1
|
Terui R, Berger SE, Sambel LA, Song D, Chistol G. Single-molecule imaging reveals the mechanism of bidirectional replication initiation in metazoa. Cell 2024; 187:3992-4009.e25. [PMID: 38866019 PMCID: PMC11283366 DOI: 10.1016/j.cell.2024.05.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 03/28/2024] [Accepted: 05/13/2024] [Indexed: 06/14/2024]
Abstract
Metazoan genomes are copied bidirectionally from thousands of replication origins. Replication initiation entails the assembly and activation of two CMG helicases (Cdc45⋅Mcm2-7⋅GINS) at each origin. This requires several replication firing factors (including TopBP1, RecQL4, and DONSON) whose exact roles are still under debate. How two helicases are correctly assembled and activated at each origin is a long-standing question. By visualizing the recruitment of GINS, Cdc45, TopBP1, RecQL4, and DONSON in real time, we uncovered that replication initiation is surprisingly dynamic. First, TopBP1 transiently binds to the origin and dissociates before the start of DNA synthesis. Second, two Cdc45 are recruited together, even though Cdc45 alone cannot dimerize. Next, two copies of DONSON and two GINS simultaneously arrive at the origin, completing the assembly of two CMG helicases. Finally, RecQL4 is recruited to the CMG⋅DONSON⋅DONSON⋅CMG complex and promotes DONSON dissociation and CMG activation via its ATPase activity.
Collapse
Affiliation(s)
- Riki Terui
- Chemical and Systems Biology Department, Stanford School of Medicine, Stanford, CA 94305, USA
| | - Scott E Berger
- Biophysics Program, Stanford School of Medicine, Stanford, CA 94305, USA
| | - Larissa A Sambel
- Chemical and Systems Biology Department, Stanford School of Medicine, Stanford, CA 94305, USA
| | - Dan Song
- Chemical and Systems Biology Department, Stanford School of Medicine, Stanford, CA 94305, USA
| | - Gheorghe Chistol
- Chemical and Systems Biology Department, Stanford School of Medicine, Stanford, CA 94305, USA; Biophysics Program, Stanford School of Medicine, Stanford, CA 94305, USA; Cancer Biology Program, Stanford School of Medicine, Stanford, CA 94305, USA; Stanford Cancer Institute, Stanford School of Medicine, Stanford, CA 94305, USA; BioX Interdisciplinary Institute, Stanford School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
2
|
Padayachy L, Ntallis SG, Halazonetis TD. RECQL4 is not critical for firing of human DNA replication origins. Sci Rep 2024; 14:7708. [PMID: 38565932 PMCID: PMC10987555 DOI: 10.1038/s41598-024-58404-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 03/28/2024] [Indexed: 04/04/2024] Open
Abstract
Human RECQL4, a member of the RecQ helicase family, plays a role in maintaining genomic stability, but its precise function remains unclear. The N-terminus of RECQL4 has similarity to Sld2, a protein required for the firing of DNA replication origins in budding yeast. Consistent with this sequence similarity, the Xenopus laevis homolog of RECQL4 has been implicated in initiating DNA replication in egg extracts. To determine whether human RECQL4 is required for firing of DNA replication origins, we generated cells in which both RECQL4 alleles were targeted, resulting in either lack of protein expression (knock-out; KO) or expression of a full-length, mutant protein lacking helicase activity (helicase-dead; HD). Interestingly, both the RECQL4 KO and HD cells were viable and exhibited essentially identical origin firing profiles as the parental cells. Analysis of the rate of fork progression revealed increased rates in the RECQL4 KO cells, which might be indicative of decreased origin firing efficiency. Our results are consistent with human RECQL4 having a less critical role in firing of DNA replication origins, than its budding yeast homolog Sld2.
Collapse
Affiliation(s)
- Laura Padayachy
- Department of Molecular and Cellular Biology, University of Geneva, 1205, Geneva, Switzerland
| | - Sotirios G Ntallis
- Department of Molecular and Cellular Biology, University of Geneva, 1205, Geneva, Switzerland
| | - Thanos D Halazonetis
- Department of Molecular and Cellular Biology, University of Geneva, 1205, Geneva, Switzerland.
| |
Collapse
|
3
|
Terui R, Berger S, Sambel L, Song D, Chistol G. Single-Molecule Imaging Reveals the Mechanism of Bidirectional Replication Initiation in Metazoa. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.28.587265. [PMID: 38585807 PMCID: PMC10996697 DOI: 10.1101/2024.03.28.587265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Metazoan genomes are copied bidirectionally from thousands of replication origins. Replication initiation entails the assembly and activation of two CMG (Cdc45•Mcm2-7•GINS) helicases at each origin. This requires several firing factors (including TopBP1, RecQL4, DONSON) whose exact roles remain unclear. How two helicases are correctly assembled and activated at every single origin is a long-standing question. By visualizing the recruitment of GINS, Cdc45, TopBP1, RecQL4, and DONSON in real time, we uncovered a surprisingly dynamic picture of initiation. Firing factors transiently bind origins but do not travel with replisomes. Two Cdc45 simultaneously arrive at each origin and two GINS are recruited together, even though neither protein can dimerize. The synchronized delivery of two GINS is mediated by DONSON, which acts as a dimerization scaffold. We show that RecQL4 promotes DONSON dissociation and facilitates helicase activation. The high fidelity of bidirectional origin firing can be explained by a Hopfield-style kinetic proofreading mechanism.
Collapse
Affiliation(s)
- Riki Terui
- Chemical and Systems Biology, Stanford School of Medicine, Stanford CA94305
| | - Scott Berger
- Biophysics Program, Stanford School of Medicine, Stanford CA94305
| | - Larissa Sambel
- Chemical and Systems Biology, Stanford School of Medicine, Stanford CA94305
| | - Dan Song
- Current Address: Eikon Therapeutics Inc
| | - Gheorghe Chistol
- Chemical and Systems Biology, Stanford School of Medicine, Stanford CA94305
- Biophysics Program, Stanford School of Medicine, Stanford CA94305
- Cancer Biology Program, Stanford School of Medicine, Stanford CA94305
- Stanford Cancer Institute, Stanford School of Medicine, Stanford CA94305
- BioX Interdisciplinary Institute, Stanford School of Medicine, Stanford CA94305
| |
Collapse
|
4
|
Mukherjee S, Das S, Sriram N, Chakraborty S, Sah MK. In silico investigation of the role of vitamins in cancer therapy through inhibition of MCM7 oncoprotein. RSC Adv 2022; 12:31004-31015. [PMID: 36349041 PMCID: PMC9619486 DOI: 10.1039/d2ra03703c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 08/18/2022] [Indexed: 11/30/2022] Open
Abstract
An overabundance of MCM7 protein, a component of the minichromosome maintenance complex that normally initiates DNA replication, has been reported to cause different types of cancers with aggressive malignancy. Inhibition of MCM7 may lead to a significant reduction in cancer-associated cell proliferation. Despite such significance of MCM7 in cancer, the protein structure is yet to be resolved experimentally. This significantly halts the structure-guided ligand designing for cancer therapy targeting the MCM7. The present study aims to resolve the tertiary structure of MCM7 and repurpose the FDA-approved clinically used drugs for cancer therapy by targeting MCM7 protein. The secondary and 3D structures of MCM7 were generated using multiple bioinformatics tools, including the Self-Optimized Prediction Method with Alignment (SOPMA), SWISS-MODEL, and I-TASSER. The reliability of the modeled structure was assessed using PROCHECK. Initially, a structure-guided virtual screening was performed on the approved drug library to identify potential hits against MCM7. The detailed molecular mechanism of receptor interactions of the identified hits was evaluated using extensive molecular dynamics simulation. The results from this study reveal an intriguing discovery of the potential of ergocalciferol (vitamin D2), cholecalciferol (vitamin D3), ergosterol (precursor of vitamin D2) and menaquinone (vitamin K2) as oncoprotein inhibitors for cancer therapy via inhibition of MCM7.
Collapse
Affiliation(s)
- Sunny Mukherjee
- Department of Biotechnology, Dr B. R. Ambedkar National Institute of TechnologyJalandharPunjab-144011India
| | - Sucharita Das
- Department of Microbiology, University of Calcutta35 BallygungeKolkata700 019India
| | - Navneeth Sriram
- Department of Biotechnology, Dr B. R. Ambedkar National Institute of TechnologyJalandharPunjab-144011India,Department of Biosciences and Bioengineering, Indian Institute of TechnologyGuwahatiAssam-781039India
| | - Sandipan Chakraborty
- Center for Innovation in Molecular and Pharmaceutical Sciences (CIMPS), Dr Reddy's Institute of Life Sciences, University of Hyderabad CampusGachibowliHyderabad 500046India
| | - Mahesh Kumar Sah
- Department of Biotechnology, Dr B. R. Ambedkar National Institute of TechnologyJalandharPunjab-144011India
| |
Collapse
|
5
|
WASHC1 interacts with MCM2-7 complex to promote cell survival under replication stress. Mol Biol Rep 2022; 49:8349-8357. [PMID: 35733063 DOI: 10.1007/s11033-022-07650-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 05/22/2022] [Accepted: 05/26/2022] [Indexed: 10/17/2022]
Abstract
BACKGROUND WASHC1 is a member of the Wiskott-Aldrich syndrome protein (WASP) family and is involved in endosomal protein sorting and trafficking through the generation of filamentous actin (F-actin) via activation of the Arp2/3 complex. There is increasing evidence that WASHC1 is present in the nucleus and nuclear WASHC1 plays important roles in regulating gene transcription, DNA repair as well as maintaining nuclear organization. However, the multi-faceted functions of nuclear WASHC1 still need to be clarified. METHODS AND RESULTS We show here that WASHC1 interacts with several components of the minichromosome maintenance (MCM) 2-7 complex by using co-immunoprecipitation and in situ proximity ligation assay. WASHC1-depleted cells display normal DNA replication and S-phase progression. However, loss of WASHC1 sensitizes HeLa cells to DNA replication inhibitor hydroxyurea (HU) and increases chromosome instability of HeLa and 3T3 cells under condition of HU-induced replication stress. Re-expression of nuclear WASHC1 in WASHC1KO 3T3 cells rescues the deficiency of WASHC1KO cells in the chromosomal stability after HU treatment. Moreover, chromatin immunoprecipitation assay indicates that WASHC1 associates with DNA replication origins, and knockdown of WASHC1 inhibits MCM protein loading at origins. CONCLUSIONS Since efficient loading of excess MCM2-7 complexes is required for cells to survive replicative stress, these results demonstrate that WASHC1 promotes cell survival and maintain chromosomal stability under replication stress through recruitment of excess MCM complex to origins.
Collapse
|
6
|
Disruption of Toxoplasma gondii-Induced Host Cell DNA Replication Is Dependent on Contact Inhibition and Host Cell Type. mSphere 2022; 7:e0016022. [PMID: 35587658 PMCID: PMC9241542 DOI: 10.1128/msphere.00160-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The protozoan Toxoplasma gondii is a highly successful obligate intracellular parasite that, upon invasion of its host cell, releases an array of host-modulating protein effectors to counter host defenses and further its own replication and dissemination. Early studies investigating the impact of T. gondii infection on host cell function revealed that this parasite can force normally quiescent cells to activate their cell cycle program. Prior reports by two independent groups identified the dense granule protein effector HCE1/TEEGR as being solely responsible for driving host cell transcriptional changes through its direct interaction with the cyclin E regulatory complex DP1 and associated transcription factors. Our group independently identified HCE1/TEEGR through the presence of distinct repeated regions found in a number of host nuclear targeted parasite effectors and verified its central role in initiating host cell cycle changes. Additionally, we report here the time-resolved kinetics of host cell cycle transition in response to HCE1/TEEGR, using the fluorescence ubiquitination cell cycle indicator reporter line (FUCCI), and reveal the existence of a block in S-phase progression and host DNA synthesis in several cell lines commonly used in the study of T. gondii. Importantly, we have observed that this S-phase block is not due to additional dense granule effectors but rather is dependent on the host cell line background and contact inhibition status of the host monolayer in vitro. This work highlights intriguing differences in the host response to reprogramming by the parasite and raises interesting questions regarding how parasite effectors differentially manipulate the host cell depending on the in vitro or in vivo context. IMPORTANCEToxoplasma gondii chronically infects approximately one-third of the global population and can produce severe pathology in immunologically immature or compromised individuals. During infection, this parasite releases numerous host-targeted effector proteins that can dramatically alter the expression of a variety of host genes. A better understanding of parasite effectors and their host targets has the potential to not only provide ways to control infection but also inform us about our own basic biology. One host pathway that has been known to be altered by T. gondii infection is the cell cycle, and prior reports have identified a parasite effector, known as HCE1/TEEGR, as being responsible. In this report, we further our understanding of the kinetics of cell cycle transition induced by this effector and show that the capacity of HCE1/TEEGR to induce host cell DNA synthesis is dependent on both the cell type and the status of contact inhibition.
Collapse
|
7
|
Si N, Zhang Z, Huang X, Wang C, Guo P, Pan B, Jiang H. De novo 22q11.2 deletions and auricular findings in two Chinese patients with microtia. Mol Genet Genomic Med 2021; 10:e1862. [PMID: 34971493 PMCID: PMC8801138 DOI: 10.1002/mgg3.1862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 08/20/2021] [Accepted: 12/14/2021] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Congenital microtia is a common craniofacial malformation resulting from both environmental and genetic factors. Recurrent chromosomal imbalances were observed in patients with microtia. The 22q11.2 deletion is one of the most common microdeletions in human beings. The cell division cycle 45 gene (CDC45) embedded in the proximal 22q11.2 deleted region is involved in craniofacial development. However, only a few studies have focused on the 22q11.2 deletion as genetic etiology in microtia patients and studied its associated external ear deformity characteristics in detail. METHODS In this research, a total of 65 patients from north China with sporadic microtia were studied. Copy number variations of CDC45 were screened using AccuCopy assay. The 22q11.2 deletion harboring CDC45 was identified by whole-genome sequencing and targeted next-generation sequencing. A parental test was carried out to determine the origin of the deletion. RESULTS CDC45 copy number loss was identified in two patients with microtia. A set of qPCR assays demonstrated two patients carried a typical proximal 22q11.2 deletion between the low-copy repeats on chromosome 22q11.2 (LCR22A and LCR22D), encompassing CDC45. The 22q11.2 deletions were de novo in each patient. In-depth auricular phenotype assessment showed these two patients have a distinct concha-type ear malformation while other microtia patients have lobule-type microtia among the 65 microtia patient cohort in this study. CONCLUSION Here we present two additional Chinese microtia patients with de novo 22q11.2 proximal deletion harboring CDC45 and further report these patients' distinct ear malformation.
Collapse
Affiliation(s)
- Nuo Si
- Plastic Surgery Hospital, Peking Union Medical College and Chinese Academy of Medical Science, Beijing, China
| | - Zeya Zhang
- Plastic Surgery Hospital, Peking Union Medical College and Chinese Academy of Medical Science, Beijing, China
| | - Xin Huang
- Plastic Surgery Hospital, Peking Union Medical College and Chinese Academy of Medical Science, Beijing, China
| | - Chanchen Wang
- Plastic Surgery Hospital, Peking Union Medical College and Chinese Academy of Medical Science, Beijing, China
| | - Peipei Guo
- Plastic Surgery Hospital, Peking Union Medical College and Chinese Academy of Medical Science, Beijing, China
| | - Bo Pan
- Plastic Surgery Hospital, Peking Union Medical College and Chinese Academy of Medical Science, Beijing, China
| | - Haiyue Jiang
- Plastic Surgery Hospital, Peking Union Medical College and Chinese Academy of Medical Science, Beijing, China
| |
Collapse
|
8
|
Gaowa N, Li W, Gelsinger S, Murphy B, Li S. Analysis of Host Jejunum Transcriptome and Associated Microbial Community Structure Variation in Young Calves with Feed-Induced Acidosis. Metabolites 2021; 11:414. [PMID: 34201826 PMCID: PMC8303401 DOI: 10.3390/metabo11070414] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/15/2021] [Accepted: 06/15/2021] [Indexed: 12/05/2022] Open
Abstract
Diet-induced acidosis imposes a health risk to young calves. In this study, we aimed to investigate the host jejunum transcriptome changes, along with its microbial community variations, using our established model of feed-induced ruminal acidosis in young calves. Eight bull calves were randomly assigned to two diet treatments beginning at birth (a starch-rich diet, Aci; a control diet, Con). Whole-transcriptome RNA sequencing was performed on the jejunum tissues collected at 17 weeks of age. Ribosomal RNA reads were used for studying microbial community structure variations in the jejunum. A total of 853 differentially expressed genes were identified (402 upregulated and 451 downregulated) between the two groups. The cell cycle and the digestion and absorption of protein in jejunal tissue were affected by acidosis. Compared to the control, genera of Campylobacter, Burkholderia, Acidaminococcus, Corynebacterium, and Olsenella significantly increased in abundance in the Aci group, while Lachnoclostridium and Ruminococcus were significantly lower in the Aci group. Expression changes in the AXL gene were associated with the abundance variations of a high number of genera in jejunum. Our study provided a snapshot of the transcriptome changes in the jejunum and its associated meta-transcriptome changes in microbial communities in young calves with feed-induced acidosis.
Collapse
Affiliation(s)
- Naren Gaowa
- College of Animal Science and Technology, China Agricultural University, No.2 Yuanmingyuan West Road, Haidian, Beijing 100193, China;
| | - Wenli Li
- Cell Wall Biology and Utilization Research Unit, US Dairy Forage Research Center, Agricultural Research Service, US Department of Agriculture, 1925 Linden Drive, Madison, WI 53706, USA;
| | - Sonia Gelsinger
- Department of Dairy Science, University of Wisconsin-Madison, Madison, WI 53706, USA;
| | - Brianna Murphy
- Cell Wall Biology and Utilization Research Unit, US Dairy Forage Research Center, Agricultural Research Service, US Department of Agriculture, 1925 Linden Drive, Madison, WI 53706, USA;
| | - Shengli Li
- College of Animal Science and Technology, China Agricultural University, No.2 Yuanmingyuan West Road, Haidian, Beijing 100193, China;
| |
Collapse
|
9
|
Morgan JJ, Crawford LJ. The Ubiquitin Proteasome System in Genome Stability and Cancer. Cancers (Basel) 2021; 13:2235. [PMID: 34066546 PMCID: PMC8125356 DOI: 10.3390/cancers13092235] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 04/30/2021] [Accepted: 05/05/2021] [Indexed: 01/18/2023] Open
Abstract
Faithful DNA replication during cellular division is essential to maintain genome stability and cells have developed a sophisticated network of regulatory systems to ensure its integrity. Disruption of these control mechanisms can lead to loss of genomic stability, a key hallmark of cancer. Ubiquitination is one of the most abundant regulatory post-translational modifications and plays a pivotal role in controlling replication progression, repair of DNA and genome stability. Dysregulation of the ubiquitin proteasome system (UPS) can contribute to the initiation and progression of neoplastic transformation. In this review we provide an overview of the UPS and summarize its involvement in replication and replicative stress, along with DNA damage repair. Finally, we discuss how the UPS presents as an emerging source for novel therapeutic interventions aimed at targeting genomic instability, which could be utilized in the treatment and management of cancer.
Collapse
Affiliation(s)
| | - Lisa J. Crawford
- Patrick G Johnston Centre for Cancer Research, Queen’s University Belfast, Belfast BT9 7BL, UK;
| |
Collapse
|
10
|
Ahammad F, Alam R, Mahmud R, Akhter S, Talukder EK, Tonmoy AM, Fahim S, Al-Ghamdi K, Samad A, Qadri I. Pharmacoinformatics and molecular dynamics simulation-based phytochemical screening of neem plant (Azadiractha indica) against human cancer by targeting MCM7 protein. Brief Bioinform 2021; 22:6217720. [PMID: 33834183 DOI: 10.1093/bib/bbab098] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/02/2021] [Accepted: 03/04/2021] [Indexed: 12/20/2022] Open
Abstract
Minichromosome maintenance complex component 7 (MCM7) belongs to the minichromosome maintenance family that is important for the initiation of eukaryotic DNA replication. Overexpression of the MCM7 protein is relative to cellular proliferation and responsible for aggressive malignancy in various cancers. Mechanistically, inhibition of MCM7 significantly reduces the cellular proliferation associated with cancer. To date, no effective small molecular candidate has been identified that can block the progression of cancer induced by the MCM7 protein. Therefore, the study has been designed to identify small molecular-like natural drug candidates against aggressive malignancy associated with various cancers by targeting MCM7 protein. To identify potential compounds against the targeted protein a comprehensive in silico drug design including molecular docking, ADME (Absorption, Distribution, Metabolism and Excretion), toxicity, and molecular dynamics (MD) simulation approaches has been applied. Seventy phytochemicals isolated from the neem tree (Azadiractha indica) were retrieved and screened against MCM7 protein by using the molecular docking simulation method, where the top four compounds have been chosen for further evaluation based on their binding affinities. Analysis of ADME and toxicity properties reveals the efficacy and safety of the selected four compounds. To validate the stability of the protein-ligand complex structure MD simulations approach has also been performed to the protein-ligand complex structure, which confirmed the stability of the selected three compounds including CAS ID:105377-74-0, CID:12308716 and CID:10505484 to the binding site of the protein. In the study, a comprehensive data screening process has performed based on the docking, ADMET properties, and MD simulation approaches, which found a good value of the selected four compounds against the targeted MCM7 protein and indicates as a promising and effective human anticancer agent.
Collapse
Affiliation(s)
- Foysal Ahammad
- Department of Biological Science, Faculty of science, King Abdul-Aziz University, Jeddah-21589, Saudi Arabia.,Laboratory of Computational Biology, Biological Solution Centre (BioSol Centre), Jashore-7408, Bangladesh.,Department of Genetic Engineering and Biotechnology, Faculty of Biological Science and Technology, Jashore University and Science and Technology University, Jashore-7408, Bangladesh
| | - Rahat Alam
- Laboratory of Computational Biology, Biological Solution Centre (BioSol Centre), Jashore-7408, Bangladesh.,Department of Genetic Engineering and Biotechnology, Faculty of Biological Science and Technology, Jashore University and Science and Technology University, Jashore-7408, Bangladesh
| | - Rasel Mahmud
- Department of Pharmacy, Mawlana Bhashani Science and Technology University, Tangail-1902, Bangladesh
| | - Shahina Akhter
- Laboratory of Computational Biology, Biological Solution Centre (BioSol Centre), Jashore-7408, Bangladesh.,Department of Biochemistry and Biotechnology, University of Science and Technology Chittagong (USTC) Block # D, Floor # 11, Foy's Lake, Khulshi, Chittagong 4202, Bangladesh
| | - Enamul Kabir Talukder
- Laboratory of Computational Biology, Biological Solution Centre (BioSol Centre), Jashore-7408, Bangladesh.,Department of Genetic Engineering and Biotechnology, Faculty of Biological Science and Technology, Jashore University and Science and Technology University, Jashore-7408, Bangladesh
| | - Al Mahmud Tonmoy
- Laboratory of Computational Biology, Biological Solution Centre (BioSol Centre), Jashore-7408, Bangladesh.,Department of Zoology, Institute of Dhaka College, University of Dhaka, Dhaka-1000, Bangladesh
| | - Salman Fahim
- Laboratory of Computational Biology, Biological Solution Centre (BioSol Centre), Jashore-7408, Bangladesh.,Bachelor of medicine and Bachelor of Surgery (MBBS), CARe Medical College, 2, 1-A Iqbal Road, Dhaka-1207, Bangladesh
| | - Khalid Al-Ghamdi
- Department of Biological Science, Faculty of science, King Abdul-Aziz University, Jeddah-21589, Saudi Arabia
| | - Abdus Samad
- Laboratory of Computational Biology, Biological Solution Centre (BioSol Centre), Jashore-7408, Bangladesh.,Department of Genetic Engineering and Biotechnology, Faculty of Biological Science and Technology, Jashore University and Science and Technology University, Jashore-7408, Bangladesh
| | - Ishtiaq Qadri
- Department of Biological Science, Faculty of science, King Abdul-Aziz University, Jeddah-21589, Saudi Arabia
| |
Collapse
|
11
|
The replicative CMG helicase: the ideal target for cancer therapy. UKRAINIAN BIOCHEMICAL JOURNAL 2020. [DOI: 10.15407/ubj92.06.053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
12
|
Abstract
In all kingdoms of life, DNA is used to encode hereditary information. Propagation of the genetic material between generations requires timely and accurate duplication of DNA by semiconservative replication prior to cell division to ensure each daughter cell receives the full complement of chromosomes. DNA synthesis of daughter strands starts at discrete sites, termed replication origins, and proceeds in a bidirectional manner until all genomic DNA is replicated. Despite the fundamental nature of these events, organisms have evolved surprisingly divergent strategies that control replication onset. Here, we discuss commonalities and differences in replication origin organization and recognition in the three domains of life.
Collapse
Affiliation(s)
- Babatunde Ekundayo
- Quantitative Biology, Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Franziska Bleichert
- Quantitative Biology, Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
- * E-mail:
| |
Collapse
|
13
|
Mueller SH, Spenkelink LM, van Oijen AM. When proteins play tag: the dynamic nature of the replisome. Biophys Rev 2019; 11:641-651. [PMID: 31273608 PMCID: PMC6682189 DOI: 10.1007/s12551-019-00569-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Accepted: 06/24/2019] [Indexed: 02/06/2023] Open
Abstract
DNA replication, or the copying of DNA, is a fundamental process to all life. The system of proteins that carries out replication, the replisome, encounters many roadblocks on its way. An inability of the replisome to properly overcome these roadblocks will negatively affect genomic integrity which in turn can lead to disease. Over the past decades, efforts by many researchers using a broad array of approaches have revealed roles for many different proteins during the initial response of the replisome upon encountering roadblocks. Here, we revisit what is known about DNA replication and the effect of roadblocks during DNA replication across different organisms. We also address how advances in single-molecule techniques have changed our view of the replisome from a highly stable machine with behavior dictated by deterministic principles to a dynamic system that is controlled by stochastic processes. We propose that these dynamics will play crucial roles in roadblock bypass. Further single-molecule studies of this bypass will, therefore, be essential to facilitate the in-depth investigation of multi-protein complexes that is necessary to understand complicated collisions on the DNA.
Collapse
Affiliation(s)
- Stefan H Mueller
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, New South Wales, 2522, Australia
- Illawarra Health & Medical Research Institute, Wollongong, New South Wales, 2522, Australia
| | - Lisanne M Spenkelink
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, New South Wales, 2522, Australia
- Illawarra Health & Medical Research Institute, Wollongong, New South Wales, 2522, Australia
| | - Antoine M van Oijen
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, New South Wales, 2522, Australia.
- Illawarra Health & Medical Research Institute, Wollongong, New South Wales, 2522, Australia.
| |
Collapse
|
14
|
Clark DP, Pazdernik NJ, McGehee MR. Cell Division and DNA Replication. Mol Biol 2019. [DOI: 10.1016/b978-0-12-813288-3.00010-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
15
|
Role of DHH superfamily proteins in nucleic acids metabolism and stress tolerance in prokaryotes and eukaryotes. Int J Biol Macromol 2018; 127:66-75. [PMID: 30578903 DOI: 10.1016/j.ijbiomac.2018.12.123] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 12/14/2018] [Indexed: 01/05/2023]
Abstract
DHH superfamily proteins play pivotal roles in various cellular processes like replication, recombination, repair and nucleic acids metabolism. These proteins are important for homeostasis maintenance and stress tolerance in prokaryotes and eukaryotes. The prominent members of DHH superfamily include single-strand specific exonuclease RecJ, nanoRNases, polyphosphatase PPX1, pyrophosphatase, prune phosphodiesterase and cell cycle protein Cdc45. The mutations of genes coding for DHH superfamily proteins lead to severe growth defects and in some cases, may be lethal. The members of superfamily have a wide substrate spectrum. The spectrum of substrate for DHH superfamily members ranges from smaller molecules like pyrophosphate and cyclic nucleotides to longer single-stranded DNA molecule. Several genetic, structural and biochemical studies have provided interesting insights about roles of DHH superfamily members. However, there are still various unexplored members in both prokaryotes and eukaryotes. Many aspects of this superfamily associated with homeostasis maintenance and stress tolerance are still not clearly understood. A comprehensive understanding is pre-requisite to decipher the physiological significance of members of DHH superfamily. This article provides the current understanding of DHH superfamily members and their significance in nucleic acids metabolism and stress tolerance across diverse forms of life.
Collapse
|
16
|
KISHIMOTO T. MPF-based meiotic cell cycle control: Half a century of lessons from starfish oocytes. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2018; 94:180-203. [PMID: 29643273 PMCID: PMC5968197 DOI: 10.2183/pjab.94.013] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 02/21/2018] [Indexed: 05/23/2023]
Abstract
In metazoans that undergo sexual reproduction, genomic inheritance is ensured by two distinct types of cell cycle, mitosis and meiosis. Mitosis maintains the genomic ploidy in somatic cells reproducing within a generation, whereas meiosis reduces by half the ploidy in germ cells to prepare for successive generations. The meiotic cell cycle is believed to be a derived form of the mitotic cell cycle; however, the molecular mechanisms underlying both of these processes remain elusive. My laboratory has long studied the meiotic cell cycle in starfish oocytes, particularly the control of meiotic M-phase by maturation- or M phase-promoting factor (MPF) and the kinase cyclin B-associated Cdk1 (cyclin B-Cdk1). Using this system, we have unraveled the molecular principles conserved in metazoans that modify M-phase progression from the mitotic type to the meiotic type needed to produce a haploid genome. Furthermore, we have solved a long-standing enigma concerning the molecular identity of MPF, a universal inducer of M-phase both in mitosis and meiosis of eukaryotic cells.
Collapse
Affiliation(s)
- Takeo KISHIMOTO
- Professor Emeritus of Tokyo Institute of Technology
- Visiting Professor of Ochanomizu University, Japan
- Correspondence should be addressed: T. Kishimoto, Science and Education Center, Ochanomizu University, Ootsuka 2-1-1, Bunkyo-ku, Tokyo 112-8610, Japan (e-mail: ; )
| |
Collapse
|
17
|
You Z, Masai H. Potent DNA strand annealing activity associated with mouse Mcm2∼7 heterohexameric complex. Nucleic Acids Res 2017; 45:6494-6506. [PMID: 28449043 PMCID: PMC5499727 DOI: 10.1093/nar/gkx269] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 04/05/2017] [Indexed: 01/08/2023] Open
Abstract
Mini-chromosome maintenance (Mcm) is a central component for DNA unwinding reaction during eukaryotic DNA replication. Mcm2∼7, each containing a conserved ATPase motif, form a six subunit-heterohexamer. Although the reconstituted Mcm2∼7–Cdc45–GINS (CMG) complex displays DNA unwinding activity, the Mcm2∼7 complex does not generally exhibit helicase activity under a normal assay condition. We detected a strong DNA strand annealing activity in the purified mouse Mcm2∼7 heterohexamer, which promotes rapid reassociation of displaced complementary single-stranded DNAs, suggesting a potential cause for its inability to exhibit DNA helicase activity. Indeed, DNA unwinding activity of Mcm2∼7 could be detected in the presence of a single-stranded DNA that is complementary to the displaced strand, which would prevent its reannealing to the template. ATPase-deficient mutations in Mcm2, 4, 5 and 6 subunits inactivated the annealing activity, while those in Mcm2 and 5 subunits alone did not. The annealing activity of Mcm2∼7 does not require Mg2+ and ATP, and is adversely inhibited by the presence of high concentration of Mg2+ and ATP while activated by similar concentrations of ADP. Our findings show that the DNA helicase activity of Mcm2∼7 may be masked by its unexpectedly strong annealing activity, and suggest potential physiological roles of strand annealing activity of Mcm during replication stress responses.
Collapse
Affiliation(s)
- Zhiying You
- Department of Genome Medicine, Tokyo Metropolitan Institute of Medical Science, Tokyo, 156-8506, Japan
| | - Hisao Masai
- Department of Genome Medicine, Tokyo Metropolitan Institute of Medical Science, Tokyo, 156-8506, Japan
| |
Collapse
|
18
|
Riera A, Barbon M, Noguchi Y, Reuter LM, Schneider S, Speck C. From structure to mechanism-understanding initiation of DNA replication. Genes Dev 2017; 31:1073-1088. [PMID: 28717046 PMCID: PMC5538431 DOI: 10.1101/gad.298232.117] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
In this Review, Riera et al. review recent structural and biochemical insights that start to explain how specific proteins recognize DNA replication origins, load the replicative helicase on DNA, unwind DNA, synthesize new DNA strands, and reassemble chromatin. DNA replication results in the doubling of the genome prior to cell division. This process requires the assembly of 50 or more protein factors into a replication fork. Here, we review recent structural and biochemical insights that start to explain how specific proteins recognize DNA replication origins, load the replicative helicase on DNA, unwind DNA, synthesize new DNA strands, and reassemble chromatin. We focus on the minichromosome maintenance (MCM2–7) proteins, which form the core of the eukaryotic replication fork, as this complex undergoes major structural rearrangements in order to engage with DNA, regulate its DNA-unwinding activity, and maintain genome stability.
Collapse
Affiliation(s)
- Alberto Riera
- DNA Replication Group, Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London W12 0NN, United Kingdom
| | - Marta Barbon
- DNA Replication Group, Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London W12 0NN, United Kingdom.,Medical Research Council (MRC) London Institute of Medical Sciences (LMS), London W12 0NN, United Kingdom
| | - Yasunori Noguchi
- DNA Replication Group, Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London W12 0NN, United Kingdom
| | - L Maximilian Reuter
- DNA Replication Group, Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London W12 0NN, United Kingdom
| | - Sarah Schneider
- DNA Replication Group, Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London W12 0NN, United Kingdom
| | - Christian Speck
- DNA Replication Group, Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London W12 0NN, United Kingdom.,Medical Research Council (MRC) London Institute of Medical Sciences (LMS), London W12 0NN, United Kingdom
| |
Collapse
|
19
|
Cryo-EM structure of Mcm2-7 double hexamer on DNA suggests a lagging-strand DNA extrusion model. Proc Natl Acad Sci U S A 2017; 114:E9529-E9538. [PMID: 29078375 PMCID: PMC5692578 DOI: 10.1073/pnas.1712537114] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
During replication initiation, the core component of the helicase-the Mcm2-7 hexamer-is loaded on origin DNA as a double hexamer (DH). The two ring-shaped hexamers are staggered, leading to a kinked axial channel. How the origin DNA interacts with the axial channel is not understood, but the interaction could provide key insights into Mcm2-7 function and regulation. Here, we report the cryo-EM structure of the Mcm2-7 DH on dsDNA and show that the DNA is zigzagged inside the central channel. Several of the Mcm subunit DNA-binding loops, such as the oligosaccharide-oligonucleotide loops, helix 2 insertion loops, and presensor 1 (PS1) loops, are well defined, and many of them interact extensively with the DNA. The PS1 loops of Mcm 3, 4, 6, and 7, but not 2 and 5, engage the lagging strand with an approximate step size of one base per subunit. Staggered coupling of the two opposing hexamers positions the DNA right in front of the two Mcm2-Mcm5 gates, with each strand being pressed against one gate. The architecture suggests that lagging-strand extrusion initiates in the middle of the DH that is composed of the zinc finger domains of both hexamers. To convert the Mcm2-7 DH structure into the Mcm2-7 hexamer structure found in the active helicase, the N-tier ring of the Mcm2-7 hexamer in the DH-dsDNA needs to tilt and shift laterally. We suggest that these N-tier ring movements cause the DNA strand separation and lagging-strand extrusion.
Collapse
|
20
|
The drinking water contaminant dibromoacetonitrile delays G1-S transition and suppresses Chk1 activation at broken replication forks. Sci Rep 2017; 7:12730. [PMID: 28986587 PMCID: PMC5630572 DOI: 10.1038/s41598-017-13033-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 09/15/2017] [Indexed: 11/08/2022] Open
Abstract
Chlorination of drinking water protects humans from water-born pathogens, but it also produces low concentrations of dibromoacetonitrile (DBAN), a common disinfectant by-product found in many water supply systems. DBAN is not mutagenic but causes DNA breaks and elevates sister chromatid exchange in mammalian cells. The WHO issued guidelines for DBAN after it was linked with cancer of the liver and stomach in rodents. How this haloacetonitrile promotes malignant cell transformation is unknown. Using fission yeast as a model, we report here that DBAN delays G1-S transition. DBAN does not hinder ongoing DNA replication, but specifically blocks the serine 345 phosphorylation of the DNA damage checkpoint kinase Chk1 by Rad3 (ATR) at broken replication forks. DBAN is particularly damaging for cells with defects in the lagging-strand DNA polymerase delta. This sensitivity can be explained by the dependency of pol delta mutants on Chk1 activation for survival. We conclude that DBAN targets a process or protein that acts at the start of S phase and is required for Chk1 phosphorylation. Taken together, DBAN may precipitate cancer by perturbing S phase and by blocking the Chk1-dependent response to replication fork damage.
Collapse
|
21
|
Shima N, Pederson KD. Dormant origins as a built-in safeguard in eukaryotic DNA replication against genome instability and disease development. DNA Repair (Amst) 2017; 56:166-173. [PMID: 28641940 PMCID: PMC5547906 DOI: 10.1016/j.dnarep.2017.06.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
DNA replication is a prerequisite for cell proliferation, yet it can be increasingly challenging for a eukaryotic cell to faithfully duplicate its genome as its size and complexity expands. Dormant origins now emerge as a key component for cells to successfully accomplish such a demanding but essential task. In this perspective, we will first provide an overview of the fundamental processes eukaryotic cells have developed to regulate origin licensing and firing. With a special focus on mammalian systems, we will then highlight the role of dormant origins in preventing replication-associated genome instability and their functional interplay with proteins involved in the DNA damage repair response for tumor suppression. Lastly, deficiencies in the origin licensing machinery will be discussed in relation to their influence on stem cell maintenance and human diseases.
Collapse
Affiliation(s)
- Naoko Shima
- The University of Minnesota, Twin Cities, Department of Genetics, Cell Biology and Development, Masonic Cancer Center, 6-160 Jackson Hall, 321 Church St SE., Minneapolis, MN 55455, United States.
| | - Kayla D Pederson
- The University of Minnesota, Twin Cities, Department of Genetics, Cell Biology and Development, Masonic Cancer Center, 6-160 Jackson Hall, 321 Church St SE., Minneapolis, MN 55455, United States
| |
Collapse
|
22
|
Bruck I, Dhingra N, Martinez MP, Kaplan DL. Dpb11 may function with RPA and DNA to initiate DNA replication. PLoS One 2017; 12:e0177147. [PMID: 28467467 PMCID: PMC5415106 DOI: 10.1371/journal.pone.0177147] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 04/21/2017] [Indexed: 01/27/2023] Open
Abstract
Dpb11 is required for the initiation of DNA replication in budding yeast. We found that Dpb11 binds tightly to single-stranded DNA (ssDNA) or branched DNA structures, while its human homolog, TopBP1, binds tightly to branched-DNA structures. We also found that Dpb11 binds stably to CDK-phosphorylated RPA, the eukaryotic ssDNA binding protein, in the presence of branched DNA. A Dpb11 mutant specifically defective for DNA binding did not exhibit tight binding to RPA in the presence of DNA, suggesting that Dpb11-interaction with DNA may promote the recruitment of RPA to melted DNA. We then characterized a mutant of Dpb11 that is specifically defective in DNA binding in budding yeast cells. Expression of dpb11-m1,2,3,5,ΔC results in a substantial decrease in RPA recruitment to origins, suggesting that Dpb11 interaction with DNA may be required for RPA recruitment to origins. Expression of dpb11-m1,2,3,5,ΔC also results in diminished GINS interaction with Mcm2-7 during S phase, while Cdc45 interaction with Mcm2-7 is like wild-type. The reduced GINS interaction with Mcm2-7 may be an indirect consequence of diminished origin melting. We propose that the tight interaction between Dpb11, CDK-phosphorylated RPA, and branched-DNA may be required for the essential function of stabilizing melted origin DNA in vivo. We also propose an alternative model, wherein Dpb11-DNA interaction is required for some other function in DNA replication initiation, such as helicase activation.
Collapse
Affiliation(s)
- Irina Bruck
- Florida State University College of Medicine, Department of Biomedical Sciences, Tallahassee, Florida, United States of America
| | - Nalini Dhingra
- Florida State University College of Medicine, Department of Biomedical Sciences, Tallahassee, Florida, United States of America
| | - Matthew P. Martinez
- Florida State University College of Medicine, Department of Biomedical Sciences, Tallahassee, Florida, United States of America
| | - Daniel L. Kaplan
- Florida State University College of Medicine, Department of Biomedical Sciences, Tallahassee, Florida, United States of America
- * E-mail:
| |
Collapse
|
23
|
Bruck I, Dhingra N, Kaplan DL. A Positive Amplification Mechanism Involving a Kinase and Replication Initiation Factor Helps Assemble the Replication Fork Helicase. J Biol Chem 2017; 292:3062-3073. [PMID: 28082681 DOI: 10.1074/jbc.m116.772368] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 01/11/2017] [Indexed: 01/09/2023] Open
Abstract
The assembly of the replication fork helicase during S phase is key to the initiation of DNA replication in eukaryotic cells. One step in this assembly in budding yeast is the association of Cdc45 with the Mcm2-7 heterohexameric ATPase, and a second step is the assembly of the tetrameric GINS (GG-Ichi-Nii-San) complex with Mcm2-7. Dbf4-dependent kinase (DDK) and S-phase cyclin-dependent kinase (S-CDK) are two S phase-specific kinases that phosphorylate replication proteins during S phase, and Dpb11, Sld2, Sld3, Pol ϵ, and Mcm10 are factors that are also required for replication initiation. However, the exact roles of these initiation factors in assembly of the replication fork helicase remain unclear. We show here that Dpb11 stimulates DDK phosphorylation of the minichromosome maintenance complex protein Mcm4 alone and also of the Mcm2-7 complex and the dsDNA-loaded Mcm2-7 complex. We further demonstrate that Dpb11 can directly recruit DDK to Mcm4. A DDK phosphomimetic mutant of Mcm4 bound Dpb11 with substantially higher affinity than wild-type Mcm4, suggesting a mechanism to recruit Dpb11 to DDK-phosphorylated Mcm2-7. Furthermore, dsDNA-loaded Mcm2-7 harboring the DDK phosphomimetic Mcm4 mutant bound GINS in the presence of Dpb11, suggesting a mechanism for how GINS is recruited to Mcm2-7. We isolated a mutant of Dpb11 that is specifically defective for binding to Mcm4. This mutant, when expressed in budding yeast, diminished cell growth and DNA replication, substantially decreased Mcm4 phosphorylation, and decreased association of GINS with replication origins. We conclude that Dpb11 functions with DDK and Mcm4 in a positive amplification mechanism to trigger the assembly of the replication fork helicase.
Collapse
Affiliation(s)
- Irina Bruck
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, Florida 32306
| | - Nalini Dhingra
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, Florida 32306
| | - Daniel L Kaplan
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, Florida 32306.
| |
Collapse
|
24
|
Sun J, Yuan Z, Bai L, Li H. Cryo-EM of dynamic protein complexes in eukaryotic DNA replication. Protein Sci 2017; 26:40-51. [PMID: 27589669 PMCID: PMC5192969 DOI: 10.1002/pro.3033] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 08/27/2016] [Accepted: 08/29/2016] [Indexed: 12/21/2022]
Abstract
DNA replication in Eukaryotes is a highly dynamic process that involves several dozens of proteins. Some of these proteins form stable complexes that are amenable to high-resolution structure determination by cryo-EM, thanks to the recent advent of the direct electron detector and powerful image analysis algorithm. But many of these proteins associate only transiently and flexibly, precluding traditional biochemical purification. We found that direct mixing of the component proteins followed by 2D and 3D image sorting can capture some very weakly interacting complexes. Even at 2D average level and at low resolution, EM images of these flexible complexes can provide important biological insights. It is often necessary to positively identify the feature-of-interest in a low resolution EM structure. We found that systematically fusing or inserting maltose binding protein (MBP) to selected proteins is highly effective in these situations. In this chapter, we describe the EM studies of several protein complexes involved in the eukaryotic DNA replication over the past decade or so. We suggest that some of the approaches used in these studies may be applicable to structural analysis of other biological systems.
Collapse
Affiliation(s)
- Jingchuan Sun
- Cryo‐EM Structural Biology LaboratoryVan Andel Research InstituteGrand RapidsMichigan49503
| | - Zuanning Yuan
- Cryo‐EM Structural Biology LaboratoryVan Andel Research InstituteGrand RapidsMichigan49503
- The Biochemistry and Structural Biology ProgramStony Brook UniversityStony BrookNew York11794
| | - Lin Bai
- Cryo‐EM Structural Biology LaboratoryVan Andel Research InstituteGrand RapidsMichigan49503
| | - Huilin Li
- Cryo‐EM Structural Biology LaboratoryVan Andel Research InstituteGrand RapidsMichigan49503
| |
Collapse
|
25
|
Bai L, Yuan Z, Sun J, Georgescu R, O'Donnell ME, Li H. Architecture of the Saccharomyces cerevisiae Replisome. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1042:207-228. [PMID: 29357060 DOI: 10.1007/978-981-10-6955-0_10] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Eukaryotic replication proteins are highly conserved, and thus study of Saccharomyces cerevisiae replication can inform about this central process in higher eukaryotes including humans. The S. cerevisiae replisome is a large and dynamic assembly comprised of ~50 proteins. The core of the replisome is composed of 31 different proteins including the 11-subunit CMG helicase; RFC clamp loader pentamer; PCNA clamp; the heteroligomeric DNA polymerases ε, δ, and α-primase; and the RPA heterotrimeric single strand binding protein. Many additional protein factors either travel with or transiently associate with these replisome proteins at particular times during replication. In this chapter, we summarize several recent structural studies on the S. cerevisiae replisome and its subassemblies using single particle electron microscopy and X-ray crystallography. These recent structural studies have outlined the overall architecture of a core replisome subassembly and shed new light on the mechanism of eukaryotic replication.
Collapse
Affiliation(s)
- Lin Bai
- Cryo-EM Structural Biology Laboratory, Van Andel Research Institute, Grand Rapids, MI, USA
| | - Zuanning Yuan
- Cryo-EM Structural Biology Laboratory, Van Andel Research Institute, Grand Rapids, MI, USA
- Biochemistry and Structural Biology Graduate Program, Stony Brook University, Stony Brook, NY, USA
| | - Jingchuan Sun
- Cryo-EM Structural Biology Laboratory, Van Andel Research Institute, Grand Rapids, MI, USA
| | - Roxana Georgescu
- Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA
| | - Michael E O'Donnell
- Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA.
| | - Huilin Li
- Cryo-EM Structural Biology Laboratory, Van Andel Research Institute, Grand Rapids, MI, USA.
- Biochemistry and Structural Biology Graduate Program, Stony Brook University, Stony Brook, NY, USA.
| |
Collapse
|
26
|
Abstract
DNA replication origins strikingly differ between eukaryotic species and cell types. Origins are localized and can be highly efficient in budding yeast, are randomly located in early fly and frog embryos, which do not transcribe their genomes, and are clustered in broad (10-100 kb) non-transcribed zones, frequently abutting transcribed genes, in mammalian cells. Nonetheless, in all cases, origins are established during the G1-phase of the cell cycle by the loading of double hexamers of the Mcm 2-7 proteins (MCM DHs), the core of the replicative helicase. MCM DH activation in S-phase leads to origin unwinding, polymerase recruitment, and initiation of bidirectional DNA synthesis. Although MCM DHs are initially loaded at sites defined by the binding of the origin recognition complex (ORC), they ultimately bind chromatin in much greater numbers than ORC and only a fraction are activated in any one S-phase. Data suggest that the multiplicity and functional redundancy of MCM DHs provide robustness to the replication process and affect replication time and that MCM DHs can slide along the DNA and spread over large distances around the ORC. Recent studies further show that MCM DHs are displaced along the DNA by collision with transcription complexes but remain functional for initiation after displacement. Therefore, eukaryotic DNA replication relies on intrinsically mobile and flexible origins, a strategy fundamentally different from bacteria but conserved from yeast to human. These properties of MCM DHs likely contribute to the establishment of broad, intergenic replication initiation zones in higher eukaryotes.
Collapse
Affiliation(s)
- Olivier Hyrien
- Institut de Biologie de l'Ecole Normale Superieure (IBENS), Ecole Normale Superieure, PSL Research University, Paris, France
| |
Collapse
|
27
|
Mi G, Gao Y, Liu S, Ye E, Li Y, Jin X, Yang H, Yang Z. Cyclin-dependent kinase inhibitor flavopiridol promotes remyelination in a cuprizone induced demyelination model. Cell Cycle 2016; 15:2780-91. [PMID: 27580304 DOI: 10.1080/15384101.2016.1220458] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The cuprizone (CPZ) model has been widely used for the studies of de-and remyelination. The CPZ-exposed mice show oligodendrocyte precursor cells (OPCs) increase and mature oligodendrocytes decrease, suggesting an imbalance between proliferation and differentiation of OPCs. In the first experiment of this study, we examined the expression of cell cycle related genes in brains of mice following CPZ administration for 5 weeks by means of microarray assay. In addition, we performed a double labeling of BrdU and Ki-67 to calculate cell cycle exit index in the mice. Our results showed that CPZ administration up-regulated the expression of 16 cell cycle related genes, but down-regulated the expression of only one in the prefrontal cortex (PFC) of mice compared to control group. The treatment inhibited potential precursor cells exit from cell cycle. In the second experiment, we evaluated effects of a CDK inhibitor flavopiridol (FLA) on CPZ-induced neuropathological changes and spatial working memory impairment in mice.FLA treatment for one week effectively attenuated the CPZ-induced increases in NG2 positive cells, microglia and astrocytes, alleviated the concurrent mature oligodendrocyte loss and myelin breakdown, and improved spatial working memory deficit in the CPZ-exposed mice. These results suggest that CPZ-induced neuropathological changes involve in dysregulation of cell cycle related genes. The therapeutic effects of FLA on CPZ-exposed mice may be related to its ability of cell cycle inhibition.
Collapse
Affiliation(s)
- Guiyun Mi
- a Beijing Institute of Basic Medical Sciences , Haidian District, Beijing , China
| | - Yunyun Gao
- b The 89 Hospital of PLA , WeiFang City Shandong Province , China
| | - Shuai Liu
- a Beijing Institute of Basic Medical Sciences , Haidian District, Beijing , China
| | - Enmao Ye
- a Beijing Institute of Basic Medical Sciences , Haidian District, Beijing , China
| | - Yanyan Li
- a Beijing Institute of Basic Medical Sciences , Haidian District, Beijing , China
| | - Xiao Jin
- a Beijing Institute of Basic Medical Sciences , Haidian District, Beijing , China
| | - Hongju Yang
- a Beijing Institute of Basic Medical Sciences , Haidian District, Beijing , China
| | - Zheng Yang
- a Beijing Institute of Basic Medical Sciences , Haidian District, Beijing , China
| |
Collapse
|
28
|
Affiliation(s)
- Christian Speck
- a DNA Replication Group, Institute of Clinical Sciences, Imperial College London , London , UK.,b bMRC Clinical Sciences Centre , Du Cane Road, London , UK
| |
Collapse
|
29
|
Fang D, Cao Q, Lou H. Sld3-MCM Interaction Facilitated by Dbf4-Dependent Kinase Defines an Essential Step in Eukaryotic DNA Replication Initiation. Front Microbiol 2016; 7:885. [PMID: 27375603 PMCID: PMC4901202 DOI: 10.3389/fmicb.2016.00885] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 05/25/2016] [Indexed: 11/16/2022] Open
Abstract
Sld3/Treslin is an evolutionarily conserved protein essential for activation of DNA helicase Mcm2-7 and replication initiation in all eukaryotes. Nevertheless, it remains elusive how Sld3 is recruited to origins. Here, we have identified the direct physical association of Sld3 with Mcm2 and Mcm6 subunits in vitro, which is significantly enhanced by DDK in vivo. The Sld3-binding domain (SBD) is mapped to the N-termini of Mcm2 and Mcm6, both of them are essential for cell viability and enriched with the DDK phosphorylation sites. Glutamic acid substitution of four conserved positively charged residues of Sld3 (sld3-4E), near the Cdc45-binding region, interrupts its interaction with Mcm2/6 and causes cell death. By using a temperature-inducible degron (td), we show that deletion of Mcm6 SBD (mcm6ΔN122) abolishes not only Sld3 enrichment at early origins in G1 phase, but also subsequent recruitment of GINS and RPA during S phase. These findings elucidate the in vivo molecular details of the DDK-dependent Sld3-MCM association, which plays a crucial role in MCM helicase activation and origin unwinding.
Collapse
Affiliation(s)
| | | | - Huiqiang Lou
- State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural UniversityBeijing, China
| |
Collapse
|
30
|
Tognetti S, Speck C. Replicating repetitive DNA. Nat Cell Biol 2016; 18:593-4. [PMID: 27230530 DOI: 10.1038/ncb3367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The function and regulation of repetitive DNA, the 'dark matter' of the genome, is still only rudimentarily understood. Now a study investigating DNA replication of repetitive centromeric chromosome segments has started to expose a fascinating replication program that involves suppression of ATR signalling, in particular during replication stress.
Collapse
Affiliation(s)
- Silvia Tognetti
- DNA Replication Group, Institute of Clinical Sciences, Imperial College London, London, W12 0NN, UK.,MRC Clinical Sciences Centre, Du Cane Road, London, W12 0NN, UK.,Cell Signalling Unit, Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Parc de Recerca Biomèdica de Barcelona, Barcelona, Spain
| | - Christian Speck
- DNA Replication Group, Institute of Clinical Sciences, Imperial College London, London, W12 0NN, UK.,MRC Clinical Sciences Centre, Du Cane Road, London, W12 0NN, UK
| |
Collapse
|
31
|
Abstract
The cellular replicating machine, or "replisome," is composed of numerous different proteins. The core replication proteins in all cell types include a helicase, primase, DNA polymerases, sliding clamp, clamp loader, and single-strand binding (SSB) protein. The core eukaryotic replisome proteins evolved independently from those of bacteria and thus have distinct architectures and mechanisms of action. The core replisome proteins of the eukaryote include: an 11-subunit CMG helicase, DNA polymerase alpha-primase, leading strand DNA polymerase epsilon, lagging strand DNA polymerase delta, PCNA clamp, RFC clamp loader, and the RPA SSB protein. There are numerous other proteins that travel with eukaryotic replication forks, some of which are known to be involved in checkpoint regulation or nucleosome handling, but most have unknown functions and no bacterial analogue. Recent studies have revealed many structural and functional insights into replisome action. Also, the first structure of a replisome from any cell type has been elucidated for a eukaryote, consisting of 20 distinct proteins, with quite unexpected results. This review summarizes the current state of knowledge of the eukaryotic core replisome proteins, their structure, individual functions, and how they are organized at the replication fork as a machine.
Collapse
Affiliation(s)
- D Zhang
- The Rockefeller University, New York, NY, United States
| | - M O'Donnell
- The Rockefeller University, New York, NY, United States; Howard Hughes Medical Institute, The Rockefeller University, New York, NY, United States.
| |
Collapse
|
32
|
Kawakami H, Ohashi E, Tsurimoto T, Katayama T. Rapid Purification and Characterization of Mutant Origin Recognition Complexes in Saccharomyces cerevisiae. Front Microbiol 2016; 7:521. [PMID: 27148210 PMCID: PMC4834435 DOI: 10.3389/fmicb.2016.00521] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 03/29/2016] [Indexed: 11/25/2022] Open
Abstract
Purification of the origin recognition complex (ORC) from wild-type budding yeast cells more than two decades ago opened up doors to analyze the initiation of eukaryotic chromosomal DNA replication biochemically. Although revised methods to purify ORC from overproducing cells were reported later, purification of mutant proteins using these systems still depends on time-consuming processes including genetic manipulation to construct and amplify mutant baculoviruses or yeast strains as well as several canonical protein fractionations. Here, we present a streamlined method to construct mutant overproducers, followed by purification of mutant ORCs. Use of mammalian cells co-transfected with conveniently mutagenized plasmids bearing a His tag excludes many of the construction and fractionation steps. Transfection is highly efficient. All the six subunits of ORC are overexpressed at a considerable level and isolated as a functional heterohexameric complex. Furthermore, use of mammalian cells prevents contamination of wild-type ORC from yeast cells. The method is applicable to wild-type and at least three mutant ORCs, and the resultant purified complexes show expected biochemical activities. The rapid acquisition of mutant ORCs using this system will boost systematic biochemical dissection of ORC and can be even applied to the purification of protein complexes other than ORC.
Collapse
Affiliation(s)
- Hironori Kawakami
- Department of Molecular Biology, Graduate School of Pharmaceutical Sciences, Kyushu University Fukuoka, Japan
| | - Eiji Ohashi
- Department of Biology, Faculty of Science, Kyushu University Fukuoka, Japan
| | - Toshiki Tsurimoto
- Department of Biology, Faculty of Science, Kyushu University Fukuoka, Japan
| | - Tsutomu Katayama
- Department of Molecular Biology, Graduate School of Pharmaceutical Sciences, Kyushu University Fukuoka, Japan
| |
Collapse
|
33
|
Berti M, Vindigni A. Replication stress: getting back on track. Nat Struct Mol Biol 2016; 23:103-9. [PMID: 26840898 PMCID: PMC5125612 DOI: 10.1038/nsmb.3163] [Citation(s) in RCA: 190] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 12/17/2015] [Indexed: 12/17/2022]
Abstract
The replication-stress response enables the DNA replication machinery to overcome DNA lesions or intrinsic replication-fork obstacles, and it is essential to ensure faithful transmission of genetic information to daughter cells. Multiple replication stress–response pathways have been identified in recent years, thus raising questions about the specific and possibly redundant functions of these pathways. Here, we review the emerging mechanisms of the replication-stress response in mammalian cells and consider how they may influence the dynamics of the core DNA replication complex.
Collapse
Affiliation(s)
- Matteo Berti
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO 63104, USA
| | - Alessandro Vindigni
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO 63104, USA
| |
Collapse
|
34
|
Bruck I, Perez-Arnaiz P, Colbert MK, Kaplan DL. Insights into the Initiation of Eukaryotic DNA Replication. Nucleus 2015; 6:449-54. [PMID: 26710261 DOI: 10.1080/19491034.2015.1115938] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
The initiation of DNA replication is a highly regulated event in eukaryotic cells to ensure that the entire genome is copied once and only once during S phase. The primary target of cellular regulation of eukaryotic DNA replication initiation is the assembly and activation of the replication fork helicase, the 11-subunit assembly that unwinds DNA at a replication fork. The replication fork helicase, called CMG for Cdc45-Mcm2-7, and GINS, assembles in S phase from the constituent Cdc45, Mcm2-7, and GINS proteins. The assembly and activation of the CMG replication fork helicase during S phase is governed by 2 S-phase specific kinases, CDK and DDK. CDK stimulates the interaction between Sld2, Sld3, and Dpb11, 3 initiation factors that are each required for the initiation of DNA replication. DDK, on the other hand, phosphorylates the Mcm2, Mcm4, and Mcm6 subunits of the Mcm2-7 complex. Sld3 recruits Cdc45 to Mcm2-7 in a manner that depends on DDK, and recent work suggests that Sld3 binds directly to Mcm2-7 and also to single-stranded DNA. Furthermore, recent work demonstrates that Sld3 and its human homolog Treslin substantially stimulate DDK phosphorylation of Mcm2. These data suggest that the initiation factor Sld3/Treslin coordinates the assembly and activation of the eukaryotic replication fork helicase by recruiting Cdc45 to Mcm2-7, stimulating DDK phosphorylation of Mcm2, and binding directly to single-stranded DNA as the origin is melted.
Collapse
Affiliation(s)
- Irina Bruck
- a Department of Biomedical Science; Florida State University College of Medicine ; Tallahassee , FL USA
| | - Patricia Perez-Arnaiz
- a Department of Biomedical Science; Florida State University College of Medicine ; Tallahassee , FL USA
| | - Max K Colbert
- a Department of Biomedical Science; Florida State University College of Medicine ; Tallahassee , FL USA
| | - Daniel L Kaplan
- a Department of Biomedical Science; Florida State University College of Medicine ; Tallahassee , FL USA
| |
Collapse
|
35
|
Quan Y, Xia Y, Liu L, Cui J, Li Z, Cao Q, Chen XS, Campbell JL, Lou H. Cell-Cycle-Regulated Interaction between Mcm10 and Double Hexameric Mcm2-7 Is Required for Helicase Splitting and Activation during S Phase. Cell Rep 2015; 13:2576-2586. [PMID: 26686640 DOI: 10.1016/j.celrep.2015.11.018] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Revised: 09/22/2015] [Accepted: 11/03/2015] [Indexed: 10/22/2022] Open
Abstract
Mcm2-7 helicase is loaded onto double-stranded origin DNA as an inactive double hexamer (DH) in G1 phase. The mechanisms of Mcm2-7 remodeling that trigger helicase activation in S phase remain unknown. Here, we develop an approach to detect and purify the endogenous DHs directly. Through cellular fractionation, we provide in vivo evidence that DHs are assembled on chromatin in G1 phase and separated during S phase. Interestingly, Mcm10, a robust MCM interactor, co-purifies exclusively with the DHs in the context of chromatin. Deletion of the main interaction domain, Mcm10 C terminus, causes growth and S phase defects, which can be suppressed through Mcm10-MCM fusions. By monitoring the dynamics of MCM DHs, we show a significant delay in DH dissolution during S phase in the Mcm10-MCM interaction-deficient mutants. Therefore, we propose an essential role for Mcm10 in Mcm2-7 remodeling through formation of a cell-cycle-regulated supercomplex with DHs.
Collapse
Affiliation(s)
- Yun Quan
- State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural University, 2 Yuan-Ming-Yuan West Road, Beijing 100193, China
| | - Yisui Xia
- State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural University, 2 Yuan-Ming-Yuan West Road, Beijing 100193, China
| | - Lu Liu
- State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural University, 2 Yuan-Ming-Yuan West Road, Beijing 100193, China
| | - Jiamin Cui
- State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural University, 2 Yuan-Ming-Yuan West Road, Beijing 100193, China
| | - Zhen Li
- State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural University, 2 Yuan-Ming-Yuan West Road, Beijing 100193, China
| | - Qinhong Cao
- State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural University, 2 Yuan-Ming-Yuan West Road, Beijing 100193, China
| | - Xiaojiang S Chen
- Molecular and Computational Biology, USC Norris Cancer Center, and Chemistry Department, University of Southern California, Los Angeles, CA 90089, USA
| | - Judith L Campbell
- Braun Laboratories, California Institute of Technology, Pasadena, CA 91125, USA
| | - Huiqiang Lou
- State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural University, 2 Yuan-Ming-Yuan West Road, Beijing 100193, China.
| |
Collapse
|
36
|
Graindorge D, Martineau S, Machon C, Arnoux P, Guitton J, Francesconi S, Frochot C, Sage E, Girard PM. Singlet Oxygen-Mediated Oxidation during UVA Radiation Alters the Dynamic of Genomic DNA Replication. PLoS One 2015; 10:e0140645. [PMID: 26485711 PMCID: PMC4618472 DOI: 10.1371/journal.pone.0140645] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Accepted: 09/29/2015] [Indexed: 02/07/2023] Open
Abstract
UVA radiation (320–400 nm) is a major environmental agent that can exert its deleterious action on living organisms through absorption of the UVA photons by endogenous or exogenous photosensitizers. This leads to the production of reactive oxygen species (ROS), such as singlet oxygen (1O2) and hydrogen peroxide (H2O2), which in turn can modify reversibly or irreversibly biomolecules, such as lipids, proteins and nucleic acids. We have previously reported that UVA-induced ROS strongly inhibit DNA replication in a dose-dependent manner, but independently of the cell cycle checkpoints activation. Here, we report that the production of 1O2 by UVA radiation leads to a transient inhibition of replication fork velocity, a transient decrease in the dNTP pool, a quickly reversible GSH-dependent oxidation of the RRM1 subunit of ribonucleotide reductase and sustained inhibition of origin firing. The time of recovery post irradiation for each of these events can last from few minutes (reduction of oxidized RRM1) to several hours (replication fork velocity and origin firing). The quenching of 1O2 by sodium azide prevents the delay of DNA replication, the decrease in the dNTP pool and the oxidation of RRM1, while inhibition of Chk1 does not prevent the inhibition of origin firing. Although the molecular mechanism remains elusive, our data demonstrate that the dynamic of replication is altered by UVA photosensitization of vitamins via the production of singlet oxygen.
Collapse
Affiliation(s)
- Dany Graindorge
- CNRS UMR 3348, Stress Génotoxiques et Cancer, Orsay, France
- Curie Institute, PSL Research University, Orsay, France
| | - Sylvain Martineau
- CNRS UMR 3348, Stress Génotoxiques et Cancer, Orsay, France
- Curie Institute, PSL Research University, Orsay, France
| | - Christelle Machon
- Centre Hospitalier Lyon-Sud, Hospices Civils de Lyon, Laboratoire de biochimie-toxicologie, Pierre Bénite, France
- Laboratoire de chimie analytique, Université Lyon 1, ISPBL, Faculté de pharmacie, Lyon, France
| | - Philippe Arnoux
- Université de Lorraine, Laboratoire Réactions et Génie des Procédés (LRGP), Nancy, France
- CNRS, UMR7274, Nancy, France
| | - Jérôme Guitton
- Centre Hospitalier Lyon-Sud, Hospices Civils de Lyon, Laboratoire de biochimie-toxicologie, Pierre Bénite, France
- Laboratoire de Toxicologie, Université Lyon 1, ISPBL, Faculté de pharmacie, Lyon, France
| | - Stefania Francesconi
- CNRS UMR 3348, Stress Génotoxiques et Cancer, Orsay, France
- Curie Institute, PSL Research University, Orsay, France
| | - Céline Frochot
- Université de Lorraine, Laboratoire Réactions et Génie des Procédés (LRGP), Nancy, France
- CNRS, UMR7274, Nancy, France
| | - Evelyne Sage
- CNRS UMR 3348, Stress Génotoxiques et Cancer, Orsay, France
- Curie Institute, PSL Research University, Orsay, France
| | - Pierre-Marie Girard
- CNRS UMR 3348, Stress Génotoxiques et Cancer, Orsay, France
- Curie Institute, PSL Research University, Orsay, France
- * E-mail:
| |
Collapse
|
37
|
Bruck I, Kaplan DL. The Replication Initiation Protein Sld3/Treslin Orchestrates the Assembly of the Replication Fork Helicase during S Phase. J Biol Chem 2015; 290:27414-27424. [PMID: 26405041 DOI: 10.1074/jbc.m115.688424] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Indexed: 11/06/2022] Open
Abstract
The initiation of DNA replication is a highly regulated process in eukaryotic cells, and central to the process of initiation is the assembly and activation of the replication fork helicase. The replication fork helicase is comprised of CMG (Cdc45, Mcm2-7, and GINS) in eukaryotic cells, and the mechanism underlying assembly of the CMG during S phase was studied in this article. We identified a point mutation of Sld3 that is specifically defective for Mcm3 and Mcm5 interaction (sld3-m10), and also identified a point mutation of Sld3 that is specifically defective for single-stranded DNA (ssDNA) interaction (sld3-m9). Expression of wild-type levels of sld3-m9 resulted in a severe DNA replication defect with no recruitment of GINS to Mcm2-7, whereas expression of wild-type levels of sld3-m10 resulted in a severe replication defect with no Cdc45 recruitment to Mcm2-7. We propose a model for Sld3-mediated control of replication initiation, wherein Sld3 manages the proper assembly of the CMG during S phase. We also find that the biochemical functions identified for Sld3 are conserved in human Treslin, suggesting that Treslin orchestrates assembly of the CMG in human cells.
Collapse
Affiliation(s)
- Irina Bruck
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, Florida 32306
| | - Daniel L Kaplan
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, Florida 32306.
| |
Collapse
|
38
|
Herrera MC, Tognetti S, Riera A, Zech J, Clarke P, Fernández-Cid A, Speck C. A reconstituted system reveals how activating and inhibitory interactions control DDK dependent assembly of the eukaryotic replicative helicase. Nucleic Acids Res 2015; 43:10238-50. [PMID: 26338774 PMCID: PMC4666391 DOI: 10.1093/nar/gkv881] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 08/22/2015] [Indexed: 11/17/2022] Open
Abstract
During G1-phase of the cell-cycle the replicative MCM2–7 helicase becomes loaded onto DNA into pre-replicative complexes (pre-RCs), resulting in MCM2–7 double-hexamers on DNA. In S-phase, Dbf4-dependent kinase (DDK) and cyclin-dependent-kinase (CDK) direct with the help of a large number of helicase-activation factors the assembly of a Cdc45–MCM2–7–GINS (CMG) complex. However, in the absence of S-phase kinases complex assembly is inhibited, which is unexpected, as the MCM2–7 double-hexamer represents a very large interaction surface. Currently it is unclear what mechanisms restricts complex assembly and how DDK can overcome this inhibition to promote CMG-assembly. We developed an advanced reconstituted-system to study helicase activation in-solution and discovered that individual factors like Sld3 and Sld2 can bind directly to the pre-RC, while Cdc45 cannot. When Sld3 and Sld2 were incubated together with the pre-RC, we observed that competitive interactions restrict complex assembly. DDK stabilizes the Sld3/Sld2–pre-RC complex, but the complex is only short-lived, indicating an anti-cooperative mechanism. Yet, a Sld3/Cdc45–pre-RC can form in the presence of DDK and the addition of Sld2 enhances complex stability. Our results indicate that helicase activation is regulated by competitive and cooperative interactions, which restrict illegitimate complex formation and direct limiting helicase-activation factors into pre-initiation complexes.
Collapse
Affiliation(s)
- M Carmen Herrera
- DNA Replication Group, Institute of Clinical Sciences, Imperial College London, London W12 0NN, UK
| | - Silvia Tognetti
- DNA Replication Group, Institute of Clinical Sciences, Imperial College London, London W12 0NN, UK
| | - Alberto Riera
- DNA Replication Group, Institute of Clinical Sciences, Imperial College London, London W12 0NN, UK
| | - Juergen Zech
- DNA Replication Group, Institute of Clinical Sciences, Imperial College London, London W12 0NN, UK
| | - Pippa Clarke
- DNA Replication Group, Institute of Clinical Sciences, Imperial College London, London W12 0NN, UK
| | - Alejandra Fernández-Cid
- DNA Replication Group, Institute of Clinical Sciences, Imperial College London, London W12 0NN, UK
| | - Christian Speck
- DNA Replication Group, Institute of Clinical Sciences, Imperial College London, London W12 0NN, UK
| |
Collapse
|
39
|
Abstract
DNA replication in eukaryotes is strictly regulated by several mechanisms. A central step in this replication is the assembly of the heterohexameric minichromosome maintenance (MCM2-7) helicase complex at replication origins during G1 phase as an inactive double hexamer. Here, using cryo-electron microscopy, we report a near-atomic structure of the MCM2-7 double hexamer purified from yeast G1 chromatin. Our structure shows that two single hexamers, arranged in a tilted and twisted fashion through interdigitated amino-terminal domain interactions, form a kinked central channel. Four constricted rings consisting of conserved interior β-hairpins from the two single hexamers create a narrow passageway that tightly fits duplex DNA. This narrow passageway, reinforced by the offset of the two single hexamers at the double hexamer interface, is flanked by two pairs of gate-forming subunits, MCM2 and MCM5. These unusual features of the twisted and tilted single hexamers suggest a concerted mechanism for the melting of origin DNA that requires structural deformation of the intervening DNA.
Collapse
|
40
|
Hyrien O. Peaks cloaked in the mist: the landscape of mammalian replication origins. J Cell Biol 2015; 208:147-60. [PMID: 25601401 PMCID: PMC4298691 DOI: 10.1083/jcb.201407004] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 12/16/2014] [Indexed: 12/23/2022] Open
Abstract
Replication of mammalian genomes starts at sites termed replication origins, which historically have been difficult to locate as a result of large genome sizes, limited power of genetic identification schemes, and rareness and fragility of initiation intermediates. However, origins are now mapped by the thousands using microarrays and sequencing techniques. Independent studies show modest concordance, suggesting that mammalian origins can form at any DNA sequence but are suppressed by read-through transcription or that they can overlap the 5' end or even the entire gene. These results require a critical reevaluation of whether origins form at specific DNA elements and/or epigenetic signals or require no such determinants.
Collapse
Affiliation(s)
- Olivier Hyrien
- Institut de Biologie de l'Ecole Normale Supérieure, Centre National de la Recherche Scientifique UMR8197 and Institut National de la Santé et de la Recherche Médicale U1024, 75005 Paris, France
| |
Collapse
|