1
|
Li N, Liang XR, Bai X, Liang XH, Dang LH, Jin QQ, Cao J, Du QX, Sun JH. Novel ratio-expressions of genes enables estimation of wound age in contused skeletal muscle. Int J Legal Med 2024; 138:197-206. [PMID: 37804331 DOI: 10.1007/s00414-023-03095-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 09/18/2023] [Indexed: 10/09/2023]
Abstract
Given that combination with multiple biomarkers may well raise the predictive value of wound age, it appears critically essential to identify new features under the limited cost. For this purpose, the present study explored whether the gene expression ratios provide unique time information as an additional indicator for wound age estimation not requiring the detection of new biomarkers and allowing full use of the available data. The expression levels of four wound-healing genes (Arid5a, Ier3, Stom, and Lcp1) were detected by real-time polymerase chain reaction, and a total of six expression ratios were calculated among these four genes. The results showed that the expression levels of four genes and six ratios of expression changed time-dependent during wound repair. The six expression ratios provided additional temporal information, distinct from the four genes analyzed separately by principal component analysis. The overall performance metrics for cross-validation and external validation of four typical prediction models were improved when six ratios of expression were added as additional input variables. Overall, expression ratios among genes provide temporal information and have excellent potential as predictive markers for wound age estimation. Combining the expression levels of genes with ratio-expression of genes may allow for more accurate estimates of the time of injury.
Collapse
Affiliation(s)
- Na Li
- School of Forensic Medicine, Shanxi Medical University, Jinzhong, 030604, Shanxi, China
| | - Xin-Rui Liang
- School of Forensic Medicine, Shanxi Medical University, Jinzhong, 030604, Shanxi, China
| | - Xue Bai
- School of Forensic Medicine, Shanxi Medical University, Jinzhong, 030604, Shanxi, China
| | - Xin-Hua Liang
- School of Forensic Medicine, Shanxi Medical University, Jinzhong, 030604, Shanxi, China
| | - Li-Hong Dang
- School of Forensic Medicine, Shanxi Medical University, Jinzhong, 030604, Shanxi, China
| | - Qian-Qian Jin
- School of Forensic Medicine, Shanxi Medical University, Jinzhong, 030604, Shanxi, China
| | - Jie Cao
- School of Forensic Medicine, Shanxi Medical University, Jinzhong, 030604, Shanxi, China
| | - Qiu-Xiang Du
- School of Forensic Medicine, Shanxi Medical University, Jinzhong, 030604, Shanxi, China.
| | - Jun-Hong Sun
- School of Forensic Medicine, Shanxi Medical University, Jinzhong, 030604, Shanxi, China.
| |
Collapse
|
2
|
Du Q, Dong T, Liu Y, Zhu X, Li N, Dang L, Cao J, Jin Q, Sun J. Screening criteria of mRNA indicators for wound age estimation. Forensic Sci Res 2023; 7:714-725. [PMID: 36817234 PMCID: PMC9930757 DOI: 10.1080/20961790.2021.1986770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
Wound age estimation is a crucial and challenging problem in forensic pathology. Although mRNA is the most commonly used indicator for wound age estimation, screening criteria are lacking. In the present study, the feasibility of screening criteria using mRNA to determine injury time based on the adenylate-uridylate-rich element (ARE) structure and gene ontology (GO) categories were evaluated. A total of 78 Sprague-Dawley male rats were contused and sampled at 4, 8, 12, 16, 20, 24, 28, 32, 36, 40, 44, and 48 h after inflicting injury. The candidate mRNAs were classified based on with or without ARE structure and GO category function. The mRNA expression levels were detected using qRT-PCR. In addition, the standard deviation (STD), mean deviation (MD), relative average deviation (d%), and coefficient of variation (CV) were calculated based on mRNA expression levels. The CV score (CVs) and the CV of CV (CV'CV) were calculated to measure heterogeneity. Finally, based on classic principles, the accuracy of combination of candidate mRNAs was assessed using discriminant analysis to construct a multivariate model for inferring wound age. The results of homogeneity evaluation of each group based on CVs were consistent with the MD, STD, d%, and CV results, indicating the credibility of the evaluation results based on CVs. The candidate mRNAs without ARE structure and classified as cellular component (CC) GO category (ARE-CC) had the highest CVs, showing the mRNAs with these characteristics are the most homogenous mRNAs and best suited for wound age estimation. The highest accuracy was 91.0% when the mRNAs without ARE structure were used to infer the wound age based on the discrimination model. The accuracy of mRNAs classified into CC or multiple function (MF) GO category was higher than mRNAs in the biological process (BP) category. In all subgroups, the accuracy of the composite identification model of mRNA composition without ARE structure and classified as CC was higher than other subgroups. The mRNAs without ARE structure and belonging to the CC GO category were more homogenous, showed higher accuracy for estimating wound age, and were appropriate for rat skeletal muscle wound age estimation. Supplemental data for this article is available online at https://doi.org/10.1080/20961790.2021.1986770 .
Collapse
Affiliation(s)
- Qiuxiang Du
- School of Forensic Medicine, Shanxi Medical University, Jinzhong, China
| | - Tana Dong
- Shandong Public Security Department, The Institute of Criminal Science and Technology, Jinan, China
| | - Yuanxin Liu
- School of Forensic Medicine, Shanxi Medical University, Jinzhong, China
| | - Xiyan Zhu
- Department of Military Traffic Medicine, Army Characteristic Medical Center, Chongqing, China
| | - Na Li
- School of Forensic Medicine, Shanxi Medical University, Jinzhong, China
| | - Lihong Dang
- School of Forensic Medicine, Shanxi Medical University, Jinzhong, China
| | - Jie Cao
- School of Forensic Medicine, Shanxi Medical University, Jinzhong, China
| | - Qianqian Jin
- School of Forensic Medicine, Shanxi Medical University, Jinzhong, China
| | - Junhong Sun
- School of Forensic Medicine, Shanxi Medical University, Jinzhong, China,CONTACT Junhong Sun
| |
Collapse
|
3
|
Novel Prediction Method Applied to Wound Age Estimation: Developing a Stacking Ensemble Model to Improve Predictive Performance Based on Multi-mRNA. Diagnostics (Basel) 2023; 13:diagnostics13030395. [PMID: 36766500 PMCID: PMC9914838 DOI: 10.3390/diagnostics13030395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/13/2023] [Accepted: 01/17/2023] [Indexed: 01/24/2023] Open
Abstract
(1) Background: Accurate diagnosis of wound age is crucial for investigating violent cases in forensic practice. However, effective biomarkers and forecast methods are lacking. (2) Methods: Samples were collected from rats divided randomly into control and contusion groups at 0, 4, 8, 12, 16, 20, and 24 h post-injury. The characteristics of concern were nine mRNA expression levels. Internal validation data were used to train different machine learning algorithms, namely random forest (RF), support vector machine (SVM), multilayer perceptron (MLP), gradient boosting (GB), and stochastic gradient descent (SGD), to predict wound age. These models were considered the base learners, which were then applied to developing 26 stacking ensemble models combining two, three, four, or five base learners. The best-performing stacking model and base learner were evaluated through external validation data. (3) Results: The best results were obtained using a stacking model of RF + SVM + MLP (accuracy = 92.85%, area under the receiver operating characteristic curve (AUROC) = 0.93, root-mean-square-error (RMSE) = 1.06 h). The wound age prediction performance of the stacking models was also confirmed for another independent dataset. (4) Conclusions: We illustrate that machine learning techniques, especially ensemble algorithms, have a high potential to be used to predict wound age. According to the results, the strategy can be applied to other types of forensic forecasts.
Collapse
|
4
|
Maiese A, Manetti AC, Iacoponi N, Mezzetti E, Turillazzi E, Di Paolo M, La Russa R, Frati P, Fineschi V. State-of-the-Art on Wound Vitality Evaluation: A Systematic Review. Int J Mol Sci 2022; 23:6881. [PMID: 35805886 PMCID: PMC9266385 DOI: 10.3390/ijms23136881] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 06/17/2022] [Accepted: 06/17/2022] [Indexed: 12/29/2022] Open
Abstract
The vitality demonstration refers to determining if an injury has been caused ante- or post-mortem, while wound age means to evaluate how long a subject has survived after the infliction of an injury. Histology alone is not enough to prove the vitality of a lesion. Recently, immunohistochemistry, biochemistry, and molecular biology have been introduced in the field of lesions vitality and age demonstration. The study was conducted according to the preferred reporting items for systematic review (PRISMA) protocol. The search terms were "wound", "lesion", "vitality", "evaluation", "immunohistochemistry", "proteins", "electrolytes", "mRNAs", and "miRNAs" in the title, abstract, and keywords. This evaluation left 137 scientific papers. This review aimed to collect all the knowledge on vital wound demonstration and provide a temporal distribution of the methods currently available, in order to determine the age of lesions, thus helping forensic pathologists in finding a way through the tangled jungle of wound vitality evaluation.
Collapse
Affiliation(s)
- Aniello Maiese
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, Institute of Legal Medicine, University of Pisa, 56126 Pisa, Italy; (A.M.); (A.C.M.); (N.I.); (E.M.); (E.T.); (M.D.P.)
| | - Alice Chiara Manetti
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, Institute of Legal Medicine, University of Pisa, 56126 Pisa, Italy; (A.M.); (A.C.M.); (N.I.); (E.M.); (E.T.); (M.D.P.)
| | - Naomi Iacoponi
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, Institute of Legal Medicine, University of Pisa, 56126 Pisa, Italy; (A.M.); (A.C.M.); (N.I.); (E.M.); (E.T.); (M.D.P.)
| | - Eleonora Mezzetti
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, Institute of Legal Medicine, University of Pisa, 56126 Pisa, Italy; (A.M.); (A.C.M.); (N.I.); (E.M.); (E.T.); (M.D.P.)
| | - Emanuela Turillazzi
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, Institute of Legal Medicine, University of Pisa, 56126 Pisa, Italy; (A.M.); (A.C.M.); (N.I.); (E.M.); (E.T.); (M.D.P.)
| | - Marco Di Paolo
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, Institute of Legal Medicine, University of Pisa, 56126 Pisa, Italy; (A.M.); (A.C.M.); (N.I.); (E.M.); (E.T.); (M.D.P.)
| | - Raffaele La Russa
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy;
| | - Paola Frati
- Department of Anatomical, Histological, Forensic and Orthopedic Sciences, Institute of Legal Medicine, Sapienza University of Rome, Viale Regina Elena 336, 00161 Rome, Italy;
| | - Vittorio Fineschi
- Department of Anatomical, Histological, Forensic and Orthopedic Sciences, Institute of Legal Medicine, Sapienza University of Rome, Viale Regina Elena 336, 00161 Rome, Italy;
| |
Collapse
|
5
|
Novel insights into wound age estimation: combined with "up, no change, or down" system and cosine similarity in python environment. Int J Legal Med 2020; 134:2177-2186. [PMID: 32909067 DOI: 10.1007/s00414-020-02411-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 08/27/2020] [Indexed: 01/23/2023]
Abstract
Wound age estimation is a complex, multifactorial issue. It is considered to have great practical significance that combining multi-biomarkers and multi-methods for injury time estimation. We optimized our earlier "up, no change, or down" model by adding data on the expression levels of mRNAs encoding ABHD2, MAD2L2, and ARID5A, and we converted the relative quantitative expression levels of seven genes into a vector rather than a color model. We used Python to derive the cosine similarity (CS) between a test set and the vector matrix; the highest similarity most accurately reflected the injury time. For the optimized model, the internal and external verifications were approximately 0.71 and 0.66, respectively. The good double-blinded results indicated that the model was stable and reliable. In summary, we used a vector matrix and cosine similarities derived by Python to mine the levels of genes expressed in contused skeletal muscle. We are the first to combine several biomarkers and methods for wound age estimation.
Collapse
|
6
|
Comparative Evaluation of RNAlater Solution and Snap Frozen Methods for Gene Expression Studies in Different Tissues. REV ROMANA MED LAB 2020. [DOI: 10.2478/rrlm-2020-0024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Abstract
Introduction: Freezing of tissues with liquid nitrogen is the most common method in studies performed at the RNA level. However, the use of RNA stabilization solutions has become a popular alternative method. The aim of this study is to investigate the effectiveness of RNAlater on RNA stabilization in different tissues.
Material and Methods: In this study, RNA were isolated from the lung, heart, liver and skeletal muscle tissues of rats that were frozen with liquid nitrogen (snap frozen, SF group) or stored in RNAlater solution (RL group), and the changes in concentration, purity, reference genes expression, and fold-change levels between groups were analyzed.
Results: In the RL group, the concentration of RNA isolated from the liver tissues was higher (P<0.05), whereas the A260/280 ratio was lower in the heart and liver tissues (P<0.05). PPIA and SRP72 genes were found to have lower Ct values in the heart tissues of rats in the RL group (P<0.05 and P<0.001, respectively) than the SF group. Expression levels of PPIA, ACTB, and SRP72 genes across the tissues were found to be different between the groups (P<0.05). The gene expression level examined in terms of fold-change was significantly different in the RL group (upregulated up to 4 folds and downregulated about 0.5 fold) (P< 0.05).
Conclusions: The results showed that RNAlater can maintain the RNA integrity and can also change the results of gene expression because it does not inhibit biological activity. The snap freezing method is more reliable because gene expression is more stable in tissues frozen with liquid nitrogen.
Collapse
|
7
|
Herath S, Dai H, Erlich J, Au AYM, Taylor K, Succar L, Endre ZH. Selection and validation of reference genes for normalisation of gene expression in ischaemic and toxicological studies in kidney disease. PLoS One 2020; 15:e0233109. [PMID: 32437461 PMCID: PMC7241806 DOI: 10.1371/journal.pone.0233109] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 04/28/2020] [Indexed: 12/16/2022] Open
Abstract
Normalisation to standard reference gene(s) is essential for quantitative real-time polymerase chain reaction (RT-qPCR) to obtain reproducible and comparable results of a gene of interest (GOI) between subjects and under varying experimental conditions. There is limited evidence to support selection of the commonly used reference genes in rat ischaemic and toxicological kidney models. Employing these models, we determined the most stable reference genes by comparing 4 standard methods (NormFinder, qBase+, BestKeeper and comparative ΔCq) and developed a new 3-way linear mixed-effects model for evaluation of reference gene stability. This new technique utilises the intra-class correlation coefficient as the stability measure for multiple continuous and categorical covariates when determining the optimum normalisation factor. The model also determines confidence intervals for each candidate normalisation gene to facilitate selection and allow sample size calculation for designing experiments to identify reference genes. Of the 10 candidate reference genes tested, the geometric mean of polyadenylate-binding nuclear protein 1 (PABPN1) and beta-actin (ACTB) was the most stable reference combination. In contrast, commonly used ribosomal 18S and glyceraldehyde 3-phosphate dehydrogenase (GAPDH) were the most unstable. We compared the use of PABPN1×ACTB and 2 commonly used genes 18S and GAPDH on the expression of 4 genes of interest know to vary after renal injury and expressed by different kidney cell types (KIM-1, HIF1α, TGFβ1 and PECAM1). The less stable reference genes gave varying patterns of GOI expression in contrast to the use of the least unstable reference PABPN1×ACTB combination; this improved detection of differences in gene expression between experimental groups. Reduced within-group variation of the now more accurately normalised GOI may allow for reduced experimental group size particularly for comparison between various models. This objective selection of stable reference genes increased the reliability of comparisons within and between experimental groups.
Collapse
Affiliation(s)
- Sanjeeva Herath
- Prince of Wales Clinical School, University of New South Wales, Randwick, New South Wales, Australia
| | - Hongying Dai
- Department of Biostatistics, College of Public Health, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Jonathan Erlich
- Prince of Wales Clinical School, University of New South Wales, Randwick, New South Wales, Australia
- * E-mail:
| | - Amy YM Au
- Prince of Wales Clinical School, University of New South Wales, Randwick, New South Wales, Australia
- Department of Nephrology, Prince of Wales Hospital, Randwick, New South Wales, Australia
| | - Kylie Taylor
- Prince of Wales Clinical School, University of New South Wales, Randwick, New South Wales, Australia
| | - Lena Succar
- Prince of Wales Clinical School, University of New South Wales, Randwick, New South Wales, Australia
| | - Zoltán H. Endre
- Prince of Wales Clinical School, University of New South Wales, Randwick, New South Wales, Australia
- Department of Nephrology, Prince of Wales Hospital, Randwick, New South Wales, Australia
| |
Collapse
|
8
|
Life and death: A systematic comparison of antemortem and postmortem gene expression. Gene 2020; 731:144349. [PMID: 31935499 DOI: 10.1016/j.gene.2020.144349] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 01/06/2020] [Accepted: 01/07/2020] [Indexed: 12/30/2022]
Abstract
Gene expression is the process by which DNA is decoded to produce a functional transcript. The collection of all transcripts is referred to as the transcriptome and has extensively been used to evaluate differentially expressed genes in a certain cell or tissue type. In response to internal or external stimuli, the transcriptome is greatly regulated by epigenetic changes. Many studies have elucidated that antemortem gene expression (transcriptome) may be linked to an array of disease etiologies as well as potential targets for drug discovery; on the other hand, a number of studies have utilized postmortem gene expression (thanatotranscriptome) patterns to determine cause and time of death. The "transcriptome after death" involves the study of mRNA transcripts occurring in human tissues after death (thanatos, Greek for death). While antemortem gene expression can provide a wide range of important information about the host, the determination of the communication of genes after a human dies has recently been explored. After death a plethora of genes are regulated via activation versus repression as well as diverse regulatory factors such as the absence or presence of stimulated feedback. Even postmortem transcriptional regulation contains many more cellular constituents and is massively more complicated. The rates of degradation of mRNA transcripts vary depending on the types of postmortem tissues and their combinatorial gene expression signatures. mRNA molecules have been shown to persist for extended time frames; nevertheless, they are highly susceptible to degradation, with half-lives of selected mRNAs varying between minutes to weeks for specifically induced genes. Furthermore, postmortem genetic studies may be used to improve organ transplantation techniques. This review is the first of its kind to fully explore both gene expression and mRNA stability after death and the trove of information that can be provided about phenotypical characteristics of specific genes postmortem.
Collapse
|
9
|
Yang T, Gu B, Xu G, Shi Y, Shen H, Rao R, Mzuka HL. Identification of candidate reference genes for qRT-PCR normalization studies of salinity stress and injury in Onchidium reevesii. PeerJ 2019; 7:e6834. [PMID: 31086748 PMCID: PMC6487802 DOI: 10.7717/peerj.6834] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 03/22/2019] [Indexed: 11/20/2022] Open
Abstract
Real-time quantitative reverse transcription-PCR (qRT-PCR) is an undeniably effective tool for measuring levels of gene expression, but the accuracy and reliability of the statistical data obtained depend mainly on the basal expression of selected housekeeping genes in many samples. To date, there have been few analyses of stable housekeeping genes in Onchidium reevesii under salinity stress and injury. In this study, the gene expression stabilities of seven commonly used housekeeping genes, CYC, RPL28S, ACTB, TUBB, EF1a, Ubiq and 18S RNA, were investigated using BestKeeper, geNorm, NormFinder and RefFinfer. Although the results of the four programs varied to some extent, in general, RPL28S, TUBB, ACTB and EF1a were ranked highly. ACTB and TUBB were found to be the most stable housekeeping genes under salinity stress, and EF1a plus TUBB was the most stable combination under injury stress. When analysing target gene expression in different tissues, RPL28S or EF1a should be selected as the reference gene according to the level of target gene expression. Under extreme environmental stress (salinity) conditions, ACTB (0 ppt, 5 ppt, 15 ppt, 25 ppt) and TUBB (35 ppt) are reasonable reference gene choices when expression stability and abundance are considered. Under conditions of 15 ppt salinity and injury stress, our results showed that the best two-gene combination was TUBB plus EF1a. Therefore, we suggest that RPL28S, ACTB and TUBB are suitable reference genes for evaluating mRNA transcript levels. Based on candidate gene expression analysis, the tolerance of O. reevesii to low salinity (low osmotic pressure) is reduced compared to its tolerance to high salinity (high osmotic pressure). These findings will help researchers obtain accurate results in future quantitative gene expression analyses of O. reevesii under other stress conditions.
Collapse
Affiliation(s)
- Teizhu Yang
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai, China.,Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education, Shanghai, China.,Shanghai Universities Key Laboratory of Marine Animal Taxonomy and Evolution, Shanghai, China
| | - Bingning Gu
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai, China.,Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education, Shanghai, China.,Shanghai Universities Key Laboratory of Marine Animal Taxonomy and Evolution, Shanghai, China
| | - Guolyu Xu
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai, China.,Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education, Shanghai, China.,Shanghai Universities Key Laboratory of Marine Animal Taxonomy and Evolution, Shanghai, China
| | - Yanmei Shi
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai, China.,Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education, Shanghai, China.,Shanghai Universities Key Laboratory of Marine Animal Taxonomy and Evolution, Shanghai, China
| | - Heding Shen
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai, China.,Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education, Shanghai, China.,Shanghai Universities Key Laboratory of Marine Animal Taxonomy and Evolution, Shanghai, China
| | - Rongcheng Rao
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai, China.,Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education, Shanghai, China.,Shanghai Universities Key Laboratory of Marine Animal Taxonomy and Evolution, Shanghai, China
| | - Hellen Lucas Mzuka
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai, China.,Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education, Shanghai, China.,Shanghai Universities Key Laboratory of Marine Animal Taxonomy and Evolution, Shanghai, China
| |
Collapse
|
10
|
Temporal expression of wound healing-related genes inform wound age estimation in rats after a skeletal muscle contusion: a multivariate statistical model analysis. Int J Legal Med 2019; 134:273-282. [PMID: 30631906 DOI: 10.1007/s00414-018-01990-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 12/19/2018] [Indexed: 12/14/2022]
Abstract
Although many time-dependent parameters involved in wound healing have been exhaustively investigated, establishing an objective and reliable means for estimating wound age remains a challenge. In this study, 78 Sprague-Dawley rats were divided randomly into a control group and contusion groups at 4, 8, 12, 16, 20, 24, 28, 32, 36, 40, 44, and 48 h post-injury (n = 6 per group). The expression of 35 wound healing-related genes was explored in contused skeletal muscle by real-time polymerase chain reaction. Differences between the groups were assessed by partial least squares discriminant analysis (PLS-DA). The results show that the samples were classified into three groups by wound age (4-12, 16-24, and 28-48 h). A Fisher discriminant analysis model of 14 selected genes was constructed, and 94.9% cross-validated grouped cases were correctly classified. A PLS regression analysis using 14 genes showed reasonable internal predictive validity, with a root mean squared error of cross-validation of approximately 8 h. To examine whether the prediction models were capable of analyzing new (ungrouped) cases, an external validation was carried out using the expression data from an additional 30 rats. Approximately 76.7% of ungrouped cases were correctly classified, which was a lower proportion than that for cross-validation. Similarly, the prediction results of the PLS model showed lower relatively external predictive validity (root mean squared error of prediction = 11 h) than internal predictive validity. Although the prediction results were less accurate than expected, the gene expression modeling and multivariate analyses showed great potential for estimating injury time. These multivariate methods may be valuable when devising future wound time estimation strategies.
Collapse
|
11
|
Li N, Du Q, Bai R, Sun J. Vitality and wound-age estimation in forensic pathology: review and future prospects. Forensic Sci Res 2018; 5:15-24. [PMID: 32490306 PMCID: PMC7241561 DOI: 10.1080/20961790.2018.1445441] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 02/12/2018] [Indexed: 01/01/2023] Open
Abstract
Determining the age of a wound is challenging in forensic pathology, but it can contribute to the reconstruction of crime scenes and lead to arrest of suspects. Forensic scholars have tended to focus on evaluating wound vitality and determining the time elapsed since the wound was sustained. Recent progress in forensic techniques, particularly high-throughput analyses, has enabled evaluation of materials at the cellular and molecular levels, as well as simultaneous assessment of multiple markers. This paper provides an update on wound-age estimation in forensic pathology, summarizes the recent literature, and considers useful additional information provided by each marker. Finally, the future prospects for estimating wound age in forensic practise are discussed with the hope of providing something useful for further study.
Collapse
Affiliation(s)
- Na Li
- Department of Forensic Pathology, Shanxi Medical University, Taiyuan, China.,Key Laboratory of Forensic Science, Shanxi Medical University, Taiyuan, China
| | - Qiuxiang Du
- Department of Forensic Pathology, Shanxi Medical University, Taiyuan, China.,Key Laboratory of Forensic Science, Shanxi Medical University, Taiyuan, China
| | - Rufeng Bai
- Key Laboratory of Evidence Science, China University of Political Science and Law, Beijing, China.,Collaborative Innovation Centre of Judicial Civilization, Beijing, China
| | - Junhong Sun
- Department of Forensic Pathology, Shanxi Medical University, Taiyuan, China.,Key Laboratory of Forensic Science, Shanxi Medical University, Taiyuan, China
| |
Collapse
|
12
|
Chen X, Wang J, Yue W, Liu J, Wang C. Hepatopancreas transcriptome analysis of Chinese mitten crab (Eriocheir sinensis) with white hepatopancreas syndrome. FISH & SHELLFISH IMMUNOLOGY 2017; 70:302-307. [PMID: 28860074 DOI: 10.1016/j.fsi.2017.08.031] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 08/20/2017] [Accepted: 08/27/2017] [Indexed: 06/07/2023]
Abstract
White hepatopancreas is a syndrome that has recently emerged in aquaculture of Chinese mitten crab (Eriocheir sinensis). High lethality of the disease caused large economic loss, which drew considerable attention of fish farmers and scientific researchers. In this study, hepatopancreas reference transcriptome was de novo assembled and differential expression analysis was conducted between white hepatopancreas and normal (yellow) hepatopancreas of E. sinensis. A total of 90,687 transcripts were assembled, and 27,387 were annotated. Transcriptomic comparison revealed 69 differentially expressed genes between individuals featuring white hepatopancreas and yellow hepatopancreas. Genes associated with immune response and cell death, include thioredoxin-related transmembrane protein 1, hemocytin, methuselah-like 1, and E3 ubiquitin-protein ligase, and they were up-regulated, whereas titin and 5-formyltetrahydrofolate cyclo-ligase, which are genes related to cell proliferation, were down-regulated in E. sinensis with white hepatopancreas syndrome. Our study provides novel insights into genetic causes of formation and novel gene markers for detection of white hepatopancreas syndrome in aquaculture of E. sinensis.
Collapse
Affiliation(s)
- Xiaowen Chen
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai, 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China; Shanghai Engineering Research Center of Aquaculture, Shanghai, 201306, China
| | - Jun Wang
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai, 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China; Shanghai Engineering Research Center of Aquaculture, Shanghai, 201306, China
| | - Wucheng Yue
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai, 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China; Shanghai Engineering Research Center of Aquaculture, Shanghai, 201306, China
| | - Jinsheng Liu
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai, 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China; Shanghai Engineering Research Center of Aquaculture, Shanghai, 201306, China
| | - Chenghui Wang
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai, 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China; Shanghai Engineering Research Center of Aquaculture, Shanghai, 201306, China.
| |
Collapse
|
13
|
Liu L, Jiang G, Peng Z, Li Y, Li J, Zou L, He Z, Wang X, Chu W. The effect of high fat diet on daily rhythm of the core clock genes and muscle functional genes in the skeletal muscle of Chinese soft-shelled turtle ( Trionyx sinensis ). Comp Biochem Physiol B Biochem Mol Biol 2017; 213:17-27. [DOI: 10.1016/j.cbpb.2017.07.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 03/07/2017] [Accepted: 07/11/2017] [Indexed: 01/08/2023]
|
14
|
Jang S, Lim J, Lee O. Phase-contrast hard X-ray microscopy using synchrotron radiation for the properties of skeletal muscle in mouse hind limbs. Microsc Res Tech 2017; 80:1221-1228. [DOI: 10.1002/jemt.22920] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 06/06/2017] [Accepted: 07/29/2017] [Indexed: 12/24/2022]
Affiliation(s)
- Sanghun Jang
- Department of Physical Therapy, College of Nursing and Health Science; Gimcheon University; 214, Daehak-ro, Gimcheon City Gyeongbuk 39528 South Korea
| | - Jaehong Lim
- Pohang Accelerator Laboratory; Industrial Technology Convergence Center; POSTECH, 80, Jigokro-127-beongil, Nam-Gu, Pohang Gyeongbuk 37673 South Korea
| | - Onseok Lee
- Department of Medical IT Engineering, College of Medical Sciences; Soonchunhyang University; 22, Soonchunhyang-ro, Asan City Chungnam 31538 South Korea
| |
Collapse
|
15
|
Gholami K, Loh SY, Salleh N, Lam SK, Hoe SZ. Selection of suitable endogenous reference genes for qPCR in kidney and hypothalamus of rats under testosterone influence. PLoS One 2017; 12:e0176368. [PMID: 28591185 PMCID: PMC5462341 DOI: 10.1371/journal.pone.0176368] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2016] [Accepted: 04/10/2017] [Indexed: 12/21/2022] Open
Abstract
Real-time quantitative PCR (qPCR) is the most reliable and accurate technique for analyses of gene expression. Endogenous reference genes are being used to normalize qPCR data even though their expression may vary under different conditions and in different tissues. Nonetheless, verification of expression of reference genes in selected studied tissue is essential in order to accurately assess the level of expression of target genes of interest. Therefore, in this study, we attempted to examine six commonly used reference genes in order to identify the gene being expressed most constantly under the influence of testosterone in the kidneys and hypothalamus. The reference genes include glyceraldehyde-3-phosphate dehydrogenase (GAPDH), actin beta (ACTB), beta-2 microglobulin (B2m), hypoxanthine phosphoribosyltransferase 1 (HPRT), peptidylprolylisomerase A (Ppia) and hydroxymethylbilane synthase (Hmbs). The cycle threshold (Ct) value for each gene was determined and data obtained were analyzed using the software programs NormFinder, geNorm, BestKeeper, and rank aggregation. Results showed that Hmbs and Ppia genes were the most stably expressed in the hypothalamus. Meanwhile, in kidneys, Hmbs and GAPDH appeared to be the most constant genes. In conclusion, variations in expression levels of reference genes occur in kidneys and hypothalamus under similar conditions; thus, it is important to verify reference gene levels in these tissues prior to commencing any studies.
Collapse
Affiliation(s)
- Khadijeh Gholami
- Division of Human Biology, School of Medicine, International Medical University, Kuala Lumpur, Malaysia
- * E-mail:
| | - Su Yi Loh
- Division of Human Biology, School of Medicine, International Medical University, Kuala Lumpur, Malaysia
| | - Naguib Salleh
- Department of Physiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Sau Kuen Lam
- Department of Physiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - See Ziau Hoe
- Department of Physiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
16
|
Sun JH, Zhu XY, Li SQ, Dong TN, Du QX. Measuring temporal expression, systematic response, and post-mortem stability to assess potential markers for estimating wound age: an example of Fosl1 in contused skeletal muscle. AUST J FORENSIC SCI 2017. [DOI: 10.1080/00450618.2017.1334824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Jun-hong Sun
- Department of Forensic Pathology, Shanxi Medical University, Taiyuan, People’s Republic of China
| | - Xi-yan Zhu
- Department of Forensic Pathology, Shanxi Medical University, Taiyuan, People’s Republic of China
- Chongqing Key Laboratory of Vehicle Crash/Bio-impact and Traffic Safety, Department 4, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, People’s Republic of China
| | - San-qiang Li
- Department of Forensic Pathology, Shanxi Medical University, Taiyuan, People’s Republic of China
| | - Ta-na Dong
- Department of Forensic Pathology, Shanxi Medical University, Taiyuan, People’s Republic of China
| | - Qiu-xiang Du
- Department of Forensic Pathology, Shanxi Medical University, Taiyuan, People’s Republic of China
| |
Collapse
|
17
|
Sun JH, Zhu XY, Dong TN, Zhang XH, Liu QQ, Li SQ, Du QX. An “up, no change, or down” system: Time-dependent expression of mRNAs in contused skeletal muscle of rats used for wound age estimation. Forensic Sci Int 2017; 272:104-110. [DOI: 10.1016/j.forsciint.2017.01.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2016] [Revised: 01/02/2017] [Accepted: 01/09/2017] [Indexed: 12/18/2022]
|
18
|
Wu P, Li YL, Cheng J, Chen L, Zhu X, Feng ZG, Zhang JS, Chu WY. Daily rhythmicity of clock gene transcript levels in fast and slow muscle fibers from Chinese perch (Siniperca chuatsi). BMC Genomics 2016; 17:1008. [PMID: 27931190 PMCID: PMC5146901 DOI: 10.1186/s12864-016-3373-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 12/02/2016] [Indexed: 12/11/2022] Open
Abstract
Background Clock genes are considered to be the molecular core of biological clock in vertebrates and they are directly involved in the regulation of daily rhythms in vertebrate tissues such as skeletal muscles. Fish myotomes are composed of anatomically segregated fast and slow muscle fibers that possess different metabolic and contractile properties. To date, there is no report on the characterization of the circadian clock system components of slow muscles in fish. Results In the present study, the molecular clock components (clock, arntl1/2, cry1/2/3, cry-dash, npas2, nr1d1/2, per1/2/3, rorα and tim genes) and their daily transcription levels were characterized in slow and fast muscles of Chinese perch (Siniperca chuatsi). Among the 15 clock genes, nrld2 and per3 had no daily rhythmicity in slow muscles, and cry2/3 and tim displayed no daily rhythmicity in fast muscles of the adult fish. In the slow muscles, the highest expression of the most clock paralogs occurred at the dark period except arntl1, nr1d1, nr1d2 and tim. With the exception of nr1d2 and tim, the other clock genes had an acrophase at the light period in fast muscles. The circadian expression of the myogenic regulatory factors (mrf4 and myf5), mstn and pnca showed either a positive or a negative correlation with the transcription pattern of the clock genes in both types of muscles. Conclusions It was the first report to unravel the molecular clock components of the slow and fast muscles in vertebrates. The expressional pattern differences of the clock genes between the two types of muscle fibers suggest that the clock system may play key roles on muscle type-specific tissue maintenance and function. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-3373-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ping Wu
- Department of Bioengineering and Environmental Science, Changsha University, Changsha, Hunan, 410003, China
| | - Yu-Long Li
- Department of Bioengineering and Environmental Science, Changsha University, Changsha, Hunan, 410003, China
| | - Jia Cheng
- Department of Bioengineering and Environmental Science, Changsha University, Changsha, Hunan, 410003, China
| | - Lin Chen
- Department of Bioengineering and Environmental Science, Changsha University, Changsha, Hunan, 410003, China
| | - Xin Zhu
- Department of Bioengineering and Environmental Science, Changsha University, Changsha, Hunan, 410003, China
| | - Zhi-Guo Feng
- College of Life Sciences, Xinyang Normal University, Xinyang, Henan, 464000, China
| | - Jian-She Zhang
- Department of Bioengineering and Environmental Science, Changsha University, Changsha, Hunan, 410003, China. .,Collaborative Innovation Center for Efficient and Health Production of Fisheries in Hunan Province, Changde, 415000, China.
| | - Wu-Ying Chu
- Department of Bioengineering and Environmental Science, Changsha University, Changsha, Hunan, 410003, China. .,Collaborative Innovation Center for Efficient and Health Production of Fisheries in Hunan Province, Changde, 415000, China.
| |
Collapse
|
19
|
Peng X, McCormick DL. Identification of reliable reference genes for quantitative gene expression studies in oral squamous cell carcinomas compared to adjacent normal tissues in the F344 rat model. Oncol Rep 2016; 36:1076-84. [PMID: 27375172 DOI: 10.3892/or.2016.4883] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 03/28/2016] [Indexed: 11/06/2022] Open
Abstract
Oral squamous cell carcinomas (OSCCs) induced in F344 rats by 4-nitroquinoline-1-oxide (4-NQO) demonstrate considerable phenotypic similarity to human oral cancers and the model has been widely used for carcinogenesis and chemoprevention studies. Molecular characterization of this model needs reliable reference genes (RGs) to avoid false- positive and -negative results for proper interpretation of gene expression data between tumor and adjacent normal tissues. Microarray analysis of 11 pairs of OSCC and site-matched phenotypically normal oral tissues from 4-NQO-treated rats identified 10 stably expressed genes in OSCC compared to adjacent normal tissues (p>0.5, CV<15%) that could serve as potential RGs in this model. The commonly used 27 RGs in the rat were also analyzed based on microarray data and most of them were found unsuitable for RGs in this model. Traditional RGs such as ACTB and GAPDH were significantly altered in OSCC compared to adjacent normal tissues (p<0.01, n=11); however, the Hsp90ab1 was ranked as the best RG candidate and the combination of Hsp90ab1 and HPRT1 was identified by NormFinder to be a superior reference for gene normalization among the commonly used RGs. This result was also validated by RT-PCR based on the selected top RG candidate pool. These data suggest that there are no common RGs suitable for different models and RG(s) should be identified before gene expression analysis. We successfully identified Hsp90ab1 as a stable RG in 4-NQO-induced OSCC compared to adjacent normal tissues in F344 rats. The combination of two stably expressed genes may be a better option for gene normalization in tissue samples.
Collapse
Affiliation(s)
- Xinjian Peng
- Life Sciences Group, IIT Research Institute, Chicago, IL 60616, USA
| | | |
Collapse
|
20
|
Reference genes for valid gene expression studies on rat dental, periodontal and alveolar bone tissue by means of RT-qPCR with a focus on orthodontic tooth movement and periodontitis. Ann Anat 2015; 204:93-105. [PMID: 26689124 DOI: 10.1016/j.aanat.2015.11.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 10/02/2015] [Accepted: 11/02/2015] [Indexed: 12/11/2022]
Abstract
OBJECTIVES To obtain valid results in relative gene/mRNA-expression analyses by RT-qPCR, a careful selection of stable reference genes is required for normalization. Currently there is little information on reference gene stability in dental, periodontal and alveolar bone tissues of the rat, especially regarding orthodontic tooth movement and periodontitis. We therefore aimed to identify the best selection and number of reference genes under these experimental as well as physiological conditions. MATERIALS AND METHODS In 7 male Fischer344-rats the upper left first and second molars were moved orthodontically for 2 weeks and in 7 more animals additionally subjected to an experimental periodontitis, whereas 7 animals were left untreated. Tissue samples of defined size containing both molars (without crowns) as well as the adjacent periodontal and alveolar bone tissue were retrieved and RNA extracted for RT-qPCR analyses. Nine candidate reference genes were evaluated and ranked according to their expression stability by 4 different algorithms (geNorm, NormFinder, BestKeeper, comparative ΔCq). RESULTS PPIB/YWHAZ were the most stabile reference genes for the combined dental, periodontal and alveolar bone tissue of the rat overall, in untreated animals and rats with additional periodontitis, whereas PPIB/B2M performed best in orthodontically treated rats with YWHAZ ranking third. Gene-stability ranking differed considerably between investigated groups. A combination of two reference genes was found to be sufficient for normalization in all cases. CONCLUSIONS The substantial differences in expression stability emphasize the need for valid reference genes, when aiming for meaningful results in relative gene expression analyses. Our results should enable researchers to optimize gene expression analysis in future studies by choosing the most suitable reference genes for normalization.
Collapse
|
21
|
Grabmüller M, Madea B, Courts C. Comparative evaluation of different extraction and quantification methods for forensic RNA analysis. Forensic Sci Int Genet 2015; 16:195-202. [DOI: 10.1016/j.fsigen.2015.01.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Revised: 11/20/2014] [Accepted: 01/15/2015] [Indexed: 12/31/2022]
|
22
|
Immunohistochemical detection of intrathrombotic IL-6 and its application to thrombus age estimation. Int J Legal Med 2015; 129:1021-5. [DOI: 10.1007/s00414-015-1147-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Accepted: 01/12/2015] [Indexed: 10/24/2022]
|
23
|
Hu Q, Guo W, Gao Y, Tang R, Li D. Reference gene selection for real-time RT-PCR normalization in rice field eel (Monopterus albus) during gonad development. FISH PHYSIOLOGY AND BIOCHEMISTRY 2014; 40:1721-1730. [PMID: 25079246 DOI: 10.1007/s10695-014-9962-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2014] [Accepted: 07/14/2014] [Indexed: 06/03/2023]
Abstract
Real-time reverse transcriptase (RT) polymerase chain reaction (PCR) requires data normalization using an appropriate reference gene in order to obtain more reliable results with biological significance. We cloned a partial sequence of elongation factor-1-α (EF1α) and ribosomal protein L17 (RPL17) from Monopterus albus. We investigated the suitability of five commonly used reference genes [18S ribosomal RNA (18S), cytoskeletal protein (β-actin), glyceraldehyde phosphate dehydrogenase (GAPDH), EF1α and RPL17] as potential quantitative reference genes for normalizing real-time RT-PCR data generated in gonads of different developmental stages and in other tissues of M. albus. Analysis of the data indicated that 18S, β-actin and GAPDH are not suitable as reference genes because of their levels of variations of expression. EF1α and RPL17 might be suitable as reference genes in the gonads of different developmental stages as well as in other tissues of M. albus.
Collapse
Affiliation(s)
- Qing Hu
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
| | | | | | | | | |
Collapse
|
24
|
Forensische Molekularpathologie. Rechtsmedizin (Berl) 2014. [DOI: 10.1007/s00194-014-0975-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
25
|
Du QX, Sun JH, Zhang LY, Liang XH, Guo XJ, Gao CR, Wang YY. Time-dependent expression of SNAT2 mRNA in the contused skeletal muscle of rats: a possible marker for wound age estimation. Forensic Sci Med Pathol 2013; 9:528-33. [PMID: 24045877 DOI: 10.1007/s12024-013-9482-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/13/2013] [Indexed: 02/05/2023]
Abstract
To estimate the age of skeletal muscle contusion, the expression of SNAT2 mRNA in contused skeletal muscle of rats was detected by real-time polymerase chain reaction (PCR). In total, 78 Sprague-Dawley male rats were divided into control and contusion groups. At 4, 8, 12, 16, 20, 24, 28, 32, 36, 40, 44, and 48 h (n = 6) after contusion, the rats were sacrificed with a lethal dose of pentobarbital. Another 24 rats received contusion injuries at 6, 12, 18, and 24 h (n = 6) after death. Total RNA was isolated from muscle specimens using the TRIzol reagent and reverse-transcribed into first-strand cDNA. Sequence-specific primers and TaqMan fluorogenic probes for SNAT2 mRNA and RPL13 mRNA were designed using the AlleleID 6 software, and the expression levels of SNAT2 mRNA were determined by real-time PCR. At 4, 16, 20, and 24 h after contusion, expression levels of SNAT2 mRNA normalized to RPL13 mRNA increased by 2.07 (P < 0.05), 2.53 (P < 0.05), 2.68 (P < 0.05), and 2.06 fold (P < 0.05) respectively, versus that in the control group. However, there was no significant change in the expression level of SNAT2 mRNA from 24 to 48 h (P > 0.05) after contusion, when normalized to RPL13 mRNA. There was no change in the expression level of SNAT2 mRNA between the normal skeletal muscle from the left limb of the same injured rat and the control. Also, no degradation of SNAT2 mRNA was detected in the postmortem samples (P > 0.05). This result suggests that the determination of SNAT2 mRNA levels by real-time PCR may be useful for estimating wound age.
Collapse
Affiliation(s)
- Qiu-xiang Du
- Department of Forensic Pathology, Shanxi Medical University, 56 South Xinjian Nan Road, Taiyuan, 030001, Shanxi, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
26
|
González-Herrera L, Valenzuela A, Marchal JA, Lorente JA, Villanueva E. Studies on RNA integrity and gene expression in human myocardial tissue, pericardial fluid and blood, and its postmortem stability. Forensic Sci Int 2013; 232:218-28. [PMID: 24053884 DOI: 10.1016/j.forsciint.2013.08.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Revised: 06/24/2013] [Accepted: 08/03/2013] [Indexed: 11/30/2022]
Abstract
Analyses of gene expression of ischemic myocardial injury and repair related proteins has been carried out for the first time in samples from five specific sites of the myocardium, pericardial fluid and blood from thirty cadavers in relation to post-mortem interval (PMI). RNA integrity was evaluated by RNA integrity number (RIN), with values ranging from 6.57 to 8.11; sufficiently high levels of integrity to permit further gene amplification. No significant correlations between RIN and PMI in any samples were detected. Prior to target gene expression analysis, a normalization strategy was carried out to assess candidate reference gene stability, involving the analysis and comparison of four common housekeeping genes (Glyceraldehide-3-phosphate dehydrogenase, beta-actin, TATA box binding protein and Cyclophilin A). Gene expression of cardiac troponin I (TNNI3), myosin light chain 3 (MYL3), matrix metalloprotease 9 (MMP9), transforming growth factor beta 1 (TGFB1), and vascular endothelial growth factor A (VEGFA) in myocardial zones and body fluids were subsequently studied by real-time quantitative PCR. Expression levels of all the proteins studied in cardiac zone samples were similar. No statistical differences for expression were detected among proteins taken from any myocardial area. No significant differences were detected for TNNI3 and TGFB1 gene expressions when compared with samples at or under 12h-PMI or over 12h-PMI. However, differences in MYL3, MMP9, and VEGFA gene expression in body fluids were found at PMI periods of over 12h. These interesting results may contribute to the refinement of current knowledge regarding cardiac metabolism and improve understanding of the underlying mechanisms involved in myocardium ischemia and its repair.
Collapse
Affiliation(s)
- Lucas González-Herrera
- Department of Forensic Medicine, Faculty of Medicine, University of Granada, Av. de Madrid 11, 18071 Granada, Spain.
| | | | | | | | | |
Collapse
|
27
|
Immunohistochemical detection of intrathrombotic macrophage-derived cytokines and its application to thrombus age estimation in murine deep vein thrombosis model. Int J Legal Med 2013; 127:937-42. [DOI: 10.1007/s00414-013-0873-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Accepted: 05/13/2013] [Indexed: 01/08/2023]
|
28
|
Molecular pathology of brain edema after severe burns in forensic autopsy cases with special regard to the importance of reference gene selection. Int J Legal Med 2013; 127:881-9. [DOI: 10.1007/s00414-013-0868-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Accepted: 04/26/2013] [Indexed: 12/13/2022]
|
29
|
Validation study of endogenous reference genes for normalization of quantitative real time PCR data in post mortem skin tissue. FORENSIC SCIENCE INTERNATIONAL GENETICS SUPPLEMENT SERIES 2013. [DOI: 10.1016/j.fsigss.2013.10.081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
30
|
Sun Y, Li Y, Luo D, Liao DJ. Pseudogenes as weaknesses of ACTB (Actb) and GAPDH (Gapdh) used as reference genes in reverse transcription and polymerase chain reactions. PLoS One 2012; 7:e41659. [PMID: 22927912 PMCID: PMC3425558 DOI: 10.1371/journal.pone.0041659] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2012] [Accepted: 06/25/2012] [Indexed: 01/19/2023] Open
Abstract
The genes encoding β-actin (ACTB in human or Actb in mouse) and glyceraldehyde-3-phosphate dehydrogenase (GAPDH in human or Gapdh in mouse) are the two most commonly used references for sample normalization in determination of the mRNA level of interested genes by reverse transcription (RT) and ensuing polymerase chain reactions (PCR). In this study, bioinformatic analyses revealed that the ACTB, Actb, GAPDH and Gapdh had 64, 69, 67 and 197 pseudogenes (PGs), respectively, in the corresponding genome. Most of these PGs are intronless and similar in size to the authentic mRNA. Alignment of several PGs of these genes with the corresponding mRNA reveals that they are highly homologous. In contrast, the hypoxanthine phosphoribosyltransferase-1 gene (HPRT1 in human or Hprt in mouse) only had 3 or 1 PG, respectively, and the mRNA has unique regions for primer design. PCR with cDNA or genomic DNA (gDNA) as templates revealed that our HPRT1, Hprt and GAPDH primers were specific, whereas our ACTB and Actb primers were not specific enough both vertically (within the cDNA) and horizontally (compared cDNA with gDNA). No primers could be designed for the Gapdh that would not mis-prime PGs. Since most of the genome is transcribed, we suggest to peers to forgo ACTB (Actb) and GAPDH (Dapdh) as references in RT-PCR and, if there is no surrogate, to use our primers with extra caution. We also propose a standard operation procedure in which design of primers for RT-PCR starts from avoiding mis-priming PGs and all primers need be tested for specificity with both cDNA and gDNA.
Collapse
Affiliation(s)
- Yuan Sun
- Hormel Institute, University of Minnesota, Austin, Minnesota, United States of America
- Department of Pathology, Guangxi Medical University, Nanning, Guangxi, People's Republic of China
| | - Yan Li
- Hormel Institute, University of Minnesota, Austin, Minnesota, United States of America
| | - Dianzhong Luo
- Department of Pathology, Guangxi Medical University, Nanning, Guangxi, People's Republic of China
- * E-mail: (DZL); (DJL)
| | - D. Joshua Liao
- Hormel Institute, University of Minnesota, Austin, Minnesota, United States of America
- * E-mail: (DZL); (DJL)
| |
Collapse
|
31
|
Cao S, Zhang X, Ye N, Fan X, Mou S, Xu D, Liang C, Wang Y, Wang W. Evaluation of putative internal reference genes for gene expression normalization in Nannochloropsis sp. by quantitative real-time RT-PCR. Biochem Biophys Res Commun 2012; 424:118-23. [PMID: 22732401 DOI: 10.1016/j.bbrc.2012.06.086] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Accepted: 06/18/2012] [Indexed: 12/21/2022]
Abstract
Quantitative real-time reverse transcription PCR (RT-qPCR), a sensitive technique for quantifying gene expression, depends on the stability of the reference gene(s) used for data normalization. To date, few studies on reference genes have been undertaken for Nannochloropsis sp. In this study, 12 potential reference genes were evaluated for their expression stability using the geNorm and NormFinder statistical algorithms by RT-qPCR. The results showed that the best reference genes differed depending on the treatments: different light intensities (DL), the diurnal cycle (DC), high light intensity (HL) and low temperature treatments (LT). A combination of ACT1, ACT2 and TUA would be appropriate as a reference panel for normalizing gene expression data across all the treatments. ACT2 showed the most stable expression across all tested samples but was not the most stable one for individual treatments. Though 18S showed the least stable expression considering all tested samples, it is the most stable one for LT using geNorm. The expression of Lhc confirmed that the appropriate reference genes are crucial. These results provide a foundation for more accurate use of RT-qPCR under different experimental conditions in Nannochloropsis sp. gene analysis.
Collapse
Affiliation(s)
- Shaona Cao
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | | | | | | | | | | | | | | | | |
Collapse
|