepted: 06/01/2017] [Indexed: 01/09/2023]
|
19
|
New insights into the GINS complex explain the controversy between existing structural models. Sci Rep 2017; 7:40188. [PMID: 28071757 PMCID: PMC5223209 DOI: 10.1038/srep40188] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2016] [Accepted: 12/01/2016] [Indexed: 11/24/2022] Open
Abstract
GINS is a key component of eukaryotic replicative forks and is composed of four subunits (Sld5, Psf1, Psf2, Psf3). To explain the discrepancy between structural data from crystallography and electron microscopy (EM), we show that GINS is a compact tetramer in solution as observed in crystal structures, but also forms a double-tetrameric population, detectable by EM. This may represent an intermediate step towards the assembly of two replicative helicase complexes at origins, moving in opposite directions within the replication bubble. Reconstruction of the double-tetrameric form, combined with small-angle X-ray scattering data, allows the localisation of the B domain of the Psf1 subunit in the free GINS complex, which was not visible in previous studies and is essential for the formation of a functional replication fork.
Collapse
|
20
|
Bai L, Yuan Z, Sun J, Georgescu R, O'Donnell ME, Li H. Architecture of the Saccharomyces cerevisiae Replisome. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1042:207-228. [PMID: 29357060 DOI: 10.1007/978-981-10-6955-0_10] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Eukaryotic replication proteins are highly conserved, and thus study of Saccharomyces cerevisiae replication can inform about this central process in higher eukaryotes including humans. The S. cerevisiae replisome is a large and dynamic assembly comprised of ~50 proteins. The core of the replisome is composed of 31 different proteins including the 11-subunit CMG helicase; RFC clamp loader pentamer; PCNA clamp; the heteroligomeric DNA polymerases ε, δ, and α-primase; and the RPA heterotrimeric single strand binding protein. Many additional protein factors either travel with or transiently associate with these replisome proteins at particular times during replication. In this chapter, we summarize several recent structural studies on the S. cerevisiae replisome and its subassemblies using single particle electron microscopy and X-ray crystallography. These recent structural studies have outlined the overall architecture of a core replisome subassembly and shed new light on the mechanism of eukaryotic replication.
Collapse
Affiliation(s)
- Lin Bai
- Cryo-EM Structural Biology Laboratory, Van Andel Research Institute, Grand Rapids, MI, USA
| | - Zuanning Yuan
- Cryo-EM Structural Biology Laboratory, Van Andel Research Institute, Grand Rapids, MI, USA
- Biochemistry and Structural Biology Graduate Program, Stony Brook University, Stony Brook, NY, USA
| | - Jingchuan Sun
- Cryo-EM Structural Biology Laboratory, Van Andel Research Institute, Grand Rapids, MI, USA
| | - Roxana Georgescu
- Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA
| | - Michael E O'Donnell
- Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA.
| | - Huilin Li
- Cryo-EM Structural Biology Laboratory, Van Andel Research Institute, Grand Rapids, MI, USA.
- Biochemistry and Structural Biology Graduate Program, Stony Brook University, Stony Brook, NY, USA.
| |
Collapse
|
21
|
Emerging Roles for Ciz1 in Cell Cycle Regulation and as a Driver of Tumorigenesis. Biomolecules 2016; 7:biom7010001. [PMID: 28036012 PMCID: PMC5372713 DOI: 10.3390/biom7010001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 12/12/2016] [Accepted: 12/14/2016] [Indexed: 12/19/2022] Open
Abstract
Precise duplication of the genome is a prerequisite for the health and longevity of multicellular organisms. The temporal regulation of origin specification, replication licensing, and firing at replication origins is mediated by the cyclin-dependent kinases. Here the role of Cip1 interacting Zinc finger protein 1 (Ciz1) in regulation of cell cycle progression is discussed. Ciz1 contributes to regulation of the G1/S transition in mammalian cells. Ciz1 contacts the pre-replication complex (pre-RC) through cell division cycle 6 (Cdc6) interactions and aids localization of cyclin A- cyclin-dependent kinase 2 (CDK2) activity to chromatin and the nuclear matrix during initiation of DNA replication. We discuss evidence that Ciz1 serves as a kinase sensor that regulates both initiation of DNA replication and prevention of re-replication. Finally, the emerging role for Ciz1 in cancer biology is discussed. Ciz1 is overexpressed in common tumors and tumor growth is dependent on Ciz1 expression, suggesting that Ciz1 is a driver of tumor growth. We present evidence that Ciz1 may contribute to deregulation of the cell cycle due to its ability to alter the CDK activity thresholds that are permissive for initiation of DNA replication. We propose that Ciz1 may contribute to oncogenesis by induction of DNA replication stress and that Ciz1 may be a multifaceted target in cancer therapy.
