1
|
Jabeena CA, Rajavelu A. Histone globular domain epigenetic modifications: The regulators of chromatin dynamics in malaria parasite. Chembiochem 2024; 25:e202300596. [PMID: 38078518 DOI: 10.1002/cbic.202300596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 12/09/2023] [Indexed: 01/31/2024]
Abstract
Plasmodium species adapt a complex lifecycle with multiple phenotypes to survive inside various cell types of humans and mosquitoes. Stage-specific gene expression in the developmental stages of parasites is tightly controlled in Plasmodium species; however, the underlying mechanisms have yet to be explored. Genome organization and gene expression for each stage of the malaria parasite need to be better characterized. Recent studies indicated that epigenetic modifications of histone proteins play a vital role in chromatin plasticity. Like other eukaryotes, Plasmodium species N-terminal tail modifications form a distinct "histone code," which creates the docking sites for histone reader proteins, including gene activator/repressor complexes, to regulate gene expression. The emerging research findings shed light on various unconventional epigenetic changes in histone proteins' core/globular domain regions, which might contribute to the chromatin organization in different developmental stages of the malaria parasite. The malaria parasite lost many transcription factors during evolution, and it is proposed that the nature of local chromatin structure essentially regulates the stage-specific gene expression. This review highlights recent discoveries of unconventional histone globular domain epigenetic modifications and their functions in regulating chromatin structure dynamics in various developmental stages of malaria parasites.
Collapse
Affiliation(s)
- C A Jabeena
- Pathogen Biology Group, Rajiv Gandhi Centre for Biotechnology (RGCB), Thycaud P O, Thiruvananthapuram, Kerala, 695014, India
| | - Arumugam Rajavelu
- Pathogen Biology Group, Rajiv Gandhi Centre for Biotechnology (RGCB), Thycaud P O, Thiruvananthapuram, Kerala, 695014, India
- Department of Biotechnology, Bhupat & Jyoti Mehta School of Biosciences, Indian Institute of Technology, Madras, Chennai, Tamil Nadu, 600 036, India
| |
Collapse
|
2
|
Bozdemir N, Uysal F. Histone acetyltransferases and histone deacetyl transferases play crucial role during oogenesis and early embryo development. Genesis 2023; 61:e23518. [PMID: 37226850 DOI: 10.1002/dvg.23518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 04/29/2023] [Accepted: 05/02/2023] [Indexed: 05/26/2023]
Abstract
Dynamic epigenetic regulation is critical for proper oogenesis and early embryo development. During oogenesis, fully grown germinal vesicle oocytes develop to mature Metaphase II oocytes which are ready for fertilization. Fertilized oocyte proliferates mitotically until blastocyst formation and the process is called early embryo development. Throughout oogenesis and early embryo development, spatio-temporal gene expression takes place, and this dynamic gene expression is controlled with the aid of epigenetics. Epigenetic means that gene expression can be altered without changing DNA itself. Epigenome is regulated through DNA methylation and histone modifications. While DNA methylation generally ends up with repression of gene expression, histone modifications can result in expression or repression depending on type of modification, type of histone protein and its specific residue. One of the modifications is histone acetylation which generally ends up with gene expression. Histone acetylation occurs through the addition of acetyl group onto amino terminal of the core histone proteins by histone acetyltransferases (HATs). Contrarily, histone deacetylation is associated with repression of gene expression, and it is catalyzed by histone deacetylases (HDACs). This review article focuses on what is known about alterations in the expression of HATs and HDACs and emphasizes importance of HATs and HDACs during oogenesis and early embryo development.
