1
|
Pan AK, Chaudhari VA, Das S, Gochhait D, Sontakke YA, Harichandrakumar KT. Predictive accuracy of histopathological profile and immunohistochemical markers for the aging of abrasion: an autopsy-based study. Forensic Sci Med Pathol 2024; 20:136-148. [PMID: 37106271 DOI: 10.1007/s12024-023-00611-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/06/2023] [Indexed: 04/29/2023]
Abstract
Wound age estimation is a crucial medicolegal task for forensic pathologists. The main objective of the current study was to evaluate the ability of the histopathological profile and immunohistochemical markers (CD14 and IL-8) to predict the age of abrasion and, furthermore, identify the relationship between the histopathological profile and immunohistochemical markers in abrasion aging. The study involved postmortem cases (n = 246) of abrasion injuries in which the injury infliction time was known. The test skin samples were taken from the abrasion site, and an adjacent area of uninjured skin was sampled for control. Hematoxylin and eosin stain was applied to tissue sections for the histopathological analysis. The semi-quantitative evaluation was made for expressing immunohistochemical markers CD14 and IL-8 on the infiltrating inflammatory cells. The study showed that the age of abrasion was significantly higher (p < 0.05) among the cases with positive staining than those with negative staining for both CD14 and IL-8. Additionally, the study found a significant association between the age of the abrasion and the IHC staining for IL-8. However, no significant association was seen between the age of abrasion and the CD-14 IHC staining. The odds ratio (95% confidence interval) for more than 72 h of the age of abrasion was compared to 0 to 72 h of the age of abrasion. The odds ratios were 39.00 (4.177-364.13) for the predominant mononuclear cell infiltration and 84.50 (9.287-768.814) for cases with the appearance of fibroblast, granulation tissue, and collagen deposition when compared to an unremarkable change on histopathological examination. Positive staining of immunohistochemical markers CD14 and IL-8 for the age of abrasion of more than 72 h showed a sensitivity of 40% and 80.95%, respectively, and specificity of 71.6% and 52.5%, respectively. The quantification of the histopathological changes of predominant mononuclear cell infiltration and the appearance of fibroblast, granulation tissue formation, and collagen deposition showed a significant correlation for the age of abrasion of more than 72 h. The immunohistochemical analysis revealed IL-8 as a more accurate marker than CD14 in identifying abrasions older than 72 h.
Collapse
Affiliation(s)
- Arpan Kumar Pan
- Department of Forensic Medicine and Toxicology, Andaman & Nicobar Institute of Medical Sciences (ANIIMS), Port Blair, 744104, India
| | - Vinod Ashok Chaudhari
- Department of Forensic Medicine and Toxicology, Jawaharlal Institute of Postgraduate Medical Education & Research, Puducherry, India, 605006.
| | - Siddhartha Das
- Department of Forensic Medicine and Toxicology, Jawaharlal Institute of Postgraduate Medical Education & Research, Puducherry, India, 605006
| | - Debasis Gochhait
- Department of Pathology, Jawaharlal Institute of Postgraduate Medical Education & Research, Puducherry, India, 605006
| | - Yogesh Ashok Sontakke
- Department of Anatomy, Jawaharlal Institute of Postgraduate Medical Education & Research, Puducherry, India, 605006
| | - K T Harichandrakumar
- Department of Biostatistics, Jawaharlal Institute of Postgraduate Medical Education & Research, Puducherry, India, 605006
| |
Collapse
|
2
|
Li N, Liang XR, Bai X, Liang XH, Dang LH, Jin QQ, Cao J, Du QX, Sun JH. Novel ratio-expressions of genes enables estimation of wound age in contused skeletal muscle. Int J Legal Med 2024; 138:197-206. [PMID: 37804331 DOI: 10.1007/s00414-023-03095-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 09/18/2023] [Indexed: 10/09/2023]
Abstract
Given that combination with multiple biomarkers may well raise the predictive value of wound age, it appears critically essential to identify new features under the limited cost. For this purpose, the present study explored whether the gene expression ratios provide unique time information as an additional indicator for wound age estimation not requiring the detection of new biomarkers and allowing full use of the available data. The expression levels of four wound-healing genes (Arid5a, Ier3, Stom, and Lcp1) were detected by real-time polymerase chain reaction, and a total of six expression ratios were calculated among these four genes. The results showed that the expression levels of four genes and six ratios of expression changed time-dependent during wound repair. The six expression ratios provided additional temporal information, distinct from the four genes analyzed separately by principal component analysis. The overall performance metrics for cross-validation and external validation of four typical prediction models were improved when six ratios of expression were added as additional input variables. Overall, expression ratios among genes provide temporal information and have excellent potential as predictive markers for wound age estimation. Combining the expression levels of genes with ratio-expression of genes may allow for more accurate estimates of the time of injury.
Collapse
Affiliation(s)
- Na Li
- School of Forensic Medicine, Shanxi Medical University, Jinzhong, 030604, Shanxi, China
| | - Xin-Rui Liang
- School of Forensic Medicine, Shanxi Medical University, Jinzhong, 030604, Shanxi, China
| | - Xue Bai
- School of Forensic Medicine, Shanxi Medical University, Jinzhong, 030604, Shanxi, China
| | - Xin-Hua Liang
- School of Forensic Medicine, Shanxi Medical University, Jinzhong, 030604, Shanxi, China
| | - Li-Hong Dang
- School of Forensic Medicine, Shanxi Medical University, Jinzhong, 030604, Shanxi, China
| | - Qian-Qian Jin
- School of Forensic Medicine, Shanxi Medical University, Jinzhong, 030604, Shanxi, China
| | - Jie Cao
- School of Forensic Medicine, Shanxi Medical University, Jinzhong, 030604, Shanxi, China
| | - Qiu-Xiang Du
- School of Forensic Medicine, Shanxi Medical University, Jinzhong, 030604, Shanxi, China.
| | - Jun-Hong Sun
- School of Forensic Medicine, Shanxi Medical University, Jinzhong, 030604, Shanxi, China.
| |
Collapse
|
3
|
Gao Y, Cai L, Li D, Li L, Wu Y, Ren W, Song Y, Zhu L, Wu Y, Xu H, Luo C, Wang T, Lei Z, Tao L. Extended characterization of IL-33/ST2 as a predictor for wound age determination in skin wound tissue samples of humans and mice. Int J Legal Med 2023:10.1007/s00414-023-03025-x. [PMID: 37246991 DOI: 10.1007/s00414-023-03025-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 05/12/2023] [Indexed: 05/30/2023]
Abstract
Interleukin (IL)-33, an important inflammatory cytokine, is highly expressed in skin wound tissue and serum of humans and mice, and plays an essential role in the process of skin wound healing (SWH) dependent on the IL-33/suppression of tumorigenicity 2 (ST2) pathway. However, whether IL-33 and ST2 themselves, as well as their interaction, can be applied for skin wound age determination in forensic practice remains incompletely characterized. Human skin samples with injured intervals of a few minutes to 24 hours (hs) and mouse skin samples with injured intervals of 1 h to 14 days (ds) were collected. Herein, the results demonstrated that IL-33 and ST2 are increased in the human skin wounds, and that in mice skin wounds, there is an increase over time, with IL-33 expression peaking at 24 hs and 10 ds, and ST2 expression peaking at 12 hs and 7 ds. Notably, the relative quantity of IL-33 and ST2 proteins < 0.35 suggested a wound age of 3 hs; their relative quantity > 1.0 suggested a wound age of 24 hs post-mouse skin wounds. In addition, immunofluorescent staining results showed that IL-33 and ST2 were consistently expressed in the cytoplasm of F4/80-positive macrophages and CD31-positive vascular endothelial cells with or without skin wounds, whereas nuclear localization of IL-33 was absent in α-SMA-positive myofibroblasts with skin wounds. Interestingly, IL-33 administration facilitated the wound area closure by increasing the proliferation of cytokeratin (K) 14 -positive keratinocytes and vimentin-positive fibroblasts. In contrast, treating with its antagonist (i.e., anti-IL-33) or receptor antagonist (e.g., anti-ST2) exacerbated the aforementioned pathological changes. Moreover, treatment with IL-33 combined with anti-IL-33 or anti-ST2 reversed the effect of IL-33 on facilitating skin wound closure, suggesting that IL-33 administration facilitated skin wound closure through the IL-33/ST2 signaling pathway. Collectively, these findings indicate that the detection of IL-33/ST2 might be a reliable biomarker for the determination of skin wound age in forensic practice.
Collapse
Affiliation(s)
- Yuan Gao
- Department of Forensic Medicine, School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, 215123, China
- Department of Forensic Science, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Luwei Cai
- Department of Forensic Medicine, School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, 215123, China
| | - Dongya Li
- Department of Orthopedics, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221000, Jiangsu, China
| | - Lili Li
- Department of Child and Adolescent Healthcare, Children's Hospital of Soochow University, Suzhou, 215021, Jiangsu, China
| | - Yulu Wu
- Department of Forensic Medicine, School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, 215123, China
| | - Wenjing Ren
- Department of Forensic Medicine, School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, 215123, China
| | - Yirui Song
- Department of Forensic Medicine, School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, 215123, China
| | - Luwen Zhu
- Department of Forensic Science, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Youzhuang Wu
- Department of Forensic Science, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Heng Xu
- Department of Forensic Medicine, School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, 215123, China
| | - Chengliang Luo
- Department of Forensic Medicine, School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, 215123, China
| | - Tao Wang
- Department of Forensic Medicine, School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, 215123, China
| | - Ziguang Lei
- Department of Forensic Science, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China.
| | - Luyang Tao
- Department of Forensic Medicine, School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, 215123, China.
| |
Collapse
|
4
|
Vignali G, Franceschetti L, Attisano GCL, Cattaneo C. Assessing wound vitality in decomposed bodies: a review of the literature. Int J Legal Med 2023; 137:459-470. [PMID: 36550324 DOI: 10.1007/s00414-022-02932-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 12/07/2022] [Indexed: 12/24/2022]
Abstract
The capability of discriminating between a vital and a post-mortem injury has always been a central theme in forensic pathology, particularly when the corpse is an advanced state of decomposition. Post-mortem decay of the body can mask or disrupt the classical features of a skin lesion, making it difficult to establish the cause and manner of death. Taphonomically challenging situations pose several interpretative issues of skin lesions which need to be addressed with scientifically recent methods that are still limited in the forensic literature. For that reason, the present research aims at resuming what is currently available in the attempt to provide some insight regarding this topic. This review considers only original researches, in which the markers of vitality were studied a significant amount of time after death, in order to test post-mortem persistency of these markers over time. A number of 132 original articles and reviews were considered, and the most significant results are resumed in an overview table and in two intuitive figures. Though many researchers tried to establish the vitality of lesions in specimen, few analysed samples from bodies when a significant degree of putrefaction or burning had occurred. The most significant marker proved to be GPA, which sowed a satisfying persistence over time (up to 6 months in air putrefaction and 15 days in water). However, what clearly emerged is that further studies are needed to address the challenges of taphonomically transformed specimen and to possibly neutralize the variability of experimental conditions, which affect the reproducibility of results. In conclusion, this study could be a starting point for providing food for thoughts about the most useful markers to search for in unusually tricky autopsy cases.
Collapse
Affiliation(s)
- Giulia Vignali
- Institute of Legal Medicine, Department of Biomedical Sciences for Health, University of Milan, Milan, Italy.
| | - Lorenzo Franceschetti
- LABANOF (Laboratorio Di Antropologia E Odontologia Forense), Institute of Legal Medicine, Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
| | - Giuseppe Carlo Lanza Attisano
- LABANOF (Laboratorio Di Antropologia E Odontologia Forense), Institute of Legal Medicine, Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
| | - Cristina Cattaneo
- LABANOF (Laboratorio Di Antropologia E Odontologia Forense), Institute of Legal Medicine, Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
| |
Collapse
|
5
|
Novel Prediction Method Applied to Wound Age Estimation: Developing a Stacking Ensemble Model to Improve Predictive Performance Based on Multi-mRNA. Diagnostics (Basel) 2023; 13:diagnostics13030395. [PMID: 36766500 PMCID: PMC9914838 DOI: 10.3390/diagnostics13030395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/13/2023] [Accepted: 01/17/2023] [Indexed: 01/24/2023] Open
Abstract
(1) Background: Accurate diagnosis of wound age is crucial for investigating violent cases in forensic practice. However, effective biomarkers and forecast methods are lacking. (2) Methods: Samples were collected from rats divided randomly into control and contusion groups at 0, 4, 8, 12, 16, 20, and 24 h post-injury. The characteristics of concern were nine mRNA expression levels. Internal validation data were used to train different machine learning algorithms, namely random forest (RF), support vector machine (SVM), multilayer perceptron (MLP), gradient boosting (GB), and stochastic gradient descent (SGD), to predict wound age. These models were considered the base learners, which were then applied to developing 26 stacking ensemble models combining two, three, four, or five base learners. The best-performing stacking model and base learner were evaluated through external validation data. (3) Results: The best results were obtained using a stacking model of RF + SVM + MLP (accuracy = 92.85%, area under the receiver operating characteristic curve (AUROC) = 0.93, root-mean-square-error (RMSE) = 1.06 h). The wound age prediction performance of the stacking models was also confirmed for another independent dataset. (4) Conclusions: We illustrate that machine learning techniques, especially ensemble algorithms, have a high potential to be used to predict wound age. According to the results, the strategy can be applied to other types of forensic forecasts.
Collapse
|
6
|
Xiang Q, Su Q, Li Q, Liu J, Du Y, Shi H, Li Z, Ma Y, Niu Y, Chen L, Liu C, Zhao J. Microbial community analyses provide a differential diagnosis for the antemortem and postmortem injury of decayed cadaver: An animal model. J Forensic Leg Med 2023; 93:102473. [PMID: 36580880 DOI: 10.1016/j.jflm.2022.102473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 12/23/2022] [Indexed: 12/25/2022]
Abstract
Differentiating antemortem injury from postmortem injury of decayed cadavers is one of the difficult issues in forensic science. Forensic pathologists identify antemortem injury according to the macroscopic and microscopic vital reactions taken place after being injured. However, the decomposition would render those vital reactions ineffective. Microbiomes have been widely used in forensic science due to their succession with time and sensitivity to vary of environment. In this study, microbiomes were introduced to determine whether the bacterial communities can be used to distinguish between the ante- and postmortem injuries through an animal experiment. Our findings showed that the differences of bacterial community were increasingly apparent from the 6th to 9th day after the wound created when the types of wounds were unidentified by morphological examination due to decomposition. The biomarkers at the genus level could effectively distinguish between injury types, Among them, Enterococcus and Enterobacter were only observed in the antemortem injured group, while Staphylococcus and Acinetobacter were only in the postmortem injured group. It is possible to tell whether cadaveric injuries developed before or after death by detecting differences in the bacterial communities of putrefying wounds. This study provides a new perspective for the differences between ante- and postmortem injuries and provides a promising method for us to identify the ante- and postmortem wounds, especially in decomposed cadavers.
Collapse
Affiliation(s)
- Qingqing Xiang
- School of Forensic Medicine, Kunming Medical University, Chunrong Road West 1168, Chenggong District, Kunming, 650500, China
| | - Qin Su
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-Sen University & Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Zhongshan 2nd Road 74, Yuexiu District, Guangzhou, 510275, PR China; Guangzhou Forensic Science Institute & Key Laboratory of Forensic Pathology, Ministry of Public Security, Baiyun Avenue 1708, Baiyun District, Guangzhou, 510442, PR China
| | - Qi Li
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-Sen University & Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Zhongshan 2nd Road 74, Yuexiu District, Guangzhou, 510275, PR China
| | - Jingjian Liu
- Department of Anatomy, North Sichuan Medical College, Nanchong, 637000, China
| | - Yukun Du
- School of Forensic Medicine, Southern Medical University, Shaitai Road South 1023-1063, Baiyun District, Guangzhou, 510515, China
| | - He Shi
- Guangzhou Forensic Science Institute & Key Laboratory of Forensic Pathology, Ministry of Public Security, Baiyun Avenue 1708, Baiyun District, Guangzhou, 510442, PR China
| | - Zhigang Li
- Guangzhou Forensic Science Institute & Key Laboratory of Forensic Pathology, Ministry of Public Security, Baiyun Avenue 1708, Baiyun District, Guangzhou, 510442, PR China
| | - Yanbin Ma
- Guangzhou Forensic Science Institute & Key Laboratory of Forensic Pathology, Ministry of Public Security, Baiyun Avenue 1708, Baiyun District, Guangzhou, 510442, PR China
| | - Yong Niu
- Section of Forensic Sciences, Criminal Investigation Department, Ministry of Public Security, Chang' an Avenue 14, Dongcheng District, Beijing, 100741, China
| | - Lifang Chen
- School of Forensic Medicine, Kunming Medical University, Chunrong Road West 1168, Chenggong District, Kunming, 650500, China.
| | - Chao Liu
- Guangzhou Forensic Science Institute & Key Laboratory of Forensic Pathology, Ministry of Public Security, Baiyun Avenue 1708, Baiyun District, Guangzhou, 510442, PR China.
| | - Jian Zhao
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-Sen University & Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Zhongshan 2nd Road 74, Yuexiu District, Guangzhou, 510275, PR China; Guangzhou Forensic Science Institute & Key Laboratory of Forensic Pathology, Ministry of Public Security, Baiyun Avenue 1708, Baiyun District, Guangzhou, 510442, PR China.
| |
Collapse
|
7
|
Abstract
We investigated the dynamics of the gene expression of M1 and M2 macrophage markers during skin wound healing in mice. Expression of M1-macrophage markers, such as Il12a, Tnf, Il6, Il1b, and Nos2 was upregulated after wounding and peaked at 1 or 3 days after injury, and that of M2-macrophage markers such as Mrc1, Cd163, Ccl17, Arg, and Tgfb1, peaked at 6 days after injury. Consistent with these findings, using triple-color immunofluorescence analysis revealed that F4/80+CD80+ M1 macrophages were more abundant than F4/80+CD206+ M2 macrophages on day 3 in mouse wound specimens, and that M2 macrophages were prominently detected in day 6 wounds. For application in forensic practice, we examined macrophage polarization using human wound specimens. The average ratios of CD68+iNOS+ M1 macrophages to CD68+CD163+ M2 macrophages (M1/M2 ratios) were greater than 2.5 for the wounds aged 2-5 days. Out of 11 wounds aged 1-5 days, five samples had the M1/M2 ratios of > 3.0. These observations propose that the M1/M2 ratios of 3.0 would indicate a wound age of 1-5 days as the forensic opinion. This study showed that M1 and M2 macrophages in human skin wound might be a promising marker for wound age determination.
Collapse
|
8
|
Maiese A, Manetti AC, Iacoponi N, Mezzetti E, Turillazzi E, Di Paolo M, La Russa R, Frati P, Fineschi V. State-of-the-Art on Wound Vitality Evaluation: A Systematic Review. Int J Mol Sci 2022; 23:6881. [PMID: 35805886 PMCID: PMC9266385 DOI: 10.3390/ijms23136881] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 06/17/2022] [Accepted: 06/17/2022] [Indexed: 12/29/2022] Open
Abstract
The vitality demonstration refers to determining if an injury has been caused ante- or post-mortem, while wound age means to evaluate how long a subject has survived after the infliction of an injury. Histology alone is not enough to prove the vitality of a lesion. Recently, immunohistochemistry, biochemistry, and molecular biology have been introduced in the field of lesions vitality and age demonstration. The study was conducted according to the preferred reporting items for systematic review (PRISMA) protocol. The search terms were "wound", "lesion", "vitality", "evaluation", "immunohistochemistry", "proteins", "electrolytes", "mRNAs", and "miRNAs" in the title, abstract, and keywords. This evaluation left 137 scientific papers. This review aimed to collect all the knowledge on vital wound demonstration and provide a temporal distribution of the methods currently available, in order to determine the age of lesions, thus helping forensic pathologists in finding a way through the tangled jungle of wound vitality evaluation.
Collapse
Affiliation(s)
- Aniello Maiese
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, Institute of Legal Medicine, University of Pisa, 56126 Pisa, Italy; (A.M.); (A.C.M.); (N.I.); (E.M.); (E.T.); (M.D.P.)
| | - Alice Chiara Manetti
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, Institute of Legal Medicine, University of Pisa, 56126 Pisa, Italy; (A.M.); (A.C.M.); (N.I.); (E.M.); (E.T.); (M.D.P.)
| | - Naomi Iacoponi
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, Institute of Legal Medicine, University of Pisa, 56126 Pisa, Italy; (A.M.); (A.C.M.); (N.I.); (E.M.); (E.T.); (M.D.P.)
| | - Eleonora Mezzetti
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, Institute of Legal Medicine, University of Pisa, 56126 Pisa, Italy; (A.M.); (A.C.M.); (N.I.); (E.M.); (E.T.); (M.D.P.)
| | - Emanuela Turillazzi
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, Institute of Legal Medicine, University of Pisa, 56126 Pisa, Italy; (A.M.); (A.C.M.); (N.I.); (E.M.); (E.T.); (M.D.P.)
| | - Marco Di Paolo
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, Institute of Legal Medicine, University of Pisa, 56126 Pisa, Italy; (A.M.); (A.C.M.); (N.I.); (E.M.); (E.T.); (M.D.P.)
| | - Raffaele La Russa
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy;
| | - Paola Frati
- Department of Anatomical, Histological, Forensic and Orthopedic Sciences, Institute of Legal Medicine, Sapienza University of Rome, Viale Regina Elena 336, 00161 Rome, Italy;
| | - Vittorio Fineschi
- Department of Anatomical, Histological, Forensic and Orthopedic Sciences, Institute of Legal Medicine, Sapienza University of Rome, Viale Regina Elena 336, 00161 Rome, Italy;
| |
Collapse
|
9
|
Gauchotte G, Bochnakian A, Campoli P, Lardenois E, Brix M, Simon E, Colomb S, Martrille L, Peyron PA. Myeloperoxydase and CD15 With Glycophorin C Double Staining in the Evaluation of Skin Wound Vitality in Forensic Practice. Front Med (Lausanne) 2022; 9:910093. [PMID: 35665361 PMCID: PMC9156797 DOI: 10.3389/fmed.2022.910093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 04/25/2022] [Indexed: 12/01/2022] Open
Abstract
Background The determination of skin wound vitality based on tissue sections is a challenge for the forensic pathologist. Histology is still the gold standard, despite its low sensitivity. Immunohistochemistry could allow to obtain a higher sensitivity. Upon the candidate markers, CD15 and myeloperoxidase (MPO) may allow to early detect polymorphonuclear neutrophils (PMN). The aim of this study was to evaluate the sensitivity and the specificity of CD15 and MPO, with glycophorin C co-staining, compared to standard histology, in a series of medicolegal autopsies, and in a human model of recent wounds. Methods Twenty-four deceased individuals with at least one recent open skin wound were included. For each corpse, a post-mortem wound was performed in an uninjured skin area. At autopsy, a skin sample from the margins of each wound and skin controls were collected (n = 72). Additionally, the cutaneous surgical margins of abdominoplasty specimens were sampled as a model of early intravital stab wound injury (scalpel blade), associated with post-devascularization wounds (n = 39). MPO/glycophorin C and CD15/glycophorin C immunohistochemical double staining was performed. The number of MPO and CD15 positive cells per 10 high power fields (HPF) was evaluated, excluding glycophorin C—positive areas. Results With a threshold of at least 4 PMN/10 high power fields, the sensitivity and specificity of the PMN count for the diagnostic of vitality were 16 and 100%, respectively. With MPO/glycophorin C as well as CD15/glycophorin C IHC, the number of positive cells was significantly higher in vital than in non-vital wounds (p < 0.001). With a threshold of at least 4 positive cells/10 HPF, the sensitivity and specificity of CD15 immunohistochemistry were 53 and 100%, respectively; with the same threshold, MPO sensitivity and specificity were 28 and 95%. Conclusion We showed that combined MPO or CD15/glycophorin C double staining is an interesting and original method to detect early vital reaction. CD15 allowed to obtain a higher, albeit still limited, sensitivity, with a high specificity. Confirmation studies in independent and larger cohorts are still needed to confirm its accuracy in forensic pathology.
Collapse
Affiliation(s)
- Guillaume Gauchotte
- Department of Biopathology, CHRU-ICL, CHRU Nancy, Vandoeuvre-lès-Nancy, France.,Faculty of Medicine, Université de Lorraine, Vandoeuvre-lès-Nancy, France.,Department of Legal Medicine, CHRU Nancy, Vandoeuvre-lès-Nancy, France.,INSERM U1256, NGERE, Vandoeuvre-lès-Nancy, France.,Centre de Ressources Biologiques, BB-0033-00035, CHRU, Nancy, France
| | - Agathe Bochnakian
- Department of Biopathology, CHRU-ICL, CHRU Nancy, Vandoeuvre-lès-Nancy, France.,Faculty of Medicine, Université de Lorraine, Vandoeuvre-lès-Nancy, France
| | - Philippe Campoli
- Department of Biopathology, CHRU-ICL, CHRU Nancy, Vandoeuvre-lès-Nancy, France.,Faculty of Medicine, Université de Lorraine, Vandoeuvre-lès-Nancy, France
| | - Emilie Lardenois
- Department of Biopathology, CHRU-ICL, CHRU Nancy, Vandoeuvre-lès-Nancy, France.,Faculty of Medicine, Université de Lorraine, Vandoeuvre-lès-Nancy, France
| | - Muriel Brix
- Faculty of Medicine, Université de Lorraine, Vandoeuvre-lès-Nancy, France.,Department of Maxillofacial and Plastic Surgery, CHRU, Nancy, France
| | - Etienne Simon
- Faculty of Medicine, Université de Lorraine, Vandoeuvre-lès-Nancy, France.,Department of Maxillofacial and Plastic Surgery, CHRU, Nancy, France
| | - Sophie Colomb
- Department of Forensic Medicine, CHU Montpellier, University of Montpellier, Montpellier, France.,EDPFM, University of Montpellier, Département de Médecine Légale, Montpellier, France
| | - Laurent Martrille
- Department of Forensic Medicine, CHU Montpellier, University of Montpellier, Montpellier, France.,EDPFM, University of Montpellier, Département de Médecine Légale, Montpellier, France
| | - Pierre-Antoine Peyron
- Department of Forensic Medicine, CHU Montpellier, University of Montpellier, Montpellier, France.,IRMB, INM, University of Montpellier, INSERM, CHU Montpellier (LBPC-PPC), Montpellier, France
| |
Collapse
|
10
|
Zhang S, Ishida Y, Ishigami A, Nosaka M, Kuninaka Y, Hata S, Yamamoto H, Hashizume Y, Matsuki J, Yasuda H, Kimura A, Furukawa F, Kondo T. Forensic Application of Epidermal Ubiquitin Expression to Determination of Wound Vitality in Human Compressed Neck Skin. Front Med (Lausanne) 2022; 9:867365. [PMID: 35492347 PMCID: PMC9045732 DOI: 10.3389/fmed.2022.867365] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 03/22/2022] [Indexed: 11/19/2022] Open
Abstract
Ubiquitin is a member of the heat shock protein family and is rapidly induced by various types of stimuli, including ischemic and mechanical stress. However, its significance in determining wound vitality of neck compression skin in forensic pathology remains unclear. We immunohistochemically examined the expression of ubiquitin in the neck skin samples to understand its forensic applicability in determining wound vitality. Skin samples were obtained from 53 cases of neck compression (hanging, 42 cases; strangulation, 11 cases) during forensic autopsies. Intact skin from the same individual was used as the control. Ubiquitin expression was detected in 73.9% of keratinocytes in intact skin samples, but only in 21.2% of keratinocytes in the compression regions, with statistical differences between the control and compression groups. This depletion in the case of neck compression may be caused by the impaired conversion of conjugated to free ubiquitin and failure of de novo ubiquitin synthesis. From a forensic pathological perspective, immunohistochemical examination of ubiquitin expression in the skin of the neck can be regarded as a valuable marker for diagnosing traces of antemortem compression.
Collapse
Affiliation(s)
- Siying Zhang
- Department of Forensic Medicine, Wakayama Medical University, Wakayama, Japan
| | - Yuko Ishida
- Department of Forensic Medicine, Wakayama Medical University, Wakayama, Japan
| | - Akiko Ishigami
- Department of Forensic Medicine, Wakayama Medical University, Wakayama, Japan
| | - Mizuho Nosaka
- Department of Forensic Medicine, Wakayama Medical University, Wakayama, Japan
| | - Yumi Kuninaka
- Department of Forensic Medicine, Wakayama Medical University, Wakayama, Japan
| | - Satoshi Hata
- Department of Forensic Medicine, Wakayama Medical University, Wakayama, Japan
| | - Hiroki Yamamoto
- Department of Forensic Medicine, Wakayama Medical University, Wakayama, Japan
| | - Yumiko Hashizume
- Department of Forensic Medicine, Wakayama Medical University, Wakayama, Japan
| | - Jumpei Matsuki
- Department of Forensic Medicine, Wakayama Medical University, Wakayama, Japan
| | - Haruki Yasuda
- Department of Forensic Medicine, Wakayama Medical University, Wakayama, Japan
| | - Akihiko Kimura
- Department of Forensic Medicine, Wakayama Medical University, Wakayama, Japan
| | - Fukumi Furukawa
- Department of Forensic Medicine, Wakayama Medical University, Wakayama, Japan
| | - Toshikazu Kondo
- Department of Forensic Medicine, Wakayama Medical University, Wakayama, Japan
| |
Collapse
|
11
|
Ros AC, Bacci S, Luna A, Legaz I. Forensic Impact of the Omics Science Involved in the Wound: A Systematic Review. Front Med (Lausanne) 2022; 8:786798. [PMID: 35071269 PMCID: PMC8770859 DOI: 10.3389/fmed.2021.786798] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 12/14/2021] [Indexed: 12/28/2022] Open
Abstract
Background: In forensic autopsies, examining the wounds is one of the most critical aspects to clarify the causal relationship between the cause of death and the wounds observed on the corpse. However, on many occasions, it is difficult to differentiate antemortem injuries from post-mortem injuries, mainly when they occur very close to the moment of death. At present, various studies try to find biomarkers and clarify the molecular mechanisms involved in a wound due to the high variability of conditions in which they occur, thus being one of the most challenging problems in forensic pathology. This review aimed to study the omics data to determine the main lines of investigation emerging in the diagnosis of vital injuries, time of appearance, estimation of the age and vitality of the wound, and its possible contributions to the forensic field. Methods: A systematic review of the human wound concerning forensic science was carried out by following PRISMA guidelines. Results: This study sheds light on the role of omics research during the process of wounding, identifying different cytokines and other inflammatory mediators, as well as cells involved in the specific stage of the wound healing process, show great use in estimating the age of a wound. On the other hand, the expression levels of skin enzymes, proteins, metal ions, and other biomarkers play an essential role in differentiating vital and post-mortem wounds. More recent studies have begun to analyze and quantify mRNA from different genes that encode proteins that participate in the inflammation phase of a wound and miRNAs related to various cellular processes. Conclusions: This study sheds light on the role of research in the molecular characterization of vital wounds, heralding a promising future for molecular characterization of wounds in the field of forensic pathology, opening up an important new area of research. Systematic Review Registration: URL: https://www.crd.york.ac.uk/prospero/#myprospero, Identifier: CRD42021286623.
Collapse
Affiliation(s)
- Aurelia Collados Ros
- Department of Legal and Forensic Medicine, Biomedical Research Institute (IMIB), Regional Campus of International Excellence "Campus Mare Nostrum", Faculty of Medicine, University of Murcia, Murcia, Spain
| | - Stefano Bacci
- Department of Biology, Research Unit of Histology and Embriology, University of Florence, Florence, Italy
| | - Aurelio Luna
- Department of Legal and Forensic Medicine, Biomedical Research Institute (IMIB), Regional Campus of International Excellence "Campus Mare Nostrum", Faculty of Medicine, University of Murcia, Murcia, Spain
| | - Isabel Legaz
- Department of Legal and Forensic Medicine, Biomedical Research Institute (IMIB), Regional Campus of International Excellence "Campus Mare Nostrum", Faculty of Medicine, University of Murcia, Murcia, Spain
| |
Collapse
|