Collapse
|
22
|
Xu Y, Gristwood T, Hodgson B, Trinidad JC, Albers SV, Bell SD. Archaeal orthologs of Cdc45 and GINS form a stable complex that stimulates the helicase activity of MCM. Proc Natl Acad Sci U S A 2016; 113:13390-13395. [PMID: 27821767 PMCID: PMC5127375 DOI: 10.1073/pnas.1613825113] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The regulated recruitment of Cdc45 and GINS is key to activating the eukaryotic MCM(2-7) replicative helicase. We demonstrate that the homohexameric archaeal MCM helicase associates with orthologs of GINS and Cdc45 in vivo and in vitro. Association of these factors with MCM robustly stimulates the MCM helicase activity. In contrast to the situation in eukaryotes, archaeal Cdc45 and GINS form an extremely stable complex before binding MCM. Further, the archaeal GINS•Cdc45 complex contains two copies of Cdc45. Our analyses give insight into the function and evolution of the conserved core of the archaeal/eukaryotic replisome.
Collapse
Affiliation(s)
- Yuli Xu
- Molecular and Cellular Biochemistry Department, Indiana University, Bloomington, IN 47405
- Biology Department, Indiana University, Bloomington, IN 47405
| | - Tamzin Gristwood
- Sir William Dunn School of Pathology, Oxford OX13RE, United Kingdom
| | - Ben Hodgson
- Sir William Dunn School of Pathology, Oxford OX13RE, United Kingdom
| | | | - Sonja-Verena Albers
- Max Planck Institute für terrestrische Mikrobiologie, D-35043 Marburg, Germany
| | - Stephen D Bell
- Molecular and Cellular Biochemistry Department, Indiana University, Bloomington, IN 47405;
- Biology Department, Indiana University, Bloomington, IN 47405
| |
Collapse
|
23
|
Blumröder R, Glunz A, Dunkelberger BS, Serway CN, Berger C, Mentzel B, de Belle JS, Raabe T. Mcm3 replicative helicase mutation impairs neuroblast proliferation and memory in Drosophila. GENES BRAIN AND BEHAVIOR 2016; 15:647-59. [PMID: 27283469 DOI: 10.1111/gbb.12304] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Revised: 06/06/2016] [Accepted: 06/07/2016] [Indexed: 01/03/2023]
Abstract
In the developing Drosophila brain, a small number of neural progenitor cells (neuroblasts) generate in a co-ordinated manner a high variety of neuronal cells by integration of temporal, spatial and cell-intrinsic information. In this study, we performed the molecular and phenotypic characterization of a structural brain mutant called small mushroom bodies (smu), which was isolated in a screen for mutants with altered brain structure. Focusing on the mushroom body neuroblast lineages we show that failure of neuroblasts to generate the normal number of mushroom body neurons (Kenyon cells) is the major cause of the smu phenotype. In particular, the premature loss of mushroom body neuroblasts caused a pronounced effect on the number of late-born Kenyon cells. Neuroblasts showed no obvious defects in processes controlling asymmetric cell division, but generated less ganglion mother cells. Cloning of smu uncovered a single amino acid substitution in an evolutionarily conserved protein interaction domain of the Minichromosome maintenance 3 (Mcm3) protein. Mcm3 is part of the multimeric Cdc45/Mcm/GINS (CMG) complex, which functions as a helicase during DNA replication. We propose that at least in the case of mushroom body neuroblasts, timely replication is not only required for continuous proliferation but also for their survival. The absence of Kenyon cells in smu reduced learning and early phases of conditioned olfactory memory. Corresponding to the absence of late-born Kenyon cells projecting to α'/β' and α/β lobes, smu is profoundly defective in later phases of persistent memory.
Collapse
Affiliation(s)
- R Blumröder
- Institute of Medical Radiation and Cell Research, University of Würzburg, Germany
| | - A Glunz
- Institute of Medical Radiation and Cell Research, University of Würzburg, Germany
| | - B S Dunkelberger
- School of Life Sciences, University of Nevada, Las Vegas, Las Vegas, NV, USA.,Present address: Las Vegas High School, Las Vegas, NV, USA
| | - C N Serway
- School of Life Sciences, University of Nevada, Las Vegas, Las Vegas, NV, USA.,Present address: UNM Comprehensive Cancer Center, University of New Mexico, Albuquerque, NM, USA
| | - C Berger
- Institute of Medical Radiation and Cell Research, University of Würzburg, Germany
| | - B Mentzel
- Institute of Medical Radiation and Cell Research, University of Würzburg, Germany.,Present address: State of Lower Saxony, Ministry of the Environment, Energy and Climate Protection, Hannover, Germany
| | - J S de Belle
- School of Life Sciences, University of Nevada, Las Vegas, Las Vegas, NV, USA.,Present address: Dart Neuroscience LLC, San Diego, CA, USA
| | - T Raabe
- Institute of Medical Radiation and Cell Research, University of Würzburg, Germany.
| |
Collapse
|
24
|
Yuan Z, Bai L, Sun J, Georgescu R, Liu J, O'Donnell ME, Li H. Structure of the eukaryotic replicative CMG helicase suggests a pumpjack motion for translocation. Nat Struct Mol Biol 2016; 23:217-24. [PMID: 26854665 PMCID: PMC4812828 DOI: 10.1038/nsmb.3170] [Citation(s) in RCA: 116] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 01/06/2016] [Indexed: 01/06/2023]
Abstract
The CMG helicase is composed of Cdc45, Mcm2-7 and GINS. Here we report the structure of the Saccharomyces cerevisiae CMG, determined by cryo-EM at a resolution of 3.7-4.8 Å. The structure reveals that GINS and Cdc45 scaffold the N tier of the helicase while enabling motion of the AAA+ C tier. CMG exists in two alternating conformations, compact and extended, thus suggesting that the helicase moves like an inchworm. The N-terminal regions of Mcm2-7, braced by Cdc45-GINS, form a rigid platform upon which the AAA+ C domains make longitudinal motions, nodding up and down like an oil-rig pumpjack attached to a stable platform. The Mcm ring is remodeled in CMG relative to the inactive Mcm2-7 double hexamer. The Mcm5 winged-helix domain is inserted into the central channel, thus blocking entry of double-stranded DNA and supporting a steric-exclusion DNA-unwinding model.
Collapse
Affiliation(s)
- Zuanning Yuan
- Department of Biochemistry &Cell Biology, Stony Brook University, Stony Brook, New York, USA.,Biology Department, Brookhaven National Laboratory, Upton, New York, USA
| | - Lin Bai
- Biology Department, Brookhaven National Laboratory, Upton, New York, USA
| | - Jingchuan Sun
- Biology Department, Brookhaven National Laboratory, Upton, New York, USA
| | - Roxana Georgescu
- DNA Replication Laboratory, Rockefeller University, New York, New York, USA.,Howard Hughes Medical Institute, Rockefeller University, New York, New York, USA
| | - Jun Liu
- Department of Pathology and Laboratory Medicine, University of Texas Medical School at Houston, Houston, Texas, USA
| | - Michael E O'Donnell
- DNA Replication Laboratory, Rockefeller University, New York, New York, USA.,Howard Hughes Medical Institute, Rockefeller University, New York, New York, USA
| | - Huilin Li
- Department of Biochemistry &Cell Biology, Stony Brook University, Stony Brook, New York, USA.,Biology Department, Brookhaven National Laboratory, Upton, New York, USA
| |
Collapse
|
25
|
Xia Y, Niu Y, Cui J, Fu Y, Chen XS, Lou H, Cao Q. The Helicase Activity of Hyperthermophilic Archaeal MCM is Enhanced at High Temperatures by Lysine Methylation. Front Microbiol 2015; 6:1247. [PMID: 26617586 PMCID: PMC4639711 DOI: 10.3389/fmicb.2015.01247] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 10/26/2015] [Indexed: 12/14/2022] Open
Abstract
Lysine methylation and methyltransferases are widespread in the third domain of life, archaea. Nevertheless, the effects of methylation on archaeal proteins wait to be defined. Here, we report that recombinant sisMCM, an archaeal homolog of Mcm2-7 eukaryotic replicative helicase, is methylated by aKMT4 in vitro. Mono-methylation of these lysine residues occurs coincidently in the endogenous sisMCM protein purified from the hyperthermophilic Sulfolobus islandicus cells as indicated by mass spectra. The helicase activity of mini-chromosome maintenance (MCM) is stimulated by methylation, particularly at temperatures over 70°C. The methylated MCM shows optimal DNA unwinding activity after heat-treatment between 76 and 82°C, which correlates well with the typical growth temperatures of hyperthermophilic Sulfolobus. After methylation, the half life of MCM helicase is dramatically extended at 80°C. The methylated sites are located on the accessible protein surface, which might modulate the intra- and inter- molecular interactions through changing the hydrophobicity and surface charge. Furthermore, the methylation-mimic mutants of MCM show heat resistance helicase activity comparable to the methylated MCM. These data provide the biochemical evidence that posttranslational modifications such as methylation may enhance kinetic stability of proteins under the elevated growth temperatures of hyperthermophilic archaea.
Collapse
Affiliation(s)
- Yisui Xia
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University Beijing, China
| | - Yanling Niu
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University Beijing, China
| | - Jiamin Cui
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University Beijing, China
| | - Yang Fu
- Molecular and Computational Biology, Department of Biological Sciences, University of Southern California, Los Angeles CA, USA ; USC Norris Comprehensive Cancer Center, University of Southern California, Los Angeles CA, USA ; Department of Chemistry, University of Southern California, Los Angeles CA, USA
| | - Xiaojiang S Chen
- Molecular and Computational Biology, Department of Biological Sciences, University of Southern California, Los Angeles CA, USA ; USC Norris Comprehensive Cancer Center, University of Southern California, Los Angeles CA, USA ; Department of Chemistry, University of Southern California, Los Angeles CA, USA
| | - Huiqiang Lou
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University Beijing, China
| | - Qinhong Cao
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University Beijing, China
| |
Collapse
|
26
|
Bauer NC, Doetsch PW, Corbett AH. Mechanisms Regulating Protein Localization. Traffic 2015; 16:1039-61. [PMID: 26172624 DOI: 10.1111/tra.12310] [Citation(s) in RCA: 111] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2015] [Revised: 07/08/2015] [Accepted: 07/08/2015] [Indexed: 12/23/2022]
Abstract
Cellular functions are dictated by protein content and activity. There are numerous strategies to regulate proteins varying from modulating gene expression to post-translational modifications. One commonly used mode of regulation in eukaryotes is targeted localization. By specifically redirecting the localization of a pool of existing protein, cells can achieve rapid changes in local protein function. Eukaryotic cells have evolved elegant targeting pathways to direct proteins to the appropriate cellular location or locations. Here, we provide a general overview of these localization pathways, with a focus on nuclear and mitochondrial transport, and present a survey of the evolutionarily conserved regulatory strategies identified thus far. We end with a description of several specific examples of proteins that exploit localization as an important mode of regulation.
Collapse
Affiliation(s)
- Nicholas C Bauer
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA.,Graduate Program in Biochemistry, Cell, and Developmental Biology, Emory University School of Medicine, Atlanta, GA 30322, USA.,Current address: Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - Paul W Doetsch
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA.,Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 30322, USA.,Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA.,Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Anita H Corbett
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA.,Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|
27
|
Vázquez E, Antequera F. Replication dynamics in fission and budding yeasts through DNA polymerase tracking. Bioessays 2015; 37:1067-73. [PMID: 26293347 PMCID: PMC5054902 DOI: 10.1002/bies.201500072] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The dynamics of eukaryotic DNA polymerases has been difficult to establish because of the difficulty of tracking them along the chromosomes during DNA replication. Recent work has addressed this problem in the yeasts Schizosaccharomyces pombe and Saccharomyces cerevisiae through the engineering of replicative polymerases to render them prone to incorporating ribonucleotides at high rates. Their use as tracers of the passage of each polymerase has provided a picture of unprecedented resolution of the organization of replicons and replication origins in the two yeasts and has uncovered important differences between them. Additional studies have found an overlapping distribution of DNA polymorphisms and the junctions of Okazaki fragments along mononucleosomal DNA. This sequence instability is caused by the premature release of polymerase δ and the retention of non proof‐read DNA tracts replicated by polymerase α. The possible implementation of these new experimental approaches in multicellular organisms opens the door to the analysis of replication dynamics under a broad range of genetic backgrounds and physiological or pathological conditions.
Collapse
Affiliation(s)
- Enrique Vázquez
- Instituto de Biología, Funcional y Genómica (IBFG), Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca, Spain
| | - Francisco Antequera
- Instituto de Biología, Funcional y Genómica (IBFG), Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca, Spain
| |
Collapse
|
28
|
The Sulfolobus solfataricus GINS Complex Stimulates DNA Binding and Processive DNA Unwinding by Minichromosome Maintenance Helicase. J Bacteriol 2015; 197:3409-20. [PMID: 26283767 DOI: 10.1128/jb.00496-15] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2015] [Accepted: 08/10/2015] [Indexed: 02/07/2023] Open
Abstract
UNLABELLED GINS is a key component of the eukaryotic Cdc45-minichromosome maintenance (MCM)-GINS (CMG) complex, which unwinds duplex DNA at the moving replication fork. Archaeal GINS complexes have been shown to stimulate the helicase activity of their cognate MCM mainly by elevating its ATPase activity. Here, we report that GINS from the thermoacidophilic crenarchaeon Sulfolobus solfataricus (SsoGINS) is capable of DNA binding and binds preferentially to single-stranded DNA (ssDNA) over double-stranded DNA (dsDNA). Notably, SsoGINS binds more strongly to dsDNA with a 5' ssDNA tail than to dsDNA with a 3' tail and more strongly to an ssDNA fragment blocked at the 3' end than to one at the 5' end with a biotin-streptavidin (SA) complex, suggesting the ability of the protein complex to slide in a 5'-to-3' direction along ssDNA. DNA-bound SsoGINS enhances DNA binding by SsoMCM. Furthermore, SsoGINS increases the helicase activity of SsoMCM. However, the ATPase activity of SsoMCM is not affected by SsoGINS. Our results suggest that SsoGINS facilitates processive DNA unwinding by SsoMCM by enhancing the binding of the helicase to DNA. We propose that SsoGINS stabilizes the interaction of SsoMCM with the replication fork and moves along with the helicase as the fork progresses. IMPORTANCE GINS is a key component of the eukaryotic Cdc45-MCM-GINS complex, a molecular motor that drives the unwinding of DNA in front of the replication fork. Archaea also encode GINS, which interacts with MCM, the helicase. But how archaeal GINS serves its role remains to be understood. In this study, we show that GINS from the hyperthermophilic archaeon Sulfolobus solfataricus is able to bind to DNA and slide along ssDNA in a 5'-to-3' direction. Furthermore, Sulfolobus GINS enhances DNA binding by MCM, which slides along ssDNA in a 3'-to-5' direction. Taken together, these results suggest that Sulfolobus GINS may stabilize the interaction of MCM with the moving replication fork, facilitating processive DNA unwinding.
Collapse
|
29
|
Abstract
DNA replication is essential for all life forms. Although the process is fundamentally conserved in the three domains of life, bioinformatic, biochemical, structural, and genetic studies have demonstrated that the process and the proteins involved in archaeal DNA replication are more similar to those in eukaryal DNA replication than in bacterial DNA replication, but have some archaeal-specific features. The archaeal replication system, however, is not monolithic, and there are some differences in the replication process between different species. In this review, the current knowledge of the mechanisms governing DNA replication in Archaea is summarized. The general features of the replication process as well as some of the differences are discussed.
Collapse
Affiliation(s)
- Lori M Kelman
- Program in Biotechnology, Montgomery College, Germantown, Maryland 20876;
| | | |
Collapse
|
30
|
Georgescu RE, Langston L, Yao NY, Yurieva O, Zhang D, Finkelstein J, Agarwal T, O'Donnell ME. Mechanism of asymmetric polymerase assembly at the eukaryotic replication fork. Nat Struct Mol Biol 2014; 21:664-70. [PMID: 24997598 PMCID: PMC4482249 DOI: 10.1038/nsmb.2851] [Citation(s) in RCA: 154] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Accepted: 06/06/2014] [Indexed: 12/19/2022]
Abstract
Eukaryotes use distinct polymerases for leading- and lagging-strand replication, but how they target their respective strands is uncertain. We reconstituted Saccharomyces cerevisiae replication forks and found that CMG helicase selects polymerase (Pol) ɛ to the exclusion of Pol δ on the leading strand. Even if Pol δ assembles on the leading strand, Pol ɛ rapidly replaces it. Pol δ-PCNA is distributive with CMG, in contrast to its high stability on primed ssDNA. Hence CMG will not stabilize Pol δ, instead leaving the leading strand accessible for Pol ɛ and stabilizing Pol ɛ. Comparison of Pol ɛ and Pol δ on a lagging-strand model DNA reveals the opposite. Pol δ dominates over excess Pol ɛ on PCNA-primed ssDNA. Thus, PCNA strongly favors Pol δ over Pol ɛ on the lagging strand, but CMG over-rides and flips this balance in favor of Pol ɛ on the leading strand.
Collapse
Affiliation(s)
- Roxana E Georgescu
- DNA Replication Laboratory, Howard Hughes Medical Institute, Rockefeller University, New York, New York, USA
| | - Lance Langston
- DNA Replication Laboratory, Howard Hughes Medical Institute, Rockefeller University, New York, New York, USA
| | - Nina Y Yao
- DNA Replication Laboratory, Howard Hughes Medical Institute, Rockefeller University, New York, New York, USA
| | - Olga Yurieva
- DNA Replication Laboratory, Howard Hughes Medical Institute, Rockefeller University, New York, New York, USA
| | - Dan Zhang
- DNA Replication Laboratory, Howard Hughes Medical Institute, Rockefeller University, New York, New York, USA
| | - Jeff Finkelstein
- DNA Replication Laboratory, Howard Hughes Medical Institute, Rockefeller University, New York, New York, USA
| | - Tani Agarwal
- DNA Replication Laboratory, Howard Hughes Medical Institute, Rockefeller University, New York, New York, USA
| | - Mike E O'Donnell
- DNA Replication Laboratory, Howard Hughes Medical Institute, Rockefeller University, New York, New York, USA
| |
Collapse
|
31
|
Grabowska E, Wronska U, Denkiewicz M, Jaszczur M, Respondek A, Alabrudzinska M, Suski C, Makiela-Dzbenska K, Jonczyk P, Fijalkowska IJ. Proper functioning of the GINS complex is important for the fidelity of DNA replication in yeast. Mol Microbiol 2014; 92:659-80. [PMID: 24628792 DOI: 10.1111/mmi.12580] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/13/2014] [Indexed: 12/26/2022]
Abstract
The role of replicative DNA polymerases in ensuring genome stability is intensively studied, but the role of other components of the replisome is still not fully understood. One of such component is the GINS complex (comprising the Psf1, Psf2, Psf3 and Sld5 subunits), which participates in both initiation and elongation of DNA replication. Until now, the understanding of the physiological role of GINS mostly originated from biochemical studies. In this article, we present genetic evidence for an essential role of GINS in the maintenance of replication fidelity in Saccharomyces cerevisiae. In our studies we employed the psf1-1 allele (Takayama et al., 2003) and a novel psf1-100 allele isolated in our laboratory. Analysis of the levels and specificity of mutations in the psf1 strains indicates that the destabilization of the GINS complex or its impaired interaction with DNA polymerase epsilon increases the level of spontaneous mutagenesis and the participation of the error-prone DNA polymerase zeta. Additionally, a synergistic mutator effect was found for the defects in Psf1p and in the proofreading activity of Pol epsilon, suggesting that proper functioning of GINS is crucial for facilitating error-free processing of terminal mismatches created by Pol epsilon.
Collapse
Affiliation(s)
- Ewa Grabowska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5A, 02-106, Warsaw, Poland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Kristensen TP, Maria Cherian R, Gray FC, MacNeill SA. The haloarchaeal MCM proteins: bioinformatic analysis and targeted mutagenesis of the β7-β8 and β9-β10 hairpin loops and conserved zinc binding domain cysteines. Front Microbiol 2014; 5:123. [PMID: 24723920 PMCID: PMC3972481 DOI: 10.3389/fmicb.2014.00123] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2014] [Accepted: 03/10/2014] [Indexed: 11/13/2022] Open
Abstract
The hexameric MCM complex is the catalytic core of the replicative helicase in eukaryotic and archaeal cells. Here we describe the first in vivo analysis of archaeal MCM protein structure and function relationships using the genetically tractable haloarchaeon Haloferax volcanii as a model system. Hfx. volcanii encodes a single MCM protein that is part of the previously identified core group of haloarchaeal MCM proteins. Three structural features of the N-terminal domain of the Hfx. volcanii MCM protein were targeted for mutagenesis: the β7-β8 and β9-β10 β-hairpin loops and putative zinc binding domain. Five strains carrying single point mutations in the β7-β8 β-hairpin loop were constructed, none of which displayed impaired cell growth under normal conditions or when treated with the DNA damaging agent mitomycin C. However, short sequence deletions within the β7-β8 β-hairpin were not tolerated and neither was replacement of the highly conserved residue glutamate 187 with alanine. Six strains carrying paired alanine substitutions within the β9-β10 β-hairpin loop were constructed, leading to the conclusion that no individual amino acid within that hairpin loop is absolutely required for MCM function, although one of the mutant strains displays greatly enhanced sensitivity to mitomycin C. Deletions of two or four amino acids from the β9-β10 β-hairpin were tolerated but mutants carrying larger deletions were inviable. Similarly, it was not possible to construct mutants in which any of the conserved zinc binding cysteines was replaced with alanine, underlining the likely importance of zinc binding for MCM function. The results of these studies demonstrate the feasibility of using Hfx. volcanii as a model system for reverse genetic analysis of archaeal MCM protein function and provide important confirmation of the in vivo importance of conserved structural features identified by previous bioinformatic, biochemical and structural studies.
Collapse
Affiliation(s)
- Tatjana P Kristensen
- Department of Biology, University of Copenhagen, Københavns Biocenter Copenhagen N, Denmark
| | - Reeja Maria Cherian
- Department of Biology, University of Copenhagen, Københavns Biocenter Copenhagen N, Denmark
| | - Fiona C Gray
- Department of Biology, University of Copenhagen, Københavns Biocenter Copenhagen N, Denmark
| | - Stuart A MacNeill
- Department of Biology, University of Copenhagen, Københavns Biocenter Copenhagen N, Denmark ; School of Biology, University of St. Andrews North Haugh, St. Andrews, Fife, UK
| |
Collapse
|
33
|
Szambowska A, Tessmer I, Kursula P, Usskilat C, Prus P, Pospiech H, Grosse F. DNA binding properties of human Cdc45 suggest a function as molecular wedge for DNA unwinding. Nucleic Acids Res 2013; 42:2308-19. [PMID: 24293646 PMCID: PMC3936751 DOI: 10.1093/nar/gkt1217] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
The cell division cycle protein 45 (Cdc45) represents an essential replication factor that, together with the Mcm2-7 complex and the four subunits of GINS, forms the replicative DNA helicase in eukaryotes. Recombinant human Cdc45 (hCdc45) was structurally characterized and its DNA-binding properties were determined. Synchrotron radiation circular dichroism spectroscopy, dynamic light scattering, small-angle X-ray scattering and atomic force microscopy revealed that hCdc45 exists as an alpha-helical monomer and possesses a structure similar to its bacterial homolog RecJ. hCdc45 bound long (113-mer or 80-mer) single-stranded DNA fragments with a higher affinity than shorter ones (34-mer). hCdc45 displayed a preference for 3′ protruding strands and bound tightly to single-strand/double-strand DNA junctions, such as those presented by Y-shaped DNA, bubbles and displacement loops, all of which appear transiently during the initiation of DNA replication. Collectively, our findings suggest that hCdc45 not only binds to but also slides on DNA with a 3′–5′ polarity and, thereby acts as a molecular ‘wedge’ to initiate DNA strand displacement.
Collapse
Affiliation(s)
- Anna Szambowska
- Research Group Biochemistry, Leibniz Institute for Age Research -Fritz Lipmann Institute, Beutenbergstrasse 11, D-07745 Jena, Germany, Laboratory of Molecular Biology IBB PAS, Affiliated with University of Gdansk, Wita Stwosza 59 Gdansk, Poland, Rudolf Virchow Center, DFG Research Center for Experimental Biomedicine, Josef Schneider Strasse 2, 7080 Wurzburg, Germany, Department of Biochemistry, Oulu, P.O. Box 3000, University of Oulu, Oulu 90014, Finland, Department of Chemistry, University of Hamburg/DESY, Notkestrasse 85, 22607 Hamburg, Germany, Biocenter Oulu, P.O. Box 3000, University of Oulu, Oulu 90014, Finland and Center for Molecular Biomedicine, Friedrich-Schiller University, Biochemistry Department, Jena, Germany
| | | | | | | | | | | | | |
Collapse
|
34
|
Chen DH, Naydenov A, Blankman JL, Mefford HC, Davis M, Sul Y, Barloon AS, Bonkowski E, Wolff J, Matsushita M, Smith C, Cravatt BF, Mackie K, Raskind WH, Stella N, Bird TD. Two novel mutations in ABHD12: expansion of the mutation spectrum in PHARC and assessment of their functional effects. Hum Mutat 2013; 34:1672-8. [PMID: 24027063 DOI: 10.1002/humu.22437] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Accepted: 08/25/2013] [Indexed: 01/13/2023]
Abstract
PHARC (polyneuropathy, hearing loss, ataxia, retinitis pigmentosa, and cataracts) is a recently described autosomal-recessive neurodegenerative disease caused by mutations in the α-β-hydrolase domain-containing 12 gene (ABHD12). Only five homozygous ABHD12 mutations have been reported and the pathogenesis of PHARC remains unclear. We evaluated a woman who manifested short stature as well as the typical features of PHARC. Sequence analysis of ABHD12 revealed a novel heterozygous c.1129A>T (p.Lys377*) mutation. Targeted comparative genomic hybridization detected a 59-kb deletion that encompasses exon 1 of ABHD12 and exons 1-4 of an adjacent gene, GINS1, and includes the promoters of both genes. The heterozygous deletion was also carried by the patient's asymptomatic mother. Quantitative reverse transcription-PCR demonstrated ∼50% decreased expression of ABHD12 RNA in lymphoblastoid cell lines from both individuals. Activity-based protein profiling of serine hydrolases revealed absence of ABHD12 hydrolase activity in the patient and 50% reduction in her mother. This is the first report of compound heterozygosity in PHARC and the first study to describe how a mutation might affect ABHD12 expression and function. The possible involvement of haploinsufficiency for GINS1, a DNA replication complex protein, in the short stature of the patient and her mother requires further studies.
Collapse
Affiliation(s)
- Dong-Hui Chen
- Department of Neurology, University of Washington, Seattle, Washington, 98195
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Sun J, Evrin C, Samel SA, Fernández-Cid A, Riera A, Kawakami H, Stillman B, Speck C, Li H. Cryo-EM structure of a helicase loading intermediate containing ORC-Cdc6-Cdt1-MCM2-7 bound to DNA. Nat Struct Mol Biol 2013; 20:944-51. [PMID: 23851460 PMCID: PMC3735830 DOI: 10.1038/nsmb.2629] [Citation(s) in RCA: 115] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Accepted: 05/29/2013] [Indexed: 01/08/2023]
Abstract
In eukaryotes, the Cdt1-bound replicative helicase core MCM2-7 is loaded onto DNA by the ORC-Cdc6 ATPase to form a prereplicative complex (pre-RC) with an MCM2-7 double hexamer encircling DNA. Using purified components in the presence of ATP-γS, we have captured in vitro an intermediate in pre-RC assembly that contains a complex between the ORC-Cdc6 and Cdt1-MCM2-7 heteroheptamers called the OCCM. Cryo-EM studies of this 14-subunit complex reveal that the two separate heptameric complexes are engaged extensively, with the ORC-Cdc6 N-terminal AAA+ domains latching onto the C-terminal AAA+ motor domains of the MCM2-7 hexamer. The conformation of ORC-Cdc6 undergoes a concerted change into a right-handed spiral with helical symmetry that is identical to that of the DNA double helix. The resulting ORC-Cdc6 helicase loader shows a notable structural similarity to the replication factor C clamp loader, suggesting a conserved mechanism of action.
Collapse
Affiliation(s)
- Jingchuan Sun
- Biosciences Department, Brookhaven National Laboratory, Upton, New York, USA
| | | | | | | | | | | | | | | | | |
Collapse
|