Collapse
Affiliation(s)
- Nazlican Bozdemir
- Department of Histology and Embryology, Ankara Medipol University School of Medicine, Ankara, Turkey
| | - Fatma Uysal
- Department of Histology and Embryology, Ankara Medipol University School of Medicine, Ankara, Turkey
| |
Collapse
|
3
|
Kohestani H, Wereszczynski J. Effects of H2A.B incorporation on nucleosome structures and dynamics. Biophys J 2021; 120:1498-1509. [PMID: 33609493 DOI: 10.1016/j.bpj.2021.01.036] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 12/31/2020] [Accepted: 01/12/2021] [Indexed: 01/20/2023] Open
Abstract
The H2A.B histone variant is an epigenetic regulator involved in transcriptional upregulation, DNA synthesis, and splicing that functions by replacing the canonical H2A histone in the nucleosome core particle. Introduction of H2A.B results in less compact nucleosome states with increased DNA unwinding and accessibility at the nucleosomal entry and exit sites. Despite being well characterized experimentally, the molecular mechanisms by which H2A.B incorporation alters nucleosome stability and dynamics remain poorly understood. To study the molecular mechanisms of H2A.B, we have performed a series of conventional and enhanced sampling molecular dynamics simulation of H2A.B- and canonical H2A-containing nucleosomes. Results of conventional simulations show that H2A.B weakens protein-protein and protein-DNA interactions at specific locations throughout the nucleosome. These weakened interactions result in significantly more DNA opening from both the entry and exit sites in enhanced sampling simulations. Furthermore, free energy profiles show that H2A.B-containing nucleosomes have significantly broader free wells and that H2A.B allows for sampling of states with increased DNA breathing, which are shown to be stable on the hundreds of nanoseconds timescale with further conventional simulations. Together, our results show the molecular mechanisms by which H2A.B creates less compacted nucleosome states as a means of increasing genetic accessibility and gene transcription.
Collapse
Affiliation(s)
- Havva Kohestani
- Department of Biology, Center for Molecular Study of Condensed Soft Matter, Illinois Institute of Technology, Chicago, Illinois
| | - Jeff Wereszczynski
- Department of Physics, Center for Molecular Study of Condensed Soft Matter, Illinois Institute of Technology, Chicago, Illinois.
| |
Collapse
|
4
|
Godfrey L, Crump NT, Thorne R, Lau IJ, Repapi E, Dimou D, Smith AL, Harman JR, Telenius JM, Oudelaar AM, Downes DJ, Vyas P, Hughes JR, Milne TA. DOT1L inhibition reveals a distinct subset of enhancers dependent on H3K79 methylation. Nat Commun 2019; 10:2803. [PMID: 31243293 PMCID: PMC6594956 DOI: 10.1038/s41467-019-10844-3] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 06/05/2019] [Indexed: 12/26/2022] Open
Abstract
Enhancer elements are a key regulatory feature of many important genes. Several general features including the presence of specific histone modifications are used to demarcate potentially active enhancers. Here we reveal that putative enhancers marked with H3 lysine 79 (H3K79) di or trimethylation (me2/3) (which we name H3K79me2/3 enhancer elements or KEEs) can be found in multiple cell types. Mixed lineage leukemia gene (MLL) rearrangements (MLL-r) such as MLL-AF4 are a major cause of incurable acute lymphoblastic leukemias (ALL). Using the DOT1L inhibitor EPZ-5676 in MLL-AF4 leukemia cells, we show that H3K79me2/3 is required for maintaining chromatin accessibility, histone acetylation and transcription factor binding specifically at KEEs but not non-KEE enhancers. We go on to show that H3K79me2/3 is essential for maintaining enhancer-promoter interactions at a subset of KEEs. Together, these data implicate H3K79me2/3 as having a functional role at a subset of active enhancers in MLL-AF4 leukemia cells.
Collapse
Affiliation(s)
- Laura Godfrey
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, NIHR Oxford Biomedical Research Centre Haematology Theme, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - Nicholas T Crump
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, NIHR Oxford Biomedical Research Centre Haematology Theme, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - Ross Thorne
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, NIHR Oxford Biomedical Research Centre Haematology Theme, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - I-Jun Lau
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, NIHR Oxford Biomedical Research Centre Haematology Theme, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - Emmanouela Repapi
- MRC WIMM Centre for Computational Biology, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - Dimitra Dimou
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, NIHR Oxford Biomedical Research Centre Haematology Theme, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - Alastair L Smith
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, NIHR Oxford Biomedical Research Centre Haematology Theme, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - Joe R Harman
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, NIHR Oxford Biomedical Research Centre Haematology Theme, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - Jelena M Telenius
- MRC WIMM Centre for Computational Biology, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DS, UK
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - A Marieke Oudelaar
- MRC WIMM Centre for Computational Biology, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DS, UK
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - Damien J Downes
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - Paresh Vyas
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, NIHR Oxford Biomedical Research Centre Haematology Theme, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DS, UK
- Department of Haematology, Oxford University Hospitals NHS Foundation Trust, Oxford, OX3 9DU, UK
| | - Jim R Hughes
- MRC WIMM Centre for Computational Biology, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DS, UK
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - Thomas A Milne
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, NIHR Oxford Biomedical Research Centre Haematology Theme, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DS, UK.
| |
Collapse
|
5
|
Lakhotia SC. Non-coding RNAs demystify constitutive heterochromatin as essential modulator of epigenotype. THE NUCLEUS 2017. [DOI: 10.1007/s13237-017-0221-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
6
|
Chen L, Hu Y, He J, Chen J, Giesy JP, Xie P. Responses of the Proteome and Metabolome in Livers of Zebrafish Exposed Chronically to Environmentally Relevant Concentrations of Microcystin-LR. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:596-607. [PMID: 28005350 DOI: 10.1021/acs.est.6b03990] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
In this study, for the first time, changes in expressions of proteins and profiles of metabolites in liver of the small, freshwater fish [Formula: see text] (zebrafish) were investigated after long-term exposure to environmentally relevant concentrations of microcystin-LR (MC-LR). Male zebrafish were exposed via water to 1 or 10 μg MC-LR/L for 90 days, and iTRAQ-based proteomics and 1H NMR-based metabolomics were employed. Histopathological observations showed that MC-LR caused damage to liver, and the effects were more pronounced in fish exposed to 10 μg MC-LR/L. Metabolomic analysis also showed alterations of hepatic function, which included changes in a number of metabolic pathways, including small molecules involved in energy, glucose, lipids, and amino acids metabolism. Concentrations of lactate were significantly greater in individuals exposed to MC-LR than in unexposed controls. This indicated a shift toward anaerobic metabolism, which was confirmed by impaired respiration in mitochondria. Proteomics revealed that MC-LR significantly influenced multiple proteins, including those involved in folding of proteins and metabolism. Endoplasmic reticulum stress contributed to disturbance of metabolism of lipids in liver of zebrafish exposed to MC-LR. Identification of proteins and metabolites in liver of zebrafish responsive to MC-LR provides insights into mechanisms of chronic toxicity of MCs.
Collapse
Affiliation(s)
- Liang Chen
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences , Wuhan 430072, China
- University of Chinese Academy of Sciences , Beijing 100049, China
| | - Yufei Hu
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences , Wuhan 430072, China
- University of Chinese Academy of Sciences , Beijing 100049, China
| | - Jun He
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences , Wuhan 430072, China
| | - Jun Chen
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences , Wuhan 430072, China
| | - John P Giesy
- Department of Veterinary Biomedical Sciences and Toxicology Centre, University of Saskatchewan , Saskatoon, Saskatchewan S7N 5B3, Canada
- School of Biological Sciences, University of Hong Kong , Hong Kong SAR, China
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University , Nanjing, 210089, China
| | - Ping Xie
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences , Wuhan 430072, China
| |
Collapse
|
7
|
Yu RR, Mahto SK, Justus K, Alexander MM, Howard CJ, Ottesen JJ. Hybrid phase ligation for efficient synthesis of histone proteins. Org Biomol Chem 2016; 14:2603-7. [PMID: 26821702 PMCID: PMC4767651 DOI: 10.1039/c5ob02195b] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
We introduce a hybrid solid-solution phase ligation approach that combines the efficiency of solid phase ligation with solution phase ligation in the total synthesis of modified histone proteins. A two linker strategy allows analysis throughout work on the solid phase and maximizes yields through cleavage at an external Rink, while an internal HMBA linker allows the native carboxyl terminus for any protein sequence. We demonstrate this approach for two histone proteins: triple-acetylated H4-K5ac, K12ac, K91ac and CENP-A-K124ac.
Collapse
Affiliation(s)
- Ruixuan R Yu
- Department of Chemistry & Biochemistry, The Ohio State University, USA and Ohio State Biochemistry Program, The Ohio State University, Columbus, OH 43210, USA.
| | - Santosh K Mahto
- Department of Chemistry & Biochemistry, The Ohio State University, USA
| | - Kurt Justus
- Department of Chemistry & Biochemistry, The Ohio State University, USA and Ohio State Biochemistry Program, The Ohio State University, Columbus, OH 43210, USA.
| | | | - Cecil J Howard
- Department of Chemistry & Biochemistry, The Ohio State University, USA and Ohio State Biochemistry Program, The Ohio State University, Columbus, OH 43210, USA.
| | - Jennifer J Ottesen
- Department of Chemistry & Biochemistry, The Ohio State University, USA and Ohio State Biochemistry Program, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
8
|
Vlaming H, van Leeuwen F. The upstreams and downstreams of H3K79 methylation by DOT1L. Chromosoma 2016; 125:593-605. [PMID: 26728620 DOI: 10.1007/s00412-015-0570-5] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 12/16/2015] [Accepted: 12/21/2015] [Indexed: 12/14/2022]
Abstract
Histone modifications regulate key processes of eukaryotic genomes. Misregulation of the enzymes that place these modifications can lead to disease. An example of this is DOT1L, the enzyme that can mono-, di-, and trimethylate the nucleosome core on lysine 79 of histone H3 (H3K79). DOT1L plays a role in development and its misregulation has been implicated in several cancers, most notably leukemias caused by a rearrangement of the MLL gene. A DOT1L inhibitor is in clinical trials for these leukemias and shows promising results, yet we are only beginning to understand DOT1L's function and regulation in the cell. Here, we review what happens upstream and downstream of H3K79 methylation. H3K79 methylation levels are highest in transcribed genes, where H2B ubiquitination can promote DOT1L activity. In addition, DOT1L can be targeted to transcribed regions of the genome by several of its interaction partners. Although methylation levels strongly correlate with transcription, the mechanistic link between the two is unclear and probably context-dependent. Methylation of H3K79 may act through recruiting or repelling effector proteins, but we do not yet know which effectors mediate DOT1L's functions. Understanding DOT1L biology better will help us to understand the effects of DOT1L inhibitors and may allow the development of alternative strategies to target the DOT1L pathway.
Collapse
Affiliation(s)
- Hanneke Vlaming
- Division of Gene Regulation, Netherlands Cancer Institute, Amsterdam, 1066 CX, The Netherlands
| | - Fred van Leeuwen
- Division of Gene Regulation, Netherlands Cancer Institute, Amsterdam, 1066 CX, The Netherlands.
| |
Collapse
|
9
|
Howard CJ, Yu RR, Gardner ML, Shimko JC, Ottesen JJ. Chemical and biological tools for the preparation of modified histone proteins. Top Curr Chem (Cham) 2015; 363:193-226. [PMID: 25863817 DOI: 10.1007/128_2015_629] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Eukaryotic chromatin is a complex and dynamic system in which the DNA double helix is organized and protected by interactions with histone proteins. This system is regulated through a large network of dynamic post-translational modifications (PTMs) which ensure proper gene transcription, DNA repair, and other processes involving DNA. Homogenous protein samples with precisely characterized modification sites are necessary to understand better the functions of modified histone proteins. Here, we discuss sets of chemical and biological tools developed for the preparation of modified histones, with a focus on the appropriate choice of tool for a given target. We start with genetic approaches for the creation of modified histones, including the incorporation of genetic mimics of histone modifications, chemical installation of modification analogs, and the use of the expanded genetic code to incorporate modified amino acids. We also cover the chemical ligation techniques which have been invaluable in the generation of complex modified histones indistinguishable from their natural counterparts. We end with a prospectus on future directions.
Collapse
Affiliation(s)
- Cecil J Howard
- Department of Chemistry and Biochemistry and The Ohio State Biochemistry Program, The Ohio State University, Columbus, OH, 43210, USA
| | | | | | | | | |
Collapse
|