1
|
Nicotine rebalances NAD + homeostasis and improves aging-related symptoms in male mice by enhancing NAMPT activity. Nat Commun 2023; 14:900. [PMID: 36797299 PMCID: PMC9935903 DOI: 10.1038/s41467-023-36543-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 02/06/2023] [Indexed: 02/18/2023] Open
Abstract
Imbalances in NAD+ homeostasis have been linked to aging and various diseases. Nicotine, a metabolite of the NAD+ metabolic pathway, has been found to possess anti-inflammatory and neuroprotective properties, yet the underlying molecular mechanisms remained unknown. Here we find that, independent of nicotinic acetylcholine receptors, low-dose nicotine can restore the age-related decline of NAMPT activity through SIRT1 binding and subsequent deacetylation of NAMPT, thus increasing NAD+ synthesis. 18F-FDG PET imaging revealed that nicotine is also capable of efficiently inhibiting glucose hypermetabolism in aging male mice. Additionally, nicotine ameliorated cellular energy metabolism disorders and deferred age-related deterioration and cognitive decline by stimulating neurogenesis, inhibiting neuroinflammation, and protecting organs from oxidative stress and telomere shortening. Collectively, these findings provide evidence for a mechanism by which low-dose nicotine can activate NAD+ salvage pathways and improve age-related symptoms.
Collapse
|
2
|
Jin S, Pang W, Zhao L, Zhao Z, Mei S. Review of HPLC-MS methods for the analysis of nicotine and its active metabolite cotinine in various biological matrices. Biomed Chromatogr 2022; 36:e5351. [PMID: 35106788 DOI: 10.1002/bmc.5351] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 11/23/2021] [Accepted: 12/20/2021] [Indexed: 11/11/2022]
Abstract
In recent years, tobacco smoking is a risk factor for a series of diseases including cardiovascular diseases, cerebrovascular diseases, and cancers. Nicotine, the primary component of tobacco smoke, is mainly transformed to its active metabolite cotinine, which is often used as biomarker for tobacco exposure for its higher blood concentration and longer residence time than nicotine. Various analytical methods have been developed for the determination of nicotine and cotinine in biological matrices. This article reviewed the HPLC-MS based methods for nicotine and/or cotinine analysis in various biological matrices. The sample preparation, mass and chromatographic conditions and method validation results of these methods have been summarized and analyzed. Sample was mainly pretreated by protein precipitation and/or extraction. Separation was achieved using methanol and/or acetonitrile:water (with or without ammonium acetate) on C18 columns, and acetonitrile:water (with formic acid, ammonium acetate/formate) on HILIC columns. Nicotine-d3, nicotine-d4 and cotinine-d3 were commonly used internal standards. Other non-deuterated IS were also used such as ritonavir, N-ethylnorcotinine, and milrinone. For both nicotine and cotinine, the calibration range was 0.005-35000 ng/mL, the matrix effect was 75.96% - 126.8% and the recovery was 53% - 124.5%. The two analytes were stable at room temperature for 1-10 days, at -80 °C for up to 6 months, and after 3-6 freeze-thaw cycles. Comedications did not affect nicotine and cotinine analysis.
Collapse
Affiliation(s)
- Siyao Jin
- Clinical Research Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, P. R. China.,Department of Clinical Pharmacology, College of Pharmaceutical Sciences, Capital Medical University, Beijing, P. R. China
| | - Wenyuan Pang
- Department of Clinical Pharmacology, College of Pharmaceutical Sciences, Capital Medical University, Beijing, P. R. China.,Department of Pharmacy, Beijing Tiantan Hospital, Capital Medical University, Beijing, P. R. China
| | - Libo Zhao
- Clinical Research Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, P. R. China.,Department of Clinical Pharmacology, College of Pharmaceutical Sciences, Capital Medical University, Beijing, P. R. China
| | - Zhigang Zhao
- Department of Clinical Pharmacology, College of Pharmaceutical Sciences, Capital Medical University, Beijing, P. R. China
| | - Shenghui Mei
- Department of Clinical Pharmacology, College of Pharmaceutical Sciences, Capital Medical University, Beijing, P. R. China
| |
Collapse
|
3
|
Aral T, Önal G, Keskin E, Levent A. Firstly Electrochemical Examination of Myosmine at Glassy Carbon Electrode: Sensitive Determination in Tobacco Leaves by Differential Pulse Voltammetry. ELECTROANAL 2021. [DOI: 10.1002/elan.202100272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Tarık Aral
- Department of Chemistry Faculty of Arts and Sciences Batman University Batman Turkey
| | - Günay Önal
- Department of Medical Services and Techniques Health Services Vocational School Batman University Batman Turkey
| | - Ertuğrul Keskin
- Adıyaman University Faculty of Pharmacy Department of Analytical Chemistry Adıyaman Turkey
| | - Abdulkadir Levent
- Department of Chemistry Faculty of Arts and Sciences Batman University Batman Turkey
| |
Collapse
|
4
|
Aral T, Önal G, Keskin E, Levent A. Firstly Electrochemical Examination of Myosmine at Glassy Carbon Electrode: Sensitive Determination in Tobacco Leaves by Differential Pulse Voltammetry. ELECTROANAL 2021; 33:2392-2399. [DOI: https:/doi.org/10.1002/elan.202100272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 08/12/2021] [Indexed: 07/01/2024]
Abstract
AbstractIn this study, the electrochemical properties of myosmine, one of the tobacco alkaloids, were investigated for the first time using cyclic voltammetry (CV) and differential pulse voltammetry (DPV) techniques on glassy carbon electrode (GCE). Using GCE with CV technique, it gave an irreversible reduction peak with diffusion control at about −1.38 V in Britton‐Robinson (BR, pH 12.0) medium. A good linear relationship between concentration and current in the range of 0.5 μM–3.5 μM in BR (pH 12.0) medium on GCE with DPV technique [Ip(μA)=0.847 C(μM)+0.114, r=0.995, n=7] has been observed. The proposed method has been successfully applied to tobacco leaves.
Collapse
Affiliation(s)
- Tarık Aral
- Department of Chemistry Faculty of Arts and Sciences Batman University Batman Turkey
| | - Günay Önal
- Department of Medical Services and Techniques Health Services Vocational School Batman University Batman Turkey
| | - Ertuğrul Keskin
- Adıyaman University Faculty of Pharmacy Department of Analytical Chemistry Adıyaman Turkey
| | - Abdulkadir Levent
- Department of Chemistry Faculty of Arts and Sciences Batman University Batman Turkey
| |
Collapse
|
5
|
Habibagahi A, Siddique S, Harris SA, Alderman N, Aranda-Rodriguez R, Farhat I, Chevrier J, Kubwabo C. Challenges associated with quantification of selected urinary biomarkers of exposure to tobacco products. J Chromatogr B Analyt Technol Biomed Life Sci 2021; 1162:122490. [PMID: 33360416 DOI: 10.1016/j.jchromb.2020.122490] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 12/02/2020] [Accepted: 12/03/2020] [Indexed: 11/28/2022]
Abstract
Tobacco use, of which cigarette smoking is the most common, is a global health concern and is directly linked to over 7 million premature deaths annually. Measurement of the levels of tobacco-related biomarkers in biological matrices reflects human exposure to the chemicals in tobacco products. Nicotine, nicotine metabolites, anatabine, and anabasine are specific to tobacco and nicotine containing products. However, as nicotine and its metabolites are ubiquitous in the environment, background contamination during sample preparation can occur, making the quantification of target analytes challenging. The main purpose of the present study was to examine quality control measures needed in the determination of urinary nicotine, nicotine metabolites, anatabine, and anabasine. Urine samples (n = 75) and NIST standard reference materials SRM 3671 and SRM 3672 were analysed. A one-step extraction procedure using cold acetone was used in this study, which involved no additional clean up. The blank matrices investigated included synthetic urine prepared with HPLC-grade water, synthetic urine prepared with Milli-Q water, and bovine urine. By adopting strategies for minimizing the background levels, very low detection limits for all the target analytes ranging from 0.025 ng/mL for 3-hydroxycotinine to 0.634 ng/mL for nicotine, were achieved. Recoveries ranged between 67% and 118% with RSD values below 20%. Intra-day and inter-day precisions were in the range of 1.1-11.7% and 4.8-25.2%, respectively. The levels of all target analytes were higher in daily smokers than in non-smokers, with the largest difference observed for 3-hydroxycotinine. No difference was observed in the levels of target analytes between individuals who were former smokers, who never smoked or who were exposed to environmental tobacco smoke (ETS), except for total nicotine equivalents (TNE), which was significantly higher in non-smokers exposed to environmental tobacco smoke compared with study participants who never smoked. The results obtained from SRM 3671 and SRM 3672 could inform a potential certification of additional biomarkers of exposure to tobacco products in those standard reference materials.
Collapse
Affiliation(s)
- Arezoo Habibagahi
- Exposure and Biomonitoring Division, Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, Canada
| | - Shabana Siddique
- Exposure and Biomonitoring Division, Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, Canada
| | - Shelley A Harris
- Department of Epidemiology & Department of Occupational and Environmental Health, Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
| | - Nicholas Alderman
- Exposure and Biomonitoring Division, Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, Canada; Present address: Analysis and Air Quality Division, Environment and Climate Change Canada, Ottawa, ON, Canada
| | - Rocio Aranda-Rodriguez
- Exposure and Biomonitoring Division, Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, Canada
| | - Imen Farhat
- Department of Epidemiology, Biostatistics and Occupational Health, Faculty of Medicine, McGill University, Montreal, QC, Canada
| | - Jonathan Chevrier
- Department of Epidemiology, Biostatistics and Occupational Health, Faculty of Medicine, McGill University, Montreal, QC, Canada
| | - Cariton Kubwabo
- Exposure and Biomonitoring Division, Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, Canada.
| |
Collapse
|
6
|
Abu-Awwad A, Arafat T, Schmitz OJ. Simultaneous determination of nicotine, cotinine, and nicotine N-oxide in human plasma, semen, and sperm by LC-Orbitrap MS. Anal Bioanal Chem 2016; 408:6473-81. [PMID: 27422648 DOI: 10.1007/s00216-016-9766-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 06/22/2016] [Accepted: 07/04/2016] [Indexed: 02/07/2023]
Abstract
Nicotine (Nic) distribution in human fluids and tissues has a deleterious effect on human health. In addition to its poisoning profile, Nic may contribute to the particular impact of smoking on human reproduction. Although present in seminal fluid, still nobody knows whether nicotine is available in sperm or not. Herein, we developed and validated a new bioanalytical method, for simultaneous determination of Nic, cotinine (Cot), and nicotine N'-oxide (Nox) in human plasma, semen, and sperm by LC-ESI-orbitrap-MS. Blood and semen samples were collected from 12 healthy smoking volunteers in this study. Sperm bodies were then separated quantitatively from 1 mL of semen samples by centrifugation. The developed method was fully validated for plasma following European and American guidelines for bioanalytical method validation, and partial validation was applied to semen analysis. Plasma, semen, and sperm samples were treated by trichloroacetic acid solution for protein direct precipitation in single extraction step. The established calibration range for Nic and Nox in plasma and semen was linear between 5 and 250 ng/mL, and for Cot between 10 and 500 ng/mL. Nic and Cot were detected in human sperm at concentrations as high as in plasma. In addition, Nox was present in semen and sperm but not in plasma. Graphical abstract Nicotine correlation between plasma and semen a; Nicotine correlation between semen and sperm c; Cotinine correlation between plasma and semen b; Cotinine correlation between semen and sperm d.
Collapse
Affiliation(s)
- Ahmad Abu-Awwad
- Applied Analytical Chemistry, University of Duisburg-Essen, Universitaetsstr. 5, 45141, Essen, Germany
- Faculty of Pharmacy, University of Petra, 11196, Amman, Jordan
| | - Tawfiq Arafat
- Faculty of Pharmacy, University of Petra, 11196, Amman, Jordan
| | - Oliver J Schmitz
- Applied Analytical Chemistry, University of Duisburg-Essen, Universitaetsstr. 5, 45141, Essen, Germany.
| |
Collapse